Novel Aceclofenac Cocrystals with l-Cystine: Virtual Coformer Screening, Mechanochemical Synthesis, and Physicochemical Investigations

(E-pub Ahead of Print)

Author(s): Saroj Kumar*, Amresh Gupta, Rammani Prasad, Satyawan Singh

Journal Name: Current Drug Delivery

Become EABM
Become Reviewer

Abstract:

Aim: Current work focuses on the improvement of solubility and dissolution of ACF by the cocrystal approach.

Background: Aceclofenac (ACF) is one of the commonly used nonsteroidal anti-inflammatory drug (NSAID) representing the variety of therapeutic applications including management of pain, inflammation, rheumatoid arthritis, and osteoarthritis, etc. But very low solubility and dissolution rate of ACF compromise its therapeutic utility. Now a day’s cocrystallization technique has emerged as a novel technique for modulation of said problems.

Objective: The Specific objectives of this research work were mechanochemical synthesis, characterization, and performance evaluation of aceclofenac cocrystal.

Method: ACF was screened with various pharmaceutically acceptable coformers (Selected from GRAS and EAFUS list) using MOPAC software and physical screening method to find out novel cocrystals of ACF with enhanced solubility and dissolution rate. Novel cocrystals (multi-component crystalline solid) of ACF with l-cystine were prepared by neat grinding method and by liquid assisted grinding method. The synthesized cocrystals (ACF-l-CYS NG and ACF-l-CYS LAG) were characterized carefully by differential scanning calorimetry (DSC), infrared spectroscopy (IR), and powder X-ray diffraction (PXRD) to verify the formation of the cocrystals. Pharmaceutically significant properties such as powder dissolution rate, solubility, and stability of the prepared cocrystals were evaluated.

Results: Compared to pure ACF, the prepared cocrystals showed superior solubility and dissolution rate. The prepared cocrystals were found to be stable and non-hygroscopic under study conditions.

Conclusion: The cocrystallization technique was successfully utilized to increase the solubility and dissolution rate of aceclofenac.

Keywords: Cocrystal, Aceclofenac, Mechanochemical Synthesis, virtual screening, Solubility study, Bioavailability study.

Rights & PermissionsPrintExport Cite as

Article Details

(E-pub Ahead of Print)
DOI: 10.2174/1567201817666200817110949
Price: $95

Article Metrics

PDF: 1