Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Characterization of β-Sitosterol for Potential Selective GR Modulation

Author(s): Yue Leng, Yonghai Sun, Chengyu Lv, Zhuolin Li, Cuiping Yuan, Jie Zhang, Tiezhu Li* and Yongjun Wang*

Volume 28, Issue 3, 2021

Published on: 13 August, 2020

Page: [276 - 281] Pages: 6

DOI: 10.2174/0929866527666200813204833

Price: $65

Abstract

Background: Although glucocorticoids (GCs) are characterized as powerful agents to treat inflammatory afflictions, they are accompanied by metabolic side effects which limit their usage. β-Sitosterol, as a minor component found in extraction of vegetable oil, was reported to have anti-inflammatory effects in RAW 264.7 cells.

Objective: To test whether β-sitosterol has an effect to dissociate transrepression from transactivation as a selective novel GR binder, this work evaluated the dissociated characteristics of β-sitosterol.

Methods: The probable binding interaction between β-sitosterol and GR was explored by molecular docking. The GR transcriptional activity of β-sitosterol was assessed in the reporter gene assay. The ability of β-sitosterol to modulate the transactivation and transrepression of GR was evaluated by real-time quantitative PCR analysis.

Results and Discussion: In the present study, β-sitosterol treatment cannot induce GR-mediated transactivation. β-Sitosterol exerted a potential to inhibited the expression of GR target transrepressed gene without activating the expression of GR transactivation dependent gene. Molecular docking demonstrated that β-Sitosterol was able to bind the ligand binding domain of GR but unable to induce GR activation.

Conclusion: This work offers evidence that β-sitosterol may serve as a selective GR modulator.

Keywords: Glucocorticoid receptor, β-sitosterol, transactivation, transrepression, dissociate, molecular docking.

Graphical Abstract
[1]
Barnes, P.J. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin. Sci. (Lond.), 1998, 94(6), 557-572.
[http://dx.doi.org/10.1042/cs0940557] [PMID: 9854452]
[2]
Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol., 2005, 67(1), 259-284.
[http://dx.doi.org/10.1146/annurev.physiol.67.040403.120816] [PMID: 15709959]
[3]
Hench, P.S.; Kendall, E.C.; Slocumb, C.H.; Polley, H.F. Effects of cortisone acetate and pituitary ACTH on rheumatoid arthritis, rheumatic fever and certain other conditions. Arch. Intern. Med. (Chic.), 1950, 85(4), 545-666.
[http://dx.doi.org/10.1001/archinte.1950.00230100002001] [PMID: 15411248]
[4]
Kirwan, J.R.; Bálint, G.; Szebenyi, B. Anniversary: 50 years of glucocorticoid treatment in rheumatoid arthritis. Rheumatology (Oxford), 1999, 38(2), 100-102.
[http://dx.doi.org/10.1093/rheumatology/38.2.100] [PMID: 10342620]
[5]
Hollenberg, S.M.; Weinberger, C.; Ong, E.S.; Cerelli, G.; Oro, A.; Lebo, R.; Thompson, E.B.; Rosenfeld, M.G.; Evans, R.M. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature, 1985, 318(6047), 635-641.
[http://dx.doi.org/10.1038/318635a0] [PMID: 2867473]
[6]
Grad, I.; Picard, D. The glucocorticoid responses are shaped by molecular chaperones. Mol. Cell. Endocrinol., 2007, 275(1-2), 2-12.
[http://dx.doi.org/10.1016/j.mce.2007.05.018] [PMID: 17628337]
[7]
Almawi, W.Y.; Melemedjian, O.K. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J. Leukoc. Biol., 2002, 71(1), 9-15.
[PMID: 11781376]
[8]
Vandevyver, S.; Dejager, L.; Libert, C. On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic, 2012, 13(3), 364-374.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01288.x] [PMID: 21951602]
[9]
Lefstin, J.A.; Yamamoto, K.R. Allosteric effects of DNA on transcriptional regulators. Nature, 1998, 392(6679), 885-888.
[http://dx.doi.org/10.1038/31860] [PMID: 9582068]
[10]
Zhang, T.; Zhong, S.; Li, T.; Zhang, J. Saponins as modulators of nuclear receptors. Crit. Rev. Food Sci. Nutr., 2020, 60(1), 94-107.
[http://dx.doi.org/10.1080/10408398.2018.1514580] [PMID: 30582348]
[11]
Song, I.H.; Gold, R.; Straub, R.H.; Burmester, G.R.; Buttgereit, F. New glucocorticoids on the horizon: repress, don’t activate! J. Rheumatol., 2005, 32(7), 1199-1207.
[PMID: 16041872]
[12]
Schäcke, H.; Rehwinkel, H.; Asadullah, K.; Cato, A.C.B. Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index. Exp. Dermatol., 2006, 15(8), 565-573.
[http://dx.doi.org/10.1111/j.1600-0625.2006.00453.x] [PMID: 16842594]
[13]
Löwenberg, M.; Stahn, C.; Hommes, D.W.; Buttgereit, F. Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids, 2008, 73(9-10), 1025-1029.
[http://dx.doi.org/10.1016/j.steroids.2007.12.002] [PMID: 18221974]
[14]
Beck, I.M.E.; Vanden Berghe, W.; Vermeulen, L.; Yamamoto, K.R.; Haegeman, G.; De Bosscher, K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr. Rev., 2009, 30(7), 830-882.
[http://dx.doi.org/10.1210/er.2009-0013] [PMID: 19890091]
[15]
Reichardt, H.M.; Kaestner, K.H.; Tuckermann, J.; Kretz, O.; Wessely, O.; Bock, R.; Gass, P.; Schmid, W.; Herrlich, P.; Angel, P.; Schütz, G. DNA binding of the glucocorticoid receptor is not essential for survival. Cell, 1998, 93(4), 531-541.
[http://dx.doi.org/10.1016/S0092-8674(00)81183-6] [PMID: 9604929]
[16]
Zhang, T.; Liang, Y.; Zhang, J. Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor. Pharmacol. Res., 2020, 156, 104802
[http://dx.doi.org/10.1016/j.phrs.2020.104802] [PMID: 32278042]
[17]
Kowalczyk, P.; Junco, J.J.; Kowalczyk, M.C.; Sosnowska, R.; Tolstykh, O.; Walaszek, Z.; Hanausek, M.; Slaga, T.J. The effects of dissociated glucocorticoids RU24858 and RU24782 on TPA-induced skin tumor promotion biomarkers in SENCAR mice. Mol. Carcinog., 2014, 53(6), 488-497.
[http://dx.doi.org/10.1002/mc.22002] [PMID: 23852815]
[18]
Vayssière, B.M.; Dupont, S.; Choquart, A.; Petit, F.; Garcia, T.; Marchandeau, C.; Gronemeyer, H.; Resche-Rigon, M. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol. Endocrinol., 1997, 11(9), 1245-1255.
[http://dx.doi.org/10.1210/mend.11.9.9979] [PMID: 9259316]
[19]
Swart, P.; Swart, A.C.; Louw, A.; van der Merwe, K.J. Biological activities of the shrub Salsola tuberculatiformis Botsch.: contraceptive or stress alleviator? BioEssays, 2003, 25(6), 612-619.
[http://dx.doi.org/10.1002/bies.10285] [PMID: 12766951]
[20]
Ye, J.C.; Chang, W.C.; Hsieh, D.J.Y.; Hsiao, M.W. Extraction and analysis of beta-sitosterol in herbal medicines. J. Med. Plants Res., 2010, 4(7), 522-527.
[21]
Zhang, T.; Liang, Y.; Zuo, P.; Yan, M.; Jing, S.; Li, T.; Wang, Y.; Zhang, J.; Wei, Z. Identification of 20(R, S)-protopanaxadiol and 20(R, S)-protopanaxatriol for potential selective modulation of glucocorticoid receptor. Food Chem. Toxicol., 2019, 131, 110642.
[http://dx.doi.org/10.1016/j.fct.2019.110642] [PMID: 31247261]
[22]
Edman, K.; Hosseini, A.; Bjursell, M.K.; Aagaard, A.; Wissler, L.; Gunnarsson, A.; Kaminski, T.; Köhler, C.; Bäckström, S.; Jensen, T.J.; Cavallin, A.; Karlsson, U.; Nilsson, E.; Lecina, D.; Takahashi, R.; Grebner, C.; Geschwindner, S.; Lepistö, M.; Hogner, A.C.; Guallar, V. Ligand binding mechanism in steroid receptors: From conserved plasticity to differential evolutionary constraints. Structure, 2015, 23(12), 2280-2290.
[http://dx.doi.org/10.1016/j.str.2015.09.012] [PMID: 26602186]
[23]
Tu, M.; Feng, L.; Wang, Z.; Qiao, M.; Shahidi, F.; Lu, W.; Du, M. Sequence analysis and molecular docking of antithrombotic peptides from casein hydrolysate by trypsin digestion. J. Funct. Foods, 2017, 32, 313-323.
[http://dx.doi.org/10.1016/j.jff.2017.03.015]
[24]
Zhang, J.; Zhang, T.; Guan, T.; Ruan, P.; Ren, D.; Dai, W.; Yu, H.; Li, T. Spectroscopic and molecular modeling approaches to investigate the interaction of bisphenol A, bisphenol F and their diglycidyl ethers with PPARα. Chemosphere, 2017, 180, 253-258.
[http://dx.doi.org/10.1016/j.chemosphere.2017.04.034] [PMID: 28411541]
[25]
Zhang, J.; Wu, W.; Wang, Y.; Xing, X.; Zhong, S.; Guan, T.; Zhang, T.; Hou, L.; Li, T. Estrogen receptor-based fluorescence polarization assay for bisphenol analogues and molecular modeling study of their complexation mechanism. Anal. Chim. Acta, 2018, 1032, 107-113.
[http://dx.doi.org/10.1016/j.aca.2018.05.034] [PMID: 30143207]
[26]
Zhang, J.; Zhang, T.; Guan, T.; Yu, H.; Li, T. In vitro and in silico assessment of the structure-dependent binding of bisphenol analogues to glucocorticoid receptor. Anal. Bioanal. Chem., 2017, 409(8), 2239-2246.
[http://dx.doi.org/10.1007/s00216-016-0168-7] [PMID: 28078411]
[27]
Zhang, J.; Li, T.; Wang, T.; Guan, T.; Yu, H.; Li, Z.; Wang, Y.; Wang, Y.; Zhang, T. Binding interactions of halogenated bisphenol A with mouse PPARα: In vitro investigation and molecular dynamics simulation. Toxicol. Lett., 2018, 283, 32-38.
[http://dx.doi.org/10.1016/j.toxlet.2017.11.004] [PMID: 29128640]
[28]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[29]
Prima, V.; Depoix, C.; Masselot, B.; Formstecher, P.; Lefebvre, P. Alteration of the glucocorticoid receptor subcellular localization by non steroidal compounds. J. Steroid Biochem. Mol. Biol., 2000, 72(1-2), 1-12.
[http://dx.doi.org/10.1016/S0960-0760(99)00146-6] [PMID: 10731632]
[30]
Drebert, Z.; Bracke, M.; Beck, I.M. Glucocorticoids and the non-steroidal selective glucocorticoid receptor modulator, compound A, differentially affect colon cancer-derived myofibroblasts. J. Steroid Biochem. Mol. Biol., 2015, 149, 92-105.
[http://dx.doi.org/10.1016/j.jsbmb.2015.02.002] [PMID: 25666906]
[31]
Duret, C.; Daujat-Chavanieu, M.; Pascussi, J.M.; Pichard-Garcia, L.; Balaguer, P.; Fabre, J.M.; Vilarem, M.J.; Maurel, P.; Gerbal-Chaloin, S. Ketoconazole and miconazole are antagonists of the human glucocorticoid receptor: consequences on the expression and function of the constitutive androstane receptor and the pregnane X receptor. Mol. Pharmacol., 2006, 70(1), 329-339.
[http://dx.doi.org/10.1124/mol.105.022046] [PMID: 16608920]
[32]
Psarra, A.M.G.; Solakidi, S.; Trougakos, I.P.; Margaritis, L.H.; Spyrou, G.; Sekeris, C.E. Glucocorticoid receptor isoforms in human hepatocarcinoma HepG2 and SaOS-2 osteosarcoma cells: presence of glucocorticoid receptor alpha in mitochondria and of glucocorticoid receptor beta in nucleoli. Int. J. Biochem. Cell Biol., 2005, 37(12), 2544-2558.
[http://dx.doi.org/10.1016/j.biocel.2005.06.015] [PMID: 16076561]
[33]
Hu, C.; Lau, A.J.; Wang, R.; Chang, T.K.H. Comparative analysis of ginsenosides in human glucocorticoid receptor binding, transactivation, and transrepression. Eur. J. Pharmacol., 2017, 815, 501-511.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.019] [PMID: 29031898]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy