Beyond the Obvious: Smoking and Respiratory Infection Implications on Alzheimer's Disease

Author(s): Ridhima Wadhwa, Keshav Raj Paudel, Meenu Mehta, Shakti D. Shukla, Krishna Sunkara, Parteek Prasher, Nisha Panth, Rohit Goyal, Dinesh Kumar Chellappan, Gaurav Gupta, Philip M. Hansbro, Alaa A.A. Aljabali, Murtaza M. Tambuwala, Kamal Dua*

Journal Name: CNS & Neurological Disorders - Drug Targets
Formerly Current Drug Targets - CNS & Neurological Disorders

Volume 19 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Tobacco smoke is not only a leading cause for chronic obstructive pulmonary disease, cardiovascular disorders, and lung and oral cancers, but also causes neurological disorders such as Alzheimer ’s disease. Tobacco smoke consists of more than 4500 toxic chemicals, which form free radicals and can cross blood-brain barrier resulting in oxidative stress, an extracellular amyloid plaque from the aggregation of amyloid β (Aβ) peptide deposition in the brain. Further, respiratory infections such as Chlamydia pneumoniae, respiratory syncytial virus have also been involved in the induction and development of the disease. The necessary information collated on this review has been gathered from various literature published from 1995 to 2019. The review article sheds light on the role of smoking and respiratory infections in causing oxidative stress and neuroinflammation, resulting in Alzheimer's disease (AD). This review will be of interest to scientists and researchers from biological and medical science disciplines, including microbiology, pharmaceutical sciences and the translational researchers, etc. The increasing understanding of the relationship between chronic lung disease and neurological disease is two-fold. First, this would help to identify the risk factors and possible therapeutic interventions to reduce the development and progression of both diseases. Second, this would help to reduce the probable risk of development of AD in the population prone to chronic lung diseases.

Keywords: Smoking, Pulmonary infections, Alzheimer’s disease, oxidative stress, infection, (Aβ) peptide deposition.

[1]
Gale SA, Acar D, Daffner KR. Dementia. Am J Med 2018; 131(10): 1161-9.
[http://dx.doi.org/10.1016/j.amjmed.2018.01.022 PMID: 29425707]
[2]
Kumar R, Kumar R, Sharma N, et al. Genetics of Parkinson’s disease: how close and how far we are? Plant Arch 2019; 19: 1017-20.
[3]
Raz L, Knoefel J, Bhaskar K. The neuropathology and cerebrovascular mechanisms of dementia. J Cereb Blood Flow Metab 2016; 36(1): 172-86.
[http://dx.doi.org/10.1038/jcbfm.2015.164 PMID: 26174330]
[4]
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001 PMID: 27570871]
[5]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381 PMID: 19595937]
[6]
GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(1): 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[7]
Stefanacci RG. The costs of Alzheimer’s disease and the value of effective therapies. Am J Manag Care 2011; 17(Suppl. 13): S356-62.
[PMID: 22214393]
[8]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[9]
Scheltens P, Blennow K, Breteler MM, et al. Alzheimer’s disease. Lancet 2016; 388(10043): 505-17.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[10]
Genin E, Hannequin D, Wallon D, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 2011; 16(9): 903-7.
[http://dx.doi.org/10.1038/mp.2011.52 PMID: 21556001]
[11]
Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 2019; 26(1): 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y PMID: 31072403]
[12]
Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(8): 2.
[http://dx.doi.org/10.1101/cshperspect.a006239 PMID: 22908189]
[13]
Cataldo JK, Prochaska JJ, Glantz SA. Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis 2010; 19(2): 465-80.
[http://dx.doi.org/10.3233/JAD-2010-1240 PMID: 20110594]
[14]
Rusanen M, Kivipelto M, Quesenberry CP Jr, Zhou J, Whitmer RA. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med 2011; 171(4): 333-9.
[http://dx.doi.org/10.1001/archinternmed.2010.393] [PMID: 20975015]
[15]
Durazzo TC, Mattsson N, Weiner MW. Alzheimer’s disease neuroimaging initiative. smoking and increased Alzheimer’s disease risk: a review of potential mechanisms. Alzheimers Dement 2014; 10(3)(Suppl.): S122-45.
[http://dx.doi.org/10.1016/j.jalz.2014.04.009 PMID: 24924665]
[16]
Voloboueva LA, Giffard RG. Inflammation, mitochondria, and the inhibition of adult neurogenesis. J Neurosci Res 2011; 89(12): 1989-96.
[http://dx.doi.org/10.1002/jnr.22768 PMID: 21910136]
[17]
Sochocka M, Zwolińska K, Leszek J. The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol 2017; 15(7): 996-1009.
[http://dx.doi.org/10.2174/1570159X15666170313122937] [PMID: 28294067]
[18]
Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 2018; 99(1): 64-82.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.05.023 PMID: 29937276]
[19]
Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 2018; 99(1): 56-63.e3.
[http://dx.doi.org/10.1016/j.neuron.2018.06.030 PMID: 30001512]
[20]
Shima K, Kuhlenbäumer G, Rupp J. Chlamydia pneumoniae infection and Alzheimer’s disease: a connection to remember? Med Microbiol Immunol (Berl) 2010; 199(4): 283-9.
[http://dx.doi.org/10.1007/s00430-010-0162-1 PMID: 20445987]
[21]
Lim C, Hammond CJ, Hingley ST, Balin BJ. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer’s disease. J Neuroinflammation 2014; 11: 217.
[http://dx.doi.org/10.1186/s12974-014-0217-0 PMID: 25540075]
[22]
Cerovic M, Forloni G, Balducci C. Neuroinflammation and the gut microbiota: possible alternative therapeutic targets to counteract Alzheimer’s disease? Front Aging Neurosci 2019; 11: 284.
[http://dx.doi.org/10.3389/fnagi.2019.00284 PMID: 31680937]
[23]
Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med 2019; 7(10): 907-20.
[http://dx.doi.org/10.1016/S2213-2600(18)30510-1] [PMID: 30975495]
[24]
Ainslie N, Beisecker AE. Changes in decisions by elderly persons based on treatment description. Arch Intern Med 1994; 154(19): 2225-33.
[http://dx.doi.org/10.1001/archinte.1994.00420190129015] [PMID: 7944844]
[25]
Visser J, McLachlan MH, Maayan N, Garner P. Community-based supplementary feeding for food insecure, vulnerable and malnourished populations - an overview of systematic reviews. Cochrane Database Syst Rev 2018; 11CD010578
[http://dx.doi.org/10.1002/14651858.CD010578.pub2] [PMID: 30480324]
[26]
Mehta M, Deeksha , Tewari D, et al. Oligonucleotide therapy: an emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 2019; 308: 206-15.
[http://dx.doi.org/10.1016/j.cbi.2019.05.028 PMID: 31136735]
[27]
Mehta M, Dhanjal DS, Paudel KR, et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28(4): 795-817.
[http://dx.doi.org/10.1007/s10787-020-00698-3 PMID: 32189104]
[28]
Drane JF, Coulehan JL. The best-interest standard: surrogate decision making and quality of life. J Clin Ethics 1995; 6(1): 20-9.
[PMID: 7632992]
[29]
Relkin NR, Thomas RG, Rissman RA, et al. Alzheimer’s Disease Cooperative Study. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 2017; 88(18): 1768-75.
[http://dx.doi.org/10.1212/WNL.0000000000003904] [PMID: 28381506]
[30]
Gold M, Alderton C, Zvartau-Hind M, et al. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 2010; 30(2): 131-46.
[http://dx.doi.org/10.1159/000318845 PMID: 20733306]
[31]
Mehta M, Deeksha , Sharma N, et al. Interactions with the macrophages: an emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 2019; 304: 10-9.
[http://dx.doi.org/10.1016/j.cbi.2019.02.021 PMID: 30849336]
[32]
Dua K, Malyla V, Singhvi G, et al. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chem Biol Interact 2019; 299: 168-78.
[http://dx.doi.org/10.1016/j.cbi.2018.12.009 PMID: 30553721]
[33]
Dua K, Wadhwa R, Singhvi G, et al. The potential of siRNA based drug delivery in respiratory disorders: recent advances and progress. Drug Dev Res 2019; 80(6): 714-30.
[http://dx.doi.org/10.1002/ddr.21571 PMID: 31691339]
[34]
Chellappan DK, Yee LW, Xuan KY, et al. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81(4): 419-36.
[http://dx.doi.org/10.1002/ddr.21648 PMID: 32048757]
[35]
Ng ZY, Wong JY, Panneerselvam J, et al. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces 2018; 172: 51-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.027 PMID: 30134219]
[36]
Mehta M, Chellappan DK, Wich PR, Hansbro NG, Hansbro PM, Dua K. miRNA nanotherapeutics: potential and challenges in respiratory disorders. Future Med Chem 2020; 2(11): 987-90.
[37]
Kim TM, Paudel KR, Kim DW. Eriobotrya japonica leaf extract attenuates airway inflammation in ovalbumin-induced mice model of asthma. J Ethnopharmacol 2020; 253112082
[http://dx.doi.org/10.1016/j.jep.2019.112082 PMID: 31310829]
[38]
Howe EG. Do we undervalue feelings in patients who are cognitively impaired? J Clin Ethics 2006; 17(4): 291-301.
[PMID: 17330718]
[39]
Kukull WA, Brenner DE, Speck CE, et al. Causes of death associated with Alzheimer disease: variation by level of cognitive impairment before death. J Am Geriatr Soc 1994; 42(7): 723-6.
[http://dx.doi.org/10.1111/j.1532-5415.1994.tb06531.x] [PMID: 8014346]
[40]
Manabe T, Mizukami K, Akatsu H, et al. Influence of pneumonia complications on the prognosis of patients with autopsy-confirmed Alzheimer’s disease, dementia with Lewy bodies, and vascular dementia. Psychogeriatrics 2016; 16(5): 305-14.
[http://dx.doi.org/10.1111/psyg.12163 PMID: 26510708]
[41]
McManus RM, Heneka MT. Role of neuroinflammation in neurodegeneration: new insights. Alzheimers Res Ther 2017; 9(1): 14.
[http://dx.doi.org/10.1186/s13195-017-0241-2 PMID: 28259169]
[42]
Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin Ther Pat 2020; 30(5): 375-87.
[http://dx.doi.org/10.1080/13543776.2020.1741547] [PMID: 32178542]
[43]
Tsuda K, Higuchi A, Yokoyama E, et al. Physician decision-making patterns and family presence: cross-sectional online survey study in Japan. Interact J Med Res 2019; 8(3)e12781
[http://dx.doi.org/10.2196/12781 PMID: 31493327]
[44]
Yu N, Lin XJ, Zhang SG, Di Q. Analysis of the reasons and costs of hospitalization for epilepsy patients in East China. Seizure 2019; 72: 40-5.
[http://dx.doi.org/10.1016/j.seizure.2019.09.013 PMID: 31590137]
[45]
Malyla V, Paudel KR, Shukla SD, et al. Recent advances in experimental animal models of lung cancer. Future Med Chem 2020; 12(7): 567-70.
[http://dx.doi.org/10.4155/fmc-2019-0338 PMID: 32175774]
[46]
Sharma P, Mehta M, Dhanjal DS, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact 2019; 309108720
[http://dx.doi.org/10.1016/j.cbi.2019.06.033 PMID: 31226287]
[47]
Asano M, Fujimoto N, Gemba K, et al. Acute onset of brain atrophy and dementia in a patient with small cell lung cancer: a case report. Lung Cancer 2011; 71(3): 367-9.
[http://dx.doi.org/10.1016/j.lungcan.2010.11.017 PMID: 21216022]
[48]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9.
[http://dx.doi.org/10.1038/nature02621 PMID: 15295589]
[49]
Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 2014; 82(4): 756-71.
[http://dx.doi.org/10.1016/j.neuron.2014.05.004 PMID: 24853936]
[50]
Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 1991; 6(4): 487-98.
[http://dx.doi.org/10.1016/0896-6273(91)90052-2 PMID: 1673054]
[51]
Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007; 47: 699-729.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105214 PMID: 17009926]
[52]
Giniatullin R, Nistri A, Yakel JL. Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci 2005; 28(7): 371-8.
[http://dx.doi.org/10.1016/j.tins.2005.04.009 PMID: 15979501]
[53]
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2004; 74(6): 363-96.
[http://dx.doi.org/10.1016/j.pneurobio.2004.09.006] [PMID: 15649582]
[54]
Guillem K, Bloem B, Poorthuis RB, et al. Nicotinic acetylcholine receptor β2 subunits in the medial prefrontal cortex control attention. Science 2011; 333(6044): 888-91.
[http://dx.doi.org/10.1126/science.1207079 PMID: 21836018]
[55]
Knobloch M, Mansuy IM. Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Mol Neurobiol 2008; 37(1): 73-82.
[http://dx.doi.org/10.1007/s12035-008-8018-z PMID: 18438727]
[56]
Beeri R, Andres C, Lev-Lehman E, et al. Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr Biol 1995; 5(9): 1063-71.
[http://dx.doi.org/10.1016/S0960-9822(95)00211-9 PMID: 8542283]
[57]
Sarter M, Bruno JP. Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Brain Res Rev 1997; 23(1-2): 28-46.
[http://dx.doi.org/10.1016/S0165-0173(96)00009-4 PMID: 9063585]
[58]
Benowitz NL, Hukkanen J, Jacob P III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 2009; (192): 29-60.
[http://dx.doi.org/10.1007/978-3-540-69248-5_2 PMID: 19184645]
[59]
Swan GE, Lessov-Schlaggar CN. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev 2007; 17(3): 259-73.
[http://dx.doi.org/10.1007/s11065-007-9035-9 PMID: 17690985]
[60]
Wallin C, Sholts SB, Österlund N, et al. Alzheimer’s disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci Rep 2017; 7(1): 14423.
[http://dx.doi.org/10.1038/s41598-017-13759-5 PMID: 29089568]
[61]
Deng J, Shen C, Wang YJ, et al. Nicotine exacerbates tau phosphorylation and cognitive impairment induced by amyloid-beta 25-35 in rats. Eur J Pharmacol 2010; 637(1-3): 83-8.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.029 PMID: 20363218]
[62]
Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 2000; 275(8): 5626-32.
[http://dx.doi.org/10.1074/jbc.275.8.5626 PMID: 10681545]
[63]
Atwood CS, Huang X, Moir RD, Tanzi RE, Bush AI. Role of free radicals and metal ions in the pathogenesis of Alzheimer’s disease. Met Ions Biol Syst 1999; 36: 309-64.
[PMID: 10093929]
[64]
Pappas RS, Polzin GM, Zhang L, Watson CH, Paschal DC, Ashley DL. Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem Toxicol 2006; 44(5): 714-23.
[http://dx.doi.org/10.1016/j.fct.2005.10.004 PMID: 16309811]
[65]
Bernhard D, Rossmann A, Wick G. Metals in cigarette smoke. IUBMB Life 2005; 57(12): 805-9.
[http://dx.doi.org/10.1080/15216540500459667 PMID: 16393783]
[66]
Zhou CC, Gao ZY, Wang J, et al. Lead exposure induces Alzheimers’s disease (AD)-like pathology and disturbes cholesterol metabolism in the young rat brain. Toxicol Lett 2018; 296: 173-83.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.1065 PMID: 29908845]
[67]
Ashok A, Rai NK, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 2015; 143(1): 64-80.
[http://dx.doi.org/10.1093/toxsci/kfu208 PMID: 25288670]
[68]
Majewska M, Szczepanik M. The role of Toll-Like Receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation. Postepy Hig Med Dosw 2006; 60: 52-63.
[69]
Del Pino J, Zeballos G, Anadón MJ, et al. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels. Arch Toxicol 2016; 90(5): 1081-92.
[http://dx.doi.org/10.1007/s00204-015-1540-7 PMID: 26026611]
[70]
Yamamoto H, Saitoh Y, Yasugawa S, Miyamoto E. Dephosphorylation of tau factor by protein phosphatase 2A in synaptosomal cytosol fractions, and inhibition by aluminum. J Neurochem 1990; 55(2): 683-90.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb04187.x] [PMID: 2164575]
[71]
Mutter J, Curth A, Naumann J, Deth R, Walach H. Does inorganic mercury play a role in Alzheimer’s disease? A systematic review and an integrated molecular mechanism. J Alzheimers Dis 2010; 22(2): 357-74.
[http://dx.doi.org/10.3233/JAD-2010-100705 PMID: 20847438]
[72]
Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 2000; 74(1): 270-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740270.x] [PMID: 10617129]
[73]
Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998; 158(1): 47-52.
[http://dx.doi.org/10.1016/S0022-510X(98)00092-6] [PMID: 9667777]
[74]
Wärmländer S, Tiiman A, Abelein A, et al. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. ChemBioChem 2013; 14(14): 1692-704.
[http://dx.doi.org/10.1002/cbic.201300262 PMID: 23983094]
[75]
Kitazawa M, Cheng D, Laferla FM. Chronic copper exposure exacerbates both amyloid and tau pathology and selectively dysregulates cdk5 in a mouse model of AD. J Neurochem 2009; 108(6): 1550-60.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05901.x] [PMID: 19183260]
[76]
Tiiman A, Luo J, Wallin C, et al. Specific binding of Cu(II) ions to amyloid-beta peptides bound to aggregation-inhibiting molecules or SDS micelles creates complexes that generate radical oxygen species. J Alzheimers Dis 2016; 54(3): 971-82.
[http://dx.doi.org/10.3233/JAD-160427 PMID: 27567855]
[77]
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6): 358-72.
[http://dx.doi.org/10.1038/nrn3880 PMID: 25991443]
[78]
Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 2005; 48(15): 4705-45.
[http://dx.doi.org/10.1021/jm040219e PMID: 16033252]
[79]
Buckingham SD, Jones AK, Brown LA, Sattelle DB. Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev 2009; 61(1): 39-61.
[http://dx.doi.org/10.1124/pr.108.000562 PMID: 19293145]
[80]
Nordberg A, Hellström-Lindahl E, Lee M, et al. Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J Neurochem 2002; 81(3): 655-8.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00874.x] [PMID: 12065674]
[81]
Inestrosa NC, Godoy JA, Vargas JY, et al. Nicotine prevents synaptic impairment induced by amyloid-β oligomers through α7-nicotinic acetylcholine receptor activation. Neuromolecular Med 2013; 15(3): 549-69.
[http://dx.doi.org/10.1007/s12017-013-8242-1 PMID: 23842742]
[82]
Zeng H, Zhang Y, Peng L, et al. Nicotine and amyloid formation. Biol Psychiatry 2001; 49(3): 248-57.
[http://dx.doi.org/10.1016/S0006-3223(00)01111-2] [PMID: 11230876]
[83]
Svedberg MM, Svensson AL, Johnson M, et al. Upregulation of neuronal nicotinic receptor subunits alpha4, beta2, and alpha7 in transgenic mice overexpressing human acetylcholinesterase. J Mol Neurosci 2002; 18(3): 211-22.
[http://dx.doi.org/10.1385/JMN:18:3:211 PMID: 12059039]
[84]
Zhang J, Liu Q, Chen Q, et al. Nicotine attenuates beta-amyloid-induced neurotoxicity by regulating metal homeostasis. FASEB J 2006; 20(8): 1212-4.
[http://dx.doi.org/10.1096/fj.05-5214fje PMID: 16627626]
[85]
Talantova M, Sanz-Blasco S, Zhang X, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 2013; 110(27): E2518-27.
[http://dx.doi.org/10.1073/pnas.1306832110 PMID: 23776240]
[86]
Shimohama S, Akaike A, Kimura J. Nicotine-induced protection against glutamate cytotoxicity. Nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Ann N Y Acad Sci 1996; 777: 356-61.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb34445.x] [PMID: 8624112]
[87]
Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M. Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 2002; 80(6): 1071-8.
[http://dx.doi.org/10.1046/j.0022-3042.2002.00805.x] [PMID: 11953457]
[88]
Konradsson-Geuken A, Gash CR, Alexander K, et al. Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 2009; 63(12): 1069-82.
[http://dx.doi.org/10.1002/syn.20693 PMID: 19637277]
[89]
de Oliveira AS, Santiago FE, Balioni LF, Ferrari Mde F, Almeida MC, Carrettiero DC. BAG2 expression dictates a functional intracellular switch between the p38-dependent effects of nicotine on tau phosphorylation levels via the α7 nicotinic receptor. Exp Neurol 2016; 275(Pt 1): 69-77.
[http://dx.doi.org/10.1016/j.expneurol.2015.10.005] [PMID: 26496817]
[90]
Hellström-Lindahl E, Moore H, Nordberg A. Increased levels of tau protein in SH-SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. J Neurochem 2000; 74(2): 777-84.
[http://dx.doi.org/10.1046/j.1471-4159.2000.740777.x] [PMID: 10646530]
[91]
Barr J, Sharma CS, Sarkar S, et al. Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol Cell Biochem 2007; 297(1-2): 93-9.
[http://dx.doi.org/10.1007/s11010-006-9333-1 PMID: 17021677]
[92]
Das S, Gautam N, Dey SK, Maiti T, Roy S. Oxidative stress in the brain of nicotine-induced toxicity: protective role of Andrographis paniculata Nees and vitamin E. Appl Physiol Nutr Metab 2009; 34(2): 124-35.
[http://dx.doi.org/10.1139/H08-147 PMID: 19370042]
[93]
Abreu-Villaça Y, Seidler FJ, Tate CA, Slotkin TA. Nicotine is a neurotoxin in the adolescent brain: critical periods, patterns of exposure, regional selectivity, and dose thresholds for macromolecular alterations. Brain Res 2003; 979(1-2): 114-28.
[http://dx.doi.org/10.1016/S0006-8993(03)02885-3] [PMID: 12850578]
[94]
Jaehne A, Unbehaun T, Feige B, Herr S, Appel A, Riemann D. The influence of 8 and 16 mg nicotine patches on sleep in healthy non-smokers. Pharmacopsychiatry 2014; 47(2): 73-8.
[http://dx.doi.org/10.1055/s-0034-1371867 PMID: 24687640]
[95]
White HK, Levin ED. Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment. Psychopharmacology (Berl) 2004; 171(4): 465-71.
[http://dx.doi.org/10.1007/s00213-003-1614-8 PMID: 14534771]
[96]
Newhouse P, Kellar K, Aisen P, et al. Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial. Neurology 2012; 78(2): 91-101.
[http://dx.doi.org/10.1212/WNL.0b013e31823efcbb] [PMID: 22232050]
[97]
Mondragón-Rodríguez S, Basurto-Islas G, Lee HG, et al. Causes versus effects: the increasing complexities of Alzheimer’s disease pathogenesis. Expert Rev Neurother 2010; 10(5): 683-91.
[http://dx.doi.org/10.1586/ern.10.27 PMID: 20420489]
[98]
Panth N, Paudel KR, Parajuli K. Reactive oxygen species: a key hallmark of cardiovascular disease. Adv Med 2016; 20169152732
[http://dx.doi.org/10.1155/2016/9152732]
[99]
Burke A, Fitzgerald GA. Oxidative stress and smoking-induced vascular injury. Prog Cardiovasc Dis 2003; 46(1): 79-90.
[http://dx.doi.org/10.1016/S0033-0620(03)00076-8] [PMID: 12920701]
[100]
Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 2000; 50(4-5): 279-89.
[http://dx.doi.org/10.1080/15216540051081010 PMID: 11327322]
[101]
Aggarwal T, Wadhwa R, Thapliyal N, Sharma K, Rani V, Maurya PK. Oxidative, inflammatory, genetic, and epigenetic biomarkers associated with chronic obstructive pulmonary disorder. J Cell Physiol 2019; 234(3): 2067-82.
[http://dx.doi.org/10.1002/jcp.27181 PMID: 30171697]
[102]
Wadhwa R, Aggarwal T, Malyla V, et al. Identification of biomarkers and genetic approaches toward chronic obstructive pulmonary disease. J Cell Physiol 2019; 234(10): 16703-23.
[http://dx.doi.org/10.1002/jcp.28482 PMID: 30912142]
[103]
Shastri MD, Shukla SD, Chong WC, et al. Role of oxidative stress in the pathology and management of human tuberculosis. Oxid Med Cell Longev 2018; 20187695364
[http://dx.doi.org/10.1155/2018/7695364 PMID: 30405878]
[104]
Isik B, Ceylan A, Isik R. Oxidative stress in smokers and non-smokers. Inhal Toxicol 2007; 19(9): 767-9.
[http://dx.doi.org/10.1080/08958370701401418 PMID: 17613085]
[105]
Ozguner F, Koyu A, Cesur G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health 2005; 21(1-2): 21-6.
[http://dx.doi.org/10.1191/0748233705th211oa PMID: 15986573]
[106]
Alberg A. The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 2002; 180(2): 121-37.
[http://dx.doi.org/10.1016/S0300-483X(02)00386-4] [PMID: 12324189]
[107]
Kim SH, Kim JS, Shin HS, Keen CL. Influence of smoking on markers of oxidative stress and serum mineral concentrations in teenage girls in Korea. Nutrition 2003; 19(3): 240-3.
[http://dx.doi.org/10.1016/S0899-9007(02)01002-X] [PMID: 12620526]
[108]
Wadhwa R, Gupta R, Maurya PK. Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr Pharm Des 2018; 24(40): 4711-25.
[http://dx.doi.org/10.2174/1381612825666190115121018] [PMID: 30644343]
[109]
Crews FT, Bechara R, Brown LA, et al. Cytokines and alcohol. Alcohol Clin Exp Res 2006; 30(4): 720-30.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00084.x] [PMID: 16573591]
[110]
Dua K, Malyla V, Singhvi G, et al. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem Biol Interact 2018.
[PMID: 30553721]
[111]
Guerri C, Pascual M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol 2010; 44(1): 15-26.
[http://dx.doi.org/10.1016/j.alcohol.2009.10.003 PMID: 20113871]
[112]
Perricone C, De Carolis C, Perricone R. Glutathione: a key player in autoimmunity. Autoimmun Rev 2009; 8(8): 697-701.
[http://dx.doi.org/10.1016/j.autrev.2009.02.020 PMID: 19393193]
[113]
Kovacic P. Unifying mechanism for addiction and toxicity of abused drugs with application to dopamine and glutamate mediators: electron transfer and reactive oxygen species. Med Hypotheses 2005; 65(1): 90-6.
[http://dx.doi.org/10.1016/j.mehy.2005.01.031 PMID: 15893124]
[114]
Anbarasi K, Vani G, Balakrishna K, Devi CS. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci 2006; 78(12): 1378-84.
[http://dx.doi.org/10.1016/j.lfs.2005.07.030 PMID: 16226278]
[115]
Chalela JA, Wolf RL, Maldjian JA, Kasner SE. MRI identification of early white matter injury in anoxic-ischemic encephalopathy. Neurology 2001; 56(4): 481-5.
[http://dx.doi.org/10.1212/WNL.56.4.481 PMID: 11222791]
[116]
Mueller SG, Trabesinger AH, Boesiger P, Wieser HG. Brain glutathione levels in patients with epilepsy measured by in vivo (1)H-MRS. Neurology 2001; 57(8): 1422-7.
[http://dx.doi.org/10.1212/WNL.57.8.1422 PMID: 11673583]
[117]
Praticò D. The neurobiology of isoprostanes and Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-. Mol Cell Biol Lipids 2010; 1801: 930-3.
[http://dx.doi.org/10.1016/j.bbalip.2010.01.009]
[118]
Giunta B, Deng J, Jin J, et al. Evaluation of how cigarette smoke is a direct risk factor for Alzheimer’s disease. Technol Innov 2012; 14(1): 39-48.
[http://dx.doi.org/10.3727/194982412X13378627621752] [PMID: 22997546]
[119]
Ho Y-S, Yang X, Yeung S-C, et al. Cigarette smoking accelerated brain aging and induced pre-Alzheimer-like neuropathology in rats. PLoS One 2012; 7(5)e36752
[http://dx.doi.org/10.1371/journal.pone.0036752] [PMID: 22606286]
[120]
Moreno-Gonzalez I, Estrada LD, Sanchez-Mejias E, Soto C. Smoking exacerbates amyloid pathology in a mouse model of Alzheimer’s disease. Nat Commun 2013; 4: 1495.
[http://dx.doi.org/10.1038/ncomms2494 PMID: 23422663]
[121]
Tyas SL, White LR, Petrovitch H, et al. Mid-life smoking and late-life dementia: the Honolulu-Asia Aging Study. Neurobiol Aging 2003; 24(4): 589-96.
[http://dx.doi.org/10.1016/S0197-4580(02)00156-2] [PMID: 12714116]
[122]
Ulrich J, Johannson-Locher G, Seiler WO, Stähelin HB. Does smoking protect from Alzheimer’s disease? Alzheimer-type changes in 301 unselected brains from patients with known smoking history. Acta Neuropathol 1997; 94(5): 450-4.
[http://dx.doi.org/10.1007/s004010050732 PMID: 9386777]
[123]
Sabbagh MN, Tyas SL, Emery SC, et al. Smoking affects the phenotype of Alzheimer disease. Neurology 2005; 64(7): 1301-3.
[http://dx.doi.org/10.1212/01.WNL.0000156912.54593.65] [PMID: 15824373]
[124]
Chellappan DK, Sze Ning QL, Su Min SK, et al. Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chem Biol Interact 2019; 310108732
[http://dx.doi.org/10.1016/j.cbi.2019.108732 PMID: 31276660]
[125]
Aggarwal T, Wadhwa R, Thapliyal N, et al. Recent trends of nano-material as antimicrobial agents.In:Nanotechnology in modern animal biotechnology. Singh S, Maurya P. Eds Singapore: Springer 2019; pp. 173-93.
[http://dx.doi.org/10.1007/978-981-13-6004-6_5]
[126]
Contini C, Seraceni S, Cultrera R, Castellazzi M, Granieri E, Fainardi E. Chlamydophila pneumoniae infection and its role in neurological disorders. Interdiscip Perspect Infect Dis 2010; 2010273573
[127]
Woods JJ, Skelding KA, Martin KL, et al. Assessment of evidence for or against contributions of Chlamydia pneumoniae infections to Alzheimer’s disease etiology. Brain Behav Immun 2019.
[PMID: 31626972]
[128]
Liu C-C, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013; 9(2): 106-18.
[http://dx.doi.org/10.1038/nrneurol.2012.263 PMID: 23296339]
[129]
Dua K, Hansbro NG, Hansbro PM. Steroid resistance and concomitant respiratory infections: a challenging battle in pulmonary clinic. EXCLI J 2017; 16: 981-5.
[PMID: 28900378]
[130]
Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev 2019; 28(153): 28.
[http://dx.doi.org/10.1183/16000617.0096-2019] [PMID: 31636089]
[131]
Hansbro PM, Kim RY, Starkey MR, et al. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2017; 278(1): 41-62.
[http://dx.doi.org/10.1111/imr.12543 PMID: 28658552]
[132]
Mahony JB, Woulfe J, Munoz D, Browning D, Chong S, Smieja M. Identification of chlamydia pneumoniae in the Alzheimer’s brain. Neurobiol Aging 2000; 21(1): 245.
[http://dx.doi.org/10.1016/S0197-4580(00)83440-5]
[133]
Paradowski B, Jaremko M, Dobosz T, Leszek J, Noga L. Evaluation of CSF-Chlamydia pneumoniae, CSF-tau, and CSF-Abeta42 in Alzheimer’s disease and vascular dementia. J Neurol 2007; 254(2): 154-9.
[http://dx.doi.org/10.1007/s00415-006-0298-5] [PMID: 17318713]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 9
Year: 2020
Page: [698 - 708]
Pages: 11
DOI: 10.2174/1871527319999200817112427
Price: $65

Article Metrics

PDF: 32