The MMP-2/TIMP-2 System in Alzheimer Disease

Author(s): Hongyue Wang, Longjian Huang, Lei Wu, Jiaqi Lan, Xinhong Feng, Pingping Li*, Ying Peng*

Journal Name: CNS & Neurological Disorders - Drug Targets
Formerly Current Drug Targets - CNS & Neurological Disorders

Volume 19 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Alzheimer Disease (AD) is the most prevalent type of dementia. Pathological changes in the AD brain include Amyloid β-protein (Aβ) plaques and Neurofibrillary Tangles (NFTs), as well as extensive neuronal and synaptic loss. Matrix Metalloproteinase-2 (MMP-2) is a neutral, zinc-dependent protease that primarily targets extracellular matrix proteins. MMP-2 activity is strictly controlled, and its dysregulation has been implicated in a variety of pathologies, including AD. In this brief review, we discussed the contributions of dysregulated MMP-2 activity and an imbalanced interaction between MMP-2 and its endogenous inhibitor, Tissue Inhibitors of Metalloproteinase-2 (TIMP-2), to AD. We also described the underlying mechanisms of the effects of MMP-2/TIMP-2, both beneficial and detrimental, on AD, including: (1) MMP-2 directly degrades Aβ resulting in the clearance of Aβ deposits. Conversely, Aβ-induced MMP-2 may contribute to brain parenchymal destruction. (2) MMP-2 induces breakdown of BBB, and this deleterious effect could be reversed by TIMP-2. (3) MMP-2 disrupts oxidative homeostasis in AD. (4) MMP-2 has both proinflammatory/pro-angiogenetic and antiinflammatory/ anti-angiogenetic effects on AD. Besides, we discuss the clinical utility of MMP- 2/TIMP-2 as therapeutic targets for AD.

Keywords: Matrix metalloproteinase-2, tissue inhibitor of metalloproteinases-2, Alzheimer disease, blood-brain barrier, neuroinflammation, oxidative stress.

[1]
Alzheimer A. About a strange disease of the cerebral cortex. Psych Ger Med 1907; 64: 146-8.
[2]
Barker WW, Luis CA, Kashuba A, et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord 2002; 16(4): 203-12.
[http://dx.doi.org/10.1097/00002093-200210000-00001 ] [PMID: 12468894]
[3]
Herrera AC, Prince M, Knapp M, Karagiannidou M, Guerchet M. World Alzheimer report 2016: Improving healthcare for people with dementia Coverage, quality and costs now and in the future 2016.
[4]
Sekhon BS. Matrix metalloproteinases- An overview research reports in biology. Res Rep Biol 2010; 2010: 269-85.
[5]
Wu X, Pan Y. Molecular characterization, mapping, and haplotype analysis of porcine matrix metalloproteinase genes MMP1 and MMP10. Biochem Genet 2009; 47(11-12): 763-74.
[http://dx.doi.org/10.1007/s10528-009-9275-x] [PMID: 19639408]
[6]
Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011; 41(2): 271-90.
[http://dx.doi.org/10.1007/s00726-010-0689-x] [PMID: 20640864]
[7]
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res 2003; 92(8): 827-39.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D ] [PMID: 12730128]
[8]
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69(3): 562-73.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[9]
Yana I, Weiss SJ. Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. Mol Biol Cell 2000; 11(7): 2387-401.
[http://dx.doi.org/10.1091/mbc.11.7.2387] [PMID: 10888676]
[10]
Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 2001; 21(7): 1104-17.
[http://dx.doi.org/10.1161/hq0701.093685] [PMID: 11451738]
[11]
Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 2009; 8(2): 205-16.
[http://dx.doi.org/10.1016/S1474-4422(09)70016-X ] [PMID: 19161911]
[12]
Matsumoto K, Minamitani T, Orba Y, Sato M, Sawa H, Ariga H. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway. Exp Cell Res 2004; 297(2): 404-14.
[http://dx.doi.org/10.1016/j.yexcr.2004.03.041] [PMID: 15212943]
[13]
Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim Biophys Acta 2010; 1803(1): 20-8.
[http://dx.doi.org/10.1016/j.bbamcr.2009.04.003] [PMID: 19374923]
[14]
Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005; 9(2): 267-85.
[http://dx.doi.org/10.1111/j.1582-4934.2005.tb00355.x ] [PMID: 15963249]
[15]
Sîrbulescu RF, Ilieş I, Zupanc GK. Matrix metalloproteinase-2 and -9 in the cerebellum of teleost fish: Functional implications for adult neurogenesis. Mol Cell Neurosci 2015; 68: 9-23.
[http://dx.doi.org/10.1016/j.mcn.2015.03.015] [PMID: 25827096]
[16]
Krekoski CA, Neubauer D, Graham JB, Muir D. Metalloproteinase-dependent predegeneration in vitro enhances axonal regeneration within acellular peripheral nerve grafts. J Neurosci 2002; 22(23): 10408-15.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10408.2002 ] [PMID: 12451140]
[17]
Larsen PH, DaSilva AG, Conant K, Yong VW. Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and -12 null mice. J Neurosci 2006; 26(8): 2207-14.
[http://dx.doi.org/10.1523/JNEUROSCI.1880-05.2006 ] [PMID: 16495447]
[18]
McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8(3): 221-33.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[19]
Sasano Y, Zhu JX, Tsubota M, et al. Gene expression of MMP8 and MMP13 during embryonic development of bone and cartilage in the rat mandible and hind limb. J Histochem Cytochem 2002; 50(3): 325-32.
[http://dx.doi.org/10.1177/002215540205000304] [PMID: 11850435]
[20]
Zhang H, Adwanikar H, Werb Z, Noble-Haeusslein LJ. Matrix metalloproteinases and neurotrauma: Evolving roles in injury and reparative processes. Neuroscientist 2010; 16(2): 156-70.
[http://dx.doi.org/10.1177/1073858409355830] [PMID: 20400713]
[21]
Zitka OJ, Kukacka S, Krizkov D, et al. Matrix metalloproteinases. Curr Microbiol 2010; 17(31): 3751-68.
[22]
Nagel S, Su Y, Horstmann S, et al. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: Effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 2008; 1188: 198-206.
[http://dx.doi.org/10.1016/j.brainres.2007.10.052] [PMID: 18031717]
[23]
Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY. Matrix metalloproteinases and diabetic foot ulcers: The ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabet Med 2008; 25(4): 419-26.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02414.x ] [PMID: 18387077]
[24]
Li N, Qiao Y, Xue L, Xu S, Zhang N. Targeted and MMP-2/9 responsive peptides for the treatment of rheumatoid arthritis. Int J Pharm 2019; 569118625
[http://dx.doi.org/10.1016/j.ijpharm.2019.118625] [PMID: 31425817]
[25]
Agrawal SM, Lau L, Yong VW. MMPs in the central nervous system: Where the good guys go bad. Semin Cell Dev Biol 2008; 19(1): 42-51.
[http://dx.doi.org/10.1016/j.semcdb.2007.06.003] [PMID: 17646116]
[26]
Brauer PR. MMPs- Role in cardiovascular development and disease. Front Biosci 2006; 11: 447-78.
[http://dx.doi.org/10.2741/1810] [PMID: 16146744]
[27]
Brkic M, Balusu S, Libert C, Vandenbroucke RE. Friends or Foes: Matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm 2015; 2015620581
[http://dx.doi.org/10.1155/2015/620581] [PMID: 26538832]
[28]
Collier IE, Wilhelm SM, Eisen AZ, et al. H-ras oncogene-Transformed human Bronchial Epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 1988; 263(14): 6579-87.
[PMID: 2834383]
[29]
Crocker SJ, Frausto RF, Whitton JL, Milner R. A novel method to establish microglia-free astrocyte cultures: Comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia 2008; 56(11): 1187-98.
[http://dx.doi.org/10.1002/glia.20689] [PMID: 18449943]
[30]
Ayoub AE, Cai TQ, Kaplan RA, Luo J. Developmental expression of matrix metalloproteinases 2 and 9 and their potential role in the histogenesis of the cerebellar cortex. J Comp Neurol 2005; 481(4): 403-15.
[http://dx.doi.org/10.1002/cne.20375] [PMID: 15593342]
[31]
Terni B, Ferrer I. Abnormal expression and distribution of MMP2 at initial stages of Alzheimer’s disease-related pathology. J Alzheimers Dis 2015; 46(2): 461-9.
[http://dx.doi.org/10.3233/JAD-142460] [PMID: 26402409]
[32]
Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochim Biophys Acta 2000; 1477(1-2): 267-83.
[http://dx.doi.org/10.1016/S0167-4838(99)00279-4 ] [PMID: 10708863]
[33]
Stetler-Stevenson WG, Krutzsch HC, Liotta LA. Tissue Inhibitor of Metalloproteinase (TIMP-2): A new member of the metalloproteinase inhibitor family. J Biol Chem 1989; 264(29): 17374-8.
[PMID: 2793861]
[34]
Caterina JJ, Yamada S, Caterina NC, et al. Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation. J Biol Chem 2000; 275(34): 26416-22.
[http://dx.doi.org/10.1074/jbc.M001271200] [PMID: 10827176]
[35]
Butler GS, Butler MJ, Atkinson SJ, et al. The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A: A kinetic study. J Biol Chem 1998; 273(2): 871-80.
[http://dx.doi.org/10.1074/jbc.273.2.871] [PMID: 9422744]
[36]
Holmbeck K, Bianco P, Yamada S, Birkedal-Hansen H. MT1-MMP: A tethered collagenase. J Cell Physiol 2004; 200(1): 11-9.
[http://dx.doi.org/10.1002/jcp.20065] [PMID: 15137053]
[37]
Sounni NE, Noel A. Membrane type-matrix metalloproteinases and tumor progression. Biochimie 2005; 87(3-4): 329-42.
[http://dx.doi.org/10.1016/j.biochi.2004.07.012] [PMID: 15781320]
[38]
Morrison CJ, Overall CM. TIMP independence of matrix metalloproteinase (MMP)-2 activation by membrane type 2 (MT2)-MMP is determined by contributions of both the MT2-MMP catalytic and hemopexin C domains. J Biol Chem 2006; 281(36): 26528-39.
[http://dx.doi.org/10.1074/jbc.M603331200] [PMID: 16825197]
[39]
Bernardo MM, Fridman R. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP. Biochem J 2003; 374(Pt 3): 739-45.
[http://dx.doi.org/10.1042/bj20030557] [PMID: 12755684]
[40]
Verslegers M, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol 2013; 105: 60-78.
[http://dx.doi.org/10.1016/j.pneurobio.2013.03.004 ] [PMID: 23567503]
[41]
Lorenzl S, Albers DS, LeWitt PA, et al. Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J Neurol Sci 2003; 207(1-2): 71-6.
[http://dx.doi.org/10.1016/S0022-510X(02)00398-2 ] [PMID: 12614934]
[42]
Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: Metalloproteinase-independent biological activities. Sci Signal 2008; 1(27): 6.
[http://dx.doi.org/10.1126/scisignal.127re6] [PMID: 18612141]
[43]
Mukherjee A, Swarnakar S. Implication of matrix metalloproteinases in regulating neuronal disorder. Mol Biol Rep 2015; 42(1): 1-11.
[http://dx.doi.org/10.1007/s11033-014-3752-y] [PMID: 25374425]
[44]
Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 2005; 120(4): 545-55.
[http://dx.doi.org/10.1016/j.cell.2005.02.008] [PMID: 15734686]
[45]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[46]
Gervais FG, Xu D, Robertson GS, et al. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic: A beta peptide formation. Cell 1999; 97(3): 395-406.
[http://dx.doi.org/10.1016/S0092-8674(00)80748-5 ] [PMID: 10319819]
[47]
Evin G, Weidemann A. Biogenesis and metabolism of Alzheimer’s disease Abeta amyloid peptides. Peptides 2002; 23(7): 1285-97.
[http://dx.doi.org/10.1016/S0196-9781(02)00063-3 ] [PMID: 12128085]
[48]
Walsh DM, Minogue AM, Sala FC, Fadeeva JV, Wasco W, Selkoe DJ. The APP family of proteins: Similarities and differences. Biochem Soc Trans 2007; 35(Pt. 2): 416-20.
[http://dx.doi.org/10.1042/BST0350416] [PMID: 17371289]
[49]
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 2007; 8(7): 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[50]
Rosenberg G. Metalloproteinases and neurodegenerative diseases: Pathophysiological and therapeutic perspectives. Metalloproteinases Med 2015; 2: 39-50.
[http://dx.doi.org/10.2147/MNM.S68849]
[51]
Selkoe DJ. Alzheimer’s disease: Genes, proteins, and therapy. Physiol Rev 2001; 81(2): 741-66.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[52]
Yamada M. Cerebral amyloid angiopathy: An overview. Neuropathology 2000; 20(1): 8-22.
[http://dx.doi.org/10.1046/j.1440-1789.2000.00268.x ] [PMID: 10935432]
[53]
Bandyopadhyay S, Goldstein LE, Lahiri DK, Rogers JT. Role of the APP non-amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target for treatment of Alzheimer’s disease. Curr Med Chem 2007; 14(27): 2848-64.
[http://dx.doi.org/10.2174/092986707782360060] [PMID: 18045131]
[54]
Ghiso J, Frangione B. Amyloidosis and Alzheimer’s disease. Adv Drug Deliv Rev 2002; 54(12): 1539-51.
[http://dx.doi.org/10.1016/S0169-409X(02)00149-7 ] [PMID: 12453671]
[55]
Willem M, Tahirovic S, Busche MA, et al. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 2015; 526(7573): 443-7.
[http://dx.doi.org/10.1038/nature14864] [PMID: 26322584]
[56]
Baranger K, Khrestchatisky M, Rivera S. MT5-MMP, just a new APP processing proteinase in Alzheimer’s disease? J Neuroinflammation 2016; 13(1): 167.
[http://dx.doi.org/10.1186/s12974-016-0633-4] [PMID: 27349644]
[57]
Baranger K, Marchalant Y, Bonnet AE, et al. MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer’s disease. Cell Mol Life Sci 2016; 73(1): 217-36.
[http://dx.doi.org/10.1007/s00018-015-1992-1] [PMID: 26202697]
[58]
Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun 2014; 2: 135.
[http://dx.doi.org/10.1186/s40478-014-0135-5] [PMID: 25231068]
[59]
Mullane K, Williams M. Alzheimer’s therapeutics: Continued clinical failures question the validity of the amyloid hypothesis but what lies beyond? Biochem Pharmacol 2013; 85(3): 289-305.
[http://dx.doi.org/10.1016/j.bcp.2012.11.014] [PMID: 23178653]
[60]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[61]
Bharadwaj PR, Dubey AK, Masters CL, Martins RN, Macreadie IG. Abeta aggregation and possible implications in Alzheimer’s disease pathogenesis. J Cell Mol Med 2009; 13(3): 412-21.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00609.x ] [PMID: 19374683]
[62]
Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S. Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol 2008; 18(2): 240-52.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00132.x ] [PMID: 18363935]
[63]
White AR, Du T, Laughton KM, et al. Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. J Biol Chem 2006; 281(26): 17670-80.
[http://dx.doi.org/10.1074/jbc.M602487200] [PMID: 16648635]
[64]
Deb S, Wenjun ZJ, Gottschall PE. Beta-amyloid induces the production of active, matrix-degrading proteases in cultured rat astrocytes. Brain Res 2003; 970(1-2): 205-13.
[http://dx.doi.org/10.1016/S0006-8993(03)02344-8 ] [PMID: 12706262]
[65]
Py NA, Bonnet AE, Bernard A, et al. Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimer’s disease: Evidence for a pro-amyloidogenic role of MT1-MMP. Front Aging Neurosci 2014; 6: 247.
[http://dx.doi.org/10.3389/fnagi.2014.00247] [PMID: 25278878]
[66]
Yin KJ, Cirrito JR, Yan P, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 2006; 26(43): 10939-48.
[http://dx.doi.org/10.1523/JNEUROSCI.2085-06.2006 ] [PMID: 17065436]
[67]
Hernandez-Guillamon M, Mawhirt S, Blais S, et al. Sequential Amyloid-β degradation by the matrix Metalloproteases MMP-2 and MMP-9. J Biol Chem 2015; 290(24): 15078-91.
[http://dx.doi.org/10.1074/jbc.M114.610931] [PMID: 25897080]
[68]
Chowdhury A. A diverse role of MMP-2 and MMP-9 in the onset of Alzheimer disease and cancer. Austin Neurol Neurosci 2016; 1(3): 1013.
[69]
Hernandez-Guillamon M. P1-131: Exogenous and endogenous modulation of MMP-2 release in beta-amyloid-stimulated human brain endothelial cells. Alzheimers Dement 2008; 4(4): 245.
[70]
Crouch PJ, Tew DJ, Du T, et al. Restored degradation of the Alzheimer’s amyloid-beta peptide by targeting amyloid formation. J Neurochem 2009; 108(5): 1198-207.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05870.x ] [PMID: 19141082]
[71]
Yan P, Hu X, Song H, et al. Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 2006; 281(34): 24566-74.
[http://dx.doi.org/10.1074/jbc.M602440200] [PMID: 16787929]
[72]
Hussain AA, Lee Y, Zhang JJ, Francis PT, Marshall J. Disturbed matrix metalloproteinase pathway in both age-related macular degeneration and Alzheimer’s disease. J Neurodegener Dis 2017; 20174810232
[http://dx.doi.org/10.1155/2017/4810232] [PMID: 28197357]
[73]
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8(2): 101-12.
[http://dx.doi.org/10.1038/nrm2101] [PMID: 17245412]
[74]
Li W, Poteet E, Xie L, Liu R, Wen Y, Yang SH. Regulation of matrix metalloproteinase 2 by oligomeric amyloid β protein. Brain Res 2011; 1387: 141-8.
[http://dx.doi.org/10.1016/j.brainres.2011.02.078] [PMID: 21376707]
[75]
Wang Y, Garg S, Mandelkow EM, Mandelkow E. Proteolytic processing of tau. Biochem Soc Trans 2010; 38(4): 955-61.
[http://dx.doi.org/10.1042/BST0380955] [PMID: 20658984]
[76]
Hanger DP, Wray S. Tau cleavage and tau aggregation in neurodegenerative disease. Biochem Soc Trans 2010; 38(4): 1016-20.
[http://dx.doi.org/10.1042/BST0381016] [PMID: 20658996]
[77]
Takashima A. Tau aggregation is a therapeutic target for Alzheimer’s disease. Curr Alzheimer Res 2010; 7(8): 665-9.
[http://dx.doi.org/10.2174/156720510793611600] [PMID: 20678070]
[78]
Cortés N, Andrade V, Guzmán-Martínez L, Estrella M, Maccioni RB. Neuroimmune tau mechanisms: Their role in the progression of neuronal degeneration. Int J Mol Sci 2018; 19(4): 956.
[http://dx.doi.org/10.3390/ijms19040956] [PMID: 29570615]
[79]
Santacruz K, Lewis J, Spires T, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005; 309(5733): 476-81.
[http://dx.doi.org/10.1126/science.1113694] [PMID: 16020737]
[80]
Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim Biophys Acta Mol Cell Res 2017; 1864(11 Pt A): 2043-55.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.013] [PMID: 28526562]
[81]
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7(1): 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[82]
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[83]
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1)a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[84]
Liebner S, Kniesel U, Kalbacher H, Wolburg H. Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol 2000; 79(10): 707-17.
[http://dx.doi.org/10.1078/0171-9335-00101] [PMID: 11089919]
[85]
Liebner S, Czupalla CJ, Wolburg H. Current concepts of blood-brain barrier development. Int J Dev Biol 2011; 55(4-5): 467-76.
[http://dx.doi.org/10.1387/ijdb.103224sl] [PMID: 21769778]
[86]
Weekman EM, Wilcock DM. Matrix metalloproteinase in blood-brain barrier breakdown in Dementia. J Alzheimers Dis 2016; 49(4): 893-903.
[87]
Kook SY, Seok HH, Moon M, Mook-Jung I. Disruption of blood-brain barrier in Alzheimer disease pathogenesis. Tissue Barriers 2013; 1(2)e23993
[http://dx.doi.org/10.4161/tisb.23993] [PMID: 24665385]
[88]
Zhou Y, Qiu LB, An GZ, et al. Effects of electromagnetic pulse exposure on gelatinase of blood-brain barrier in vitro. Electromagn Biol Med 2017; 36(1): 1-7.
[PMID: 27355558]
[89]
Feng S, Cen J, Huang Y, et al. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 2011; 6(8)e20599
[http://dx.doi.org/10.1371/journal.pone.0020599] [PMID: 21857898]
[90]
Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 2012; 32(9): 3044-57.
[http://dx.doi.org/10.1523/JNEUROSCI.6409-11.2012 ] [PMID: 22378877]
[91]
Zhang S, An Q, Wang T, Gao S, Zhou G. Autophagy- and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood-brain barrier permeability during early reperfusion in stroke. Neuroscience 2018; 377: 126-37.
[http://dx.doi.org/10.1016/j.neuroscience.2018.02.035 ] [PMID: 29524637]
[92]
Shen Y, Gu J, Liu Z, et al. Inhibition of HIF-1α reduced blood brain barrier damage by regulating MMP-2 and VEGF during acute cerebral ischemia. Front Cell Neurosci 2018; 12: 288.
[http://dx.doi.org/10.3389/fncel.2018.00288] [PMID: 30233326]
[93]
Qiu LB, Zhou Y, Wang Q, et al. Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood-brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats. Toxicology 2011; 285(1-2): 31-8.
[http://dx.doi.org/10.1016/j.tox.2011.03.019] [PMID: 21501651]
[94]
Wang Z, Xue Y, Jiao H, Liu Y, Wang P. Doxycycline-mediated protective effect against focal cerebral ischemia-reperfusion injury through the modulation of tight junctions and PKCδ signaling in rats. J Mol Neurosci 2012; 47(1): 89-100.
[http://dx.doi.org/10.1007/s12031-011-9689-x] [PMID: 22173873]
[95]
Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012; 122(4): 1164-71.
[http://dx.doi.org/10.1172/JCI58644] [PMID: 22466658]
[96]
Metz VV, Kojro E, Rat D, Postina R. Induction of RAGE shedding by activation of G protein-coupled receptors. PLoS One 2012; 7(7)e41823
[http://dx.doi.org/10.1371/journal.pone.0041823] [PMID: 22860017]
[97]
Du H, Li P, Wang J, Qing X, Li W. The interaction of amyloid β and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2 expression in brain endothelial cells. Cell Mol Neurobiol 2012; 32(1): 141-7.
[http://dx.doi.org/10.1007/s10571-011-9744-8] [PMID: 21837459]
[98]
Chen L, Liu B. Relationships between stress granules, oxidative stress, and neurodegenerative diseases. Oxid Med Cell Longev 2017; 20171809592
[http://dx.doi.org/10.1155/2017/1809592] [PMID: 28194255]
[99]
Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol 2016; 53(6): 4094-125.
[http://dx.doi.org/10.1007/s12035-015-9337-5] [PMID: 26198567]
[100]
Guidi I, Galimberti D, Lonati S, et al. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2006; 27(2): 262-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.01.001 ] [PMID: 16399211]
[101]
Chauhan V, Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology 2006; 13(3): 195-208.
[http://dx.doi.org/10.1016/j.pathophys.2006.05.004 ] [PMID: 16781128]
[102]
Chang YT, Chang WN, Tsai NW, et al. The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: A systematic review. BioMed Res Int 2014; 2014182303
[http://dx.doi.org/10.1155/2014/182303] [PMID: 24949424]
[103]
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 2018; 14: 450-64.
[http://dx.doi.org/10.1016/j.redox.2017.10.014 ] [PMID: 29080524]
[104]
Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem 2007; 101(2): 566-76.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04393.x ] [PMID: 17250680]
[105]
Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2001; 21(12): 1393-400.
[http://dx.doi.org/10.1097/00004647-200112000-00003 ] [PMID: 11740200]
[106]
Ali MA, Schulz R. Activation of MMP-2 as a key event in oxidative stress injury to the heart. Front Biosci 2009; 14: 699-716.
[PMID: 19273096]
[107]
Viappiani S, Nicolescu AC, Holt A, et al. Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 2009; 77(5): 826-34.
[http://dx.doi.org/10.1016/j.bcp.2008.11.004] [PMID: 19046943]
[108]
Chakraborti S, Mandal A, Das S, Chakraborti T. Inhibition of Na+/Ca2+ exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: Role of matrix metalloproteinase-2. Biochim Biophys Acta 2004; 1671(1-3): 70-8.
[http://dx.doi.org/10.1016/j.bbagen.2004.01.005] [PMID: 15026147]
[109]
Yoon SO, Park SJ, Yoon SY, Yun CH, Chung AS. Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. J Biol Chem 2002; 277(33): 30271-82.
[http://dx.doi.org/10.1074/jbc.M202647200] [PMID: 12058032]
[110]
Castro MM, Rizzi E, Rodrigues GJ, et al. Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med 2009; 46(9): 1298-307.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.011 ] [PMID: 19248829]
[111]
Garcia-Alloza M, Prada C, Lattarulo C, et al. Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice. J Neurochem 2009; 109(6): 1636-47.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06096.x ] [PMID: 19457117]
[112]
Antonio RC, Ceron CS, Rizzi E, Coelho EB, Tanus-Santos JE, Gerlach RF. Antioxidant effect of doxycycline decreases MMP activity and blood pressure in SHR. Mol Cell Biochem 2014; 386(1-2): 99-105.
[http://dx.doi.org/10.1007/s11010-013-1848-7] [PMID: 24114660]
[113]
Ozcinar E, Okatan EN, Tuncay E, Eryilmaz S, Turan B. Improvement of functional recovery of donor heart following cold static storage with doxycycline cardioplegia. Cardiovasc Toxicol 2014; 14(1): 64-73.
[http://dx.doi.org/10.1007/s12012-013-9231-1 ] [PMID: 24104944]
[114]
Saeed M, Arun MZ, Guzeloglu M, et al. Low-dose doxycycline inhibits hydrogen peroxide-induced oxidative stress, MMP-2 up-regulation and contractile dysfunction in human saphenous vein grafts. Drug Des Devel Ther 2019; 13: 1791-801.
[http://dx.doi.org/10.2147/DDDT.S187842] [PMID: 31213768]
[115]
Zhang F, Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat 2015; 11: 243-56.
[http://dx.doi.org/10.2147/NDT.S75546] [PMID: 25673992]
[116]
Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm (Vienna) 2010; 117(8): 919-47.
[http://dx.doi.org/10.1007/s00702-010-0438-z] [PMID: 20632195]
[117]
Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer’s disease: Inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPAR gamma agonists. J Neurosci 2000; 20(2): 558-67.
[http://dx.doi.org/10.1523/JNEUROSCI.20-02-00558.2000 ] [PMID: 10632585]
[118]
Chopra S, Overall CM, Dufour A. Matrix metalloproteinases in the CNS: Interferons get nervous. Cell Mol Life Sci 2019; 76(16): 3083-95.
[http://dx.doi.org/10.1007/s00018-019-03171-9] [PMID: 31165203]
[119]
Fields GB. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells 2019; 8(9): 984.
[http://dx.doi.org/10.3390/cells8090984] [PMID: 31461880]
[120]
Le NT, Xue M, Castelnoble LA, Jackson CJ. The dual personalities of matrix metalloproteinases in inflammation. Front Biosci 2007; 12: 1475-87.
[http://dx.doi.org/10.2741/2161] [PMID: 17127395]
[121]
Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14(2): 163-76.
[PMID: 10652271]
[122]
Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4(8): 617-29.
[http://dx.doi.org/10.1038/nri1418] [PMID: 15286728]
[123]
Delaleu N, Bickel M. Interleukin-1 beta and interleukin-18: Regulation and activity in local inflammation. Periodontol 2004; 35: 42-52.
[http://dx.doi.org/10.1111/j.0906-6713.2004.003569.x ] [PMID: 15107057]
[124]
English WR, Puente XS, Freije JM, et al. Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem 2000; 275(19): 14046-55.
[http://dx.doi.org/10.1074/jbc.275.19.14046] [PMID: 10799478]
[125]
Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 2007; 42(3): 113-85.
[http://dx.doi.org/10.1080/10409230701340019] [PMID: 17562450]
[126]
Lee EJ, Kim HS. The anti-inflammatory role of tissue inhibitor of metalloproteinase-2 in lipopolysaccharide-stimulated microglia. J Neuroinflammation 2014; 11: 116.
[http://dx.doi.org/10.1186/1742-2094-11-116] [PMID: 24970341]
[127]
Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 2013; 13(9): 649-65.
[http://dx.doi.org/10.1038/nri3499] [PMID: 23969736]
[128]
McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase: A cleavage of monocyte chemoattractant protein-3. Science 2000; 289(5482): 1202-6.
[http://dx.doi.org/10.1126/science.289.5482.1202] [PMID: 10947989]
[129]
McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 2002; 100(4): 1160-7.
[http://dx.doi.org/10.1182/blood.V100.4.1160.h81602001160_1160_1167] [PMID: 12149192]
[130]
Song J, Wu C, Zhang X, Sorokin LM. In vivo processing of CXCL5 (LIX) by matrix metalloproteinase (MMP)-2 and MMP-9 promotes early neutrophil recruitment in IL-1β-induced peritonitis. J Immunol 2013; 190(1): 401-10.
[http://dx.doi.org/10.4049/jimmunol.1202286] [PMID: 23225890]
[131]
Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 2007; 82(6): 1375-81.
[http://dx.doi.org/10.1189/jlb.0607338] [PMID: 17709402]
[132]
Lee M, Bernardo MM, Meroueh SO, Brown S, Fridman R, Mobashery S. Synthesis of chiral 2-(4-phenoxyphenylsul-fonylmethyl)thiiranes as selective gelatinase inhibitors. Org Lett 2005; 7(20): 4463-5.
[http://dx.doi.org/10.1021/ol0517269] [PMID: 16178559]
[133]
Hadass O, Tomlinson BN, Gooyit M, et al. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury. PLoS One 2013; 8(10)e76904
[http://dx.doi.org/10.1371/journal.pone.0076904] [PMID: 24194849]
[134]
Bhatt LK, Addepalli V. Potentiation of aspirin-induced cerebroprotection by minocycline: A therapeutic approach to attenuate exacerbation of transient focal cerebral ischaemia. Diab Vasc Dis Res 2012; 9(1): 25-34.
[http://dx.doi.org/10.1177/1479164111427753] [PMID: 22045867]
[135]
Dufour A, Overall CM. Missing the target: Matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci 2013; 34(4): 233-42.
[http://dx.doi.org/10.1016/j.tips.2013.02.004] [PMID: 23541335]
[136]
Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 2005; 28(4): 202-8.
[http://dx.doi.org/10.1016/j.tins.2005.02.001] [PMID: 15808355]
[137]
Li X, Chen H, Epstein PN. Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J Biol Chem 2004; 279(1): 765-71.
[http://dx.doi.org/10.1074/jbc.M307907200] [PMID: 14576162]
[138]
Jefferies WA, Price KA, Biron KE, Fenninger F, Pfeifer CG, Dickstein DL. Adjusting the compass: New insights into the role of angiogenesis in Alzheimer’s disease. Alzheimers Res Ther 2013; 5(6): 64.
[http://dx.doi.org/10.1186/alzrt230] [PMID: 24351529]
[139]
Di Carlo A. The role of matrix-metalloproteinase-2 (MMP-2) and matrix-metalloproteinase-9 (MMP-9) in angiogenesis The inducer and inhibitor role of gelatinase A (MMP-2) and gelatinase B (MMP-9) in the formation of new blood vessels california sea grant college program 2015; 7(5): 19-32.
[140]
Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29(6): 15-8.
[http://dx.doi.org/10.1016/S0093-7754(02)70065-1 ] [PMID: 12516034]
[141]
Goussev S, Hsu JY, Lin Y, et al. Differential temporal expression of matrix metalloproteinases after spinal cord injury: Relationship to revascularization and wound healing. J Neurosurg 2003; 99(2): 188-97.
[PMID: 12956462]
[142]
Nguyen M, Arkell J, Jackson CJ. Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol 2001; 33(10): 960-70.
[http://dx.doi.org/10.1016/S1357-2725(01)00007-3 ] [PMID: 11470230]
[143]
Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 2004; 16(5): 558-64.
[http://dx.doi.org/10.1016/j.ceb.2004.07.010] [PMID: 15363807]
[144]
McQuibban GA, Butler GS, Gong JH, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276(47): 43503-8.
[http://dx.doi.org/10.1074/jbc.M107736200] [PMID: 11571304]
[145]
Chetty C, Lakka SS, Bhoopathi P, Rao JS. MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 2010; 127(5): 1081-95.
[http://dx.doi.org/10.1002/ijc.25134] [PMID: 20027628]
[146]
Seo DW, Kim SH, Eom SH, et al. TIMP-2 disrupts FGF-2-induced downstream signaling pathways. Microvasc Res 2008; 76(3): 145-51.
[http://dx.doi.org/10.1016/j.mvr.2008.07.003] [PMID: 18721821]
[147]
Oh J, Seo DW, Diaz T, et al. Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res 2004; 64(24): 9062-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1981 ] [PMID: 15604273]
[148]
Oh J, Takahashi R, Kondo S, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001; 107(6): 789-800.
[http://dx.doi.org/10.1016/S0092-8674(01)00597-9 ] [PMID: 11747814]
[149]
Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: Vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 2003; 10(2): 136-41.
[http://dx.doi.org/10.1097/00062752-200303000-00007 ] [PMID: 12579040]
[150]
Taraboletti G, D’Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 2002; 160(2): 673-80.
[http://dx.doi.org/10.1016/S0002-9440(10)64887-0 ] [PMID: 11839588]
[151]
Bonfil RD, Sabbota A, Nabha S, et al. Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism-based selective gelatinase inhibitor. Int J Cancer 2006; 118(11): 2721-6.
[http://dx.doi.org/10.1002/ijc.21645] [PMID: 16381009]
[152]
Mroczko B, Groblewska M, Zboch M, et al. Concentrations of matrix metalloproteinases and their tissue inhibitors in the cerebrospinal fluid of patients with Alzheimer’s disease. J Alzheimers Dis 2014; 40(2): 351-7.
[http://dx.doi.org/10.3233/JAD-131634] [PMID: 24448781]
[153]
Stetler-Stevenson WG, Seo DW. TIMP-2: An endogenous inhibitor of angiogenesis. Trends Mol Med 2005; 11(3): 97-103.
[http://dx.doi.org/10.1016/j.molmed.2005.01.007] [PMID: 15760767]
[154]
Seo DW, Li H, Guedez L, et al. TIMP-2 mediated inhibition of angiogenesis: An MMP-independent mechanism. Cell 2003; 114(2): 171-80.
[http://dx.doi.org/10.1016/S0092-8674(03)00551-8 ] [PMID: 12887919]
[155]
Ambrose CT. Neuroangiogenesis: A vascular basis for Alzheimer’s disease and cognitive decline during aging. J Alzheimers Dis 2012; 32(3): 773-88.
[http://dx.doi.org/10.3233/JAD-2012-120067] [PMID: 22850316]
[156]
Mannello F, Tonti G, Papa S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr Cancer Drug Targets 2005; 5(4): 285-98.
[http://dx.doi.org/10.2174/1568009054064615] [PMID: 15975049]
[157]
Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol Sci 2009; 30(2): 85-94.
[http://dx.doi.org/10.1016/j.tips.2008.11.002] [PMID: 19110321]
[158]
Zhong Y, Lu YT, Sun Y. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin Drug Discov 2018; 1(7): 5-87.
[http://dx.doi.org/10.1080/17460441.2018.1398732]
[159]
Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13(12): 904-27.
[http://dx.doi.org/10.1038/nrd4390] [PMID: 25376097]
[160]
Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors- Novel strategies bring new prospects. Biochim Biophys Acta Mol Cell Res 2017; 1864(11): 1927-39.
[http://dx.doi.org/10.1016/j.bbamcr.2017.06.009] [PMID: 28636874]
[161]
Ravindra KC, Ahrens CC, Wang Y, et al. Chemoproteomics of matrix metalloproteases in a model of cartilage degeneration suggests functional biomarkers associated with posttraumatic osteoarthritis. J Biol Chem 2018; 293(29): 11459-69.
[http://dx.doi.org/10.1074/jbc.M117.818542] [PMID: 29794029]
[162]
Santamaria S, de Groot R. Monoclonal antibodies against metzincin targets. Br J Pharmacol 2019; 176(1): 52-66.
[http://dx.doi.org/10.1111/bph.14186] [PMID: 29488211]
[163]
Sela-Passwell N, Kikkeri R, Dym O, et al. Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. Nat Med 2011; 18(1): 143-7.
[http://dx.doi.org/10.1038/nm.2582] [PMID: 22198278]
[164]
Devy L, Huang L, Naa L, et al. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res 2009; 69(4): 1517-26.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3255 ] [PMID: 19208838]
[165]
Ingvarsen S, Porse A, Erpicum C, et al. Targeting a single function of the multifunctional matrix metalloprotease MT1-MMP: Impact on lymphangiogenesis. J Biol Chem 2013; 288(15): 10195-204.
[http://dx.doi.org/10.1074/jbc.M112.447169] [PMID: 23413031]
[166]
Morrison CJ, Butler GS, Rodríguez D, Overall CM. Matrix metalloproteinase proteomics: Substrates, targets, and therapy. Curr Opin Cell Biol 2009; 21(5): 645-53.
[http://dx.doi.org/10.1016/j.ceb.2009.06.006] [PMID: 19616423]
[167]
Jung SS, Zhang W, Van Nostrand WE. Pathogenic A beta induces the expression and activation of matrix metalloproteinase-2 in human cerebrovascular smooth muscle cells. J Neurochem 2003; 85(5): 1208-15.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01745.x ] [PMID: 12753080]
[168]
Brkic M, Balusu S, Van Wonterghem E, et al. Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases. J Neurosci 2015; 35(37): 12766-78.
[http://dx.doi.org/10.1523/JNEUROSCI.0006-15.2015 ] [PMID: 26377465]
[169]
Mizoguchi H, Takuma K, Fukuzaki E, et al. Matrix metalloprotease-9 inhibition improves amyloid beta-mediated cognitive impairment and neurotoxicity in mice. J Pharmacol Exp Ther 2009; 331(1): 14-22.
[http://dx.doi.org/10.1124/jpet.109.154724] [PMID: 19587312]
[170]
Castellano JM. Blood-based therapies to combat aging. Gerontology 2019; 65(1): 84-9.
[http://dx.doi.org/10.1159/000492573] [PMID: 30196300]
[171]
Villeda SA, Plambeck KE, Middeldorp J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 2014; 20(6): 659-63.
[http://dx.doi.org/10.1038/nm.3569] [PMID: 24793238]
[172]
Middeldorp J, Lehallier B, Villeda SA, et al. Preclinical assessment of young blood plasma for alzheimer disease. JAMA Neurol 2016; 73(11): 1325-33.
[http://dx.doi.org/10.1001/jamaneurol.2016.3185] [PMID: 27598869]
[173]
Castellano JM, Mosher KI, Abbey RJ, et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 2017; 544(7651): 488-92.
[http://dx.doi.org/10.1038/nature22067] [PMID: 28424512]
[174]
Mlekusch R, Humpel C. Matrix metalloproteinases-2 and -3 are reduced in cerebrospinal fluid with low beta-amyloid1-42 levels. Neurosci Lett 2009; 466(3): 135-8.
[http://dx.doi.org/10.1016/j.neulet.2009.09.043] [PMID: 19786072]
[175]
Horstmann S, Budig L, Gardner H, et al. Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in patients with Alzheimer’s disease. Int Psychogeriatr 2010; 22(6): 966-72.
[http://dx.doi.org/10.1017/S1041610210000827] [PMID: 20561382]
[176]
Mroczko B, Groblewska M, Barcikowska M. The role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the pathophysiology of neurodegeneration: A literature study. J Alzheimers Dis 2013; 37(2): 273-83.
[http://dx.doi.org/10.3233/JAD-130647] [PMID: 23792694]
[177]
Lewczuk P, Esselmann H, Bibl M, et al. Tau protein phosphorylated at threonine 181 in CSF as a neurochemical biomarker in Alzheimer’s disease: Original data and review of the literature. J Mol Neurosci 2004; 23(1-2): 115-22.
[http://dx.doi.org/10.1385/JMN:23:1-2:115] [PMID: 15126697]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 6
Year: 2020
Page: [402 - 416]
Pages: 15
DOI: 10.2174/1871527319666200812223007
Price: $65

Article Metrics

PDF: 35
HTML: 3
EPUB: 1