Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Mesomeric Effects of Azobenzene Bearing Natural Product-Based Molecules for Liquid Crystal Materials: An Overview

Author(s): Saba Farooq * and Zainab Ngaini *

Volume 18, Issue 4, 2021

Published on: 10 August, 2020

Page: [318 - 332] Pages: 15

DOI: 10.2174/1570179417666200810142857

Price: $65

Abstract

Latest progress in the liquid crystal (LC) field related to azo molecules incorporated into natural product- based moieties for the improvement of LC texture and mesomeric phases has received great interest among researchers. A LC containing natural product-based moieties i.e. menthol, kojic acid, cholesterol and chalcone with stable azo and azobenzene scaffolds with specific optical tunability, has been widely used in photo-active materials such as Liquid Crystal Display (LCD), LC films, smart windows and other devices. This review discusses the influence of azobenzene, a renowned photo-responsive and stable LC scaffold, in mesogenic phases due to photo-isomerization and optical switching. The incorporation of mesomeric phases of natural product moieties to azo molecules has improved the properties of LC, i.e, from the nematic phase to the smectic phase with proper magnetic field alignment. Natural product-based LC can be useful in numerous applications, especially practical electronic or optic devices such as optical image storage, display devices, solar cells, optical switching.

Keywords: Liquid crystal, coumarin, chalcone, catalyst, menthol, nematic phase.

Graphical Abstract
[1]
Tschierske, C.; Photinos, D.J. Biaxial nematic phases. J. Mater. Chem., 2010, 20(21), 4263.
[http://dx.doi.org/10.1039/b924810b]
[2]
Andrienko, D. Introduction to liquid crystals. J. Mol. Liq., 2018, 267, 520-541.
[http://dx.doi.org/10.1016/j.molliq.2018.01.175]
[3]
Arkas, M.; Kitsou, I.; Gkouma, A.; Papageorgiou, M. The role of hydrogen bonds in the mesomorphic behaviour of supramolecular assemblies organized in dendritic architectures. Liq. Cryst. Rev., 2019, 7(1), 60-105.
[http://dx.doi.org/10.1080/21680396.2019.1621226]
[4]
Champagne, P-L.; Ester, D.; Aldosari, S.; Williams, V.E.; Ling, C-C. Synthesis and comparison of mesomorphic behaviour of a cholesterol-based liquid crystal dimer and analogous monomers. Liq. Cryst., 2018, 45(8), 1164-1176.
[http://dx.doi.org/10.1080/02678292.2017.1417505]
[5]
Yeap, G-Y.; Osman, F.; Maeta, N.; Ito, M.M.; Lin, C-M.; Lin, H-C. Unveiling the influence of inner spacer length of the non-linear S-shaped chiral oligomers on liquid crystalline phase. J. Mol. Liq., 2017, 236, 1-8.
[http://dx.doi.org/10.1016/j.molliq.2017.03.093]
[6]
Osman, F.; Yeap, G-Y.; Maeta, N.; Ito, M.M.; Lin, C-M.; Lin, H.C. Liquid crystalline non-linear S-shaped oligomers consisting of azobenzene and biphenylene units: synthesis, characterisation and influence of central spacer. Liq. Cryst., 2017, 44(14–15), 2355-2365.
[http://dx.doi.org/10.1080/02678292.2017.1360522]
[7]
Wang, M.; Sayed, S.M.; Guo, L-X.; Lin, B-P.; Zhang, X-Q.; Sun, Y.; Yang, H. Multi-stimuli responsive carbon nanotube incorporated polysiloxane azobenzene liquid crystalline elastomer composites. Macromolecules, 2016, 49(2), 663-671.
[http://dx.doi.org/10.1021/acs.macromol.5b02388]
[8]
Zep, A.; Pruszkowska, K.; Dobrzycki, Ł.; Sektas, K.; Szałański, P.; Marek, P.H.; Cyrański, M.K.; Sicinski, R.R. Cholesterol based photo-switchable mesogenic dimers. Strongly bent molecules versus intercalated structure. CrystEngComm, 2019, 21(17), 2779-2789.
[http://dx.doi.org/10.1039/C9CE00013E]
[9]
Taheri, B.; Sukhomlinova, L.; Luchette, P. .Adaptive liquid crystal structural interface US 9 869 887 B2, 2018, 13.,
[10]
Hagar, M.; Ahmed, H.A.; Alhaddadd, O.A. DFT Calculations and mesophase study of coumarin esters and its azoesters. Crystals (Basel), 2018, 8(9), 359.
[http://dx.doi.org/10.3390/cryst8090359]
[11]
Srinivasa, H.T.; Harishkumar, H.N.; Palakshamurthy, B.S. New coumarin carboxylates having trifluoromethyl, diethylamino and morpholino terminal groups: Synthesis and mesomorphic characterisations. J. Mol. Struct., 2017, 1131, 97-102.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.047]
[12]
Ishihara, S.; Mizusaki, M. Alignment control technology of liquid crystal molecules. J. Soc. Inf. Disp., 2020, 28(1), 44-74.
[http://dx.doi.org/10.1002/jsid.825]
[13]
Obi, M.; Morino, S.; Ichimura, K. Reversion of Photoalignment Direction of Liquid Crystals Induced by Cinnamate Polymer Films Jpn. J. Appl. Phys., 1999, 38(2), 145-147.
[http://dx.doi.org/10.1143/JJAP.38.L145]
[14]
Nozary, H.; Piguet, C.; Rivera, J-P.; Tissot, P.; Morgantini, P-Y.; Weber, J.; Bernardinelli, G.; Bünzli, J-C.G.; Deschenaux, R.; Donnio, B.; Guillon, D. Aromatic Bent-Core Liquid Crystals: an Opportunity for Introducing Terdentate Binding Units into Mesophases. Chem. Mater., 2002, 14(3), 1075-1090.
[http://dx.doi.org/10.1021/cm011162c]
[15]
Tun Nur Iskandar, N.A.J.; Guan-Yeow, Y.; Maeta, N.; Ito, M.M.; Nakamura, Y.; Gas, K.; Sawicki, M. Anisotropic and magnetic properties in non-metal and non-radical organic aggregates of tri-substituted phenyl derivatives. New J. Chem., 2020, 44(1), 210-217.
[http://dx.doi.org/10.1039/C9NJ02730K]
[16]
Bala, I.; Pal, S.K. Rod–disc oligomeric liquid crystal based on 4-cyanobiphenyl and truxene core. Liq. Cryst., 2016, 43(7), 963-971.
[http://dx.doi.org/10.1080/02678292.2016.1153733]
[17]
He, W-L.; Li, M.; Liu, S-Q.; Wei, M.; Liu, C.; Li, L-L.; Yang, Z.; Wang, D.; Cao, H. Synthesis of chiral azobenzene derivatives and the performance in photochemical control of blue phase liquid crystal. Liq. Cryst., 2018, 45(3), 370-380.
[http://dx.doi.org/10.1080/02678292.2017.1330430]
[18]
Christie, R.M. Colour chemistry; Royal Society of Chemistry: Cambridge, 2001.
[19]
Patil, S. Synthesis and Optical Properties of Near-Infrared (NIR). Absorbing Azo Dyes. Curr. Trends Fash. Technol. Text. Eng., 2019, 4(5)555649
[http://dx.doi.org/10.19080/CTFTTE.2019.04.555649]
[20]
Jiao, T.; Wang, Y.; Gao, F.; Zhou, J.; Gao, F. Photoresponsive organogel and organized nanostructures of cholesterol imide derivatives with azobenzene substituent groups. Prog. Nat. Sci. Mater. Int., 2012, 22(1), 64-70.
[http://dx.doi.org/10.1016/j.pnsc.2011.12.011]
[21]
Chen, H.; Zhang, R.; Gao, H.; Cheng, H.; Fang, H.; Cheng, X. Synthesis, self-assembly, metal binding properties of triazole azobenzene based polycatenar dyes through click chemistry. Dyes Pigments, 2018, 149, 512-520.
[http://dx.doi.org/10.1016/j.dyepig.2017.10.025]
[22]
Zhang, L.; Shi, Z.; He, T.; Liu, Y.; Wang, Y. Effects of the chain length of crosslinking agent and dye-doped amount on the electro-optical properties of polymer-dispersed liquid crystal films prepared by nucleophile-initiated thiol-ene click reaction. Liq. Cryst., 2020, 47(1), 42-53.
[http://dx.doi.org/10.1080/02678292.2019.1626924]
[23]
Maeno, K.; Patel, B.R.; Endo, T.; Kerman, K. Angle-Sensitive Photonic Crystals for Simultaneous Detection and Photocatalytic Degradation of Hazardous Diazo Compounds. Micromachines (Basel), 2020, 11(1), 93.
[http://dx.doi.org/10.3390/mi11010093] [PMID: 31952227]
[24]
Hamed, M.M.; Ahmed, I.M.; Metwally, S.S. Adsorptive removal of methylene blue as organic pollutant by marble dust as eco-friendly sorbent. J. Ind. Eng. Chem., 2014, 20(4), 2370-2377.
[http://dx.doi.org/10.1016/j.jiec.2013.10.015]
[25]
Gelebart, A.H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E.W.; Selinger, R.L.B.; Broer, D.J. Making waves in a photoactive polymer film. Nature, 2017, 546(7660), 632-636.
[http://dx.doi.org/10.1038/nature22987] [PMID: 28658225]
[26]
Matsuoka, M. Infrared absorbing dyes., 2013.
[27]
Ho, B.K.; Ngaini, Z.; Matthew Neilsen, P.; Hwang, S.S.; Entigu Linton, R.; Kong, E.L.; Lee, B.K. Synthesis and anticancer activities of 4-[(halophenyl)diazenyl]phenol and 4-[(halophenyl)diazenyl]phenyl aspirinate derivatives against nasopharyngeal cancer cell lines. J. Chem., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/6760413]
[28]
Boga, C.; Delpivo, C.; Ballarin, B.; Morigi, M.; Galli, S.; Micheletti, G.; Tozzi, S. Investigation on the dyeing power of some organic natural compounds for a green approach to hair dyeing. Dyes Pigments, 2013, 97(1), 9-18.
[http://dx.doi.org/10.1016/j.dyepig.2012.11.020]
[29]
Oh, S-W.; Baek, J-M.; Yoon, T-H. Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene. Opt. Express, 2016, 24(23), 26575-26582.
[http://dx.doi.org/10.1364/OE.24.026575] [PMID: 27857390]
[30]
Ravi, B.N.K.J. M. N. M, V. Kumar, and S. Kandgal, “Synthesis, characterization and pharmacological evaluation of 2-aminothiazole incorporated azo dyes. J. Mol. Struct., 2020.1204127493
[http://dx.doi.org/10.1016/j.molstruc.2019.127493]
[31]
Hamad, W.; Salih, S. “Synthesis and Liquid Crystalline Studies of 2,4-bis(4′-n-nonyloxybenzoyloxy)benzylidene-4”-n-alkoxyaniline,” ARO- Sci. J. Koya Univ., 2017, 5(1), 24-29.
[http://dx.doi.org/10.14500/aro.10210]
[32]
Sie, C.Z.W.; Ngaini, Z. Incorporation of kojic acid-azo dyes on TiO2 thin films for dye sensitized solar cells applications. J. Sol. Energy, 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/2760301]
[33]
Chung, K-T. Azo dyes and human health: A review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2016, 34(4), 233-261.
[http://dx.doi.org/10.1080/10590501.2016.1236602] [PMID: 27635691]
[34]
Hamidian, K.; Irandoust, M.; Rafiee, E.; Joshaghani, M. Synthesis, characterization, and tautomeric properties of some azo-azomethine compounds. Z. Naturforsch., 2012, 67b, 159-164.
[35]
Fritz, J.; Probst, O.; Dey, S.; Grafström, S.; Kowalski, J.; Neumann, R. Scanning tunneling microscopy studies of diazo dye monolayers on HOPG. Surf. Sci., 1995, 329(3), L613-L618.
[http://dx.doi.org/10.1016/0039-6028(95)80009-3]
[36]
Urbas, A.; Tondiglia, V.; Natarajan, L.; Sutherland, R.; Yu, H.; Li, J-H.; Bunning, T. Optically switchable liquid crystal photonic structures. J. Am. Chem. Soc., 2004, 126(42), 13580-13581.
[http://dx.doi.org/10.1021/ja045143q] [PMID: 15493891]
[37]
Balamurugan, R.; Huang, Z-Y.; Liu, B-T. The effect of substituents on thermal and optical properties of azobenzene-cholesteryl derivatives. J. Innov. Technol., 2019, 1(2), 69-75.
[http://dx.doi.org/10.29424/JIT.201909_1(2).0011]
[38]
Ahmad, F.; Jamil, M.; Jeon, Y.J.; Woo, L.J.; Jung, J.E.; Jang, J.E. Investigation of nonionic diazo dye-doped polymer dispersed liquid crystal film. Bull. Mater. Sci., 2012, 35(2), 221-231.
[http://dx.doi.org/10.1007/s12034-012-0286-6]
[39]
Zhao, K.; Xiao, Y.; Chang, Q.; Zhang, D.; Cheng, X. Azobenzene-based asymmetric bolaamphiphiles: Formation of LC phases with honeycomb structures and gels with helical structures. J. Mol. Liq., 2019, 293111417
[http://dx.doi.org/10.1016/j.molliq.2019.111417]
[40]
Xu, W.C.; Sun, S.; Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. Engl., 2019, 58(29), 9712-9740.
[http://dx.doi.org/10.1002/anie.201814441] [PMID: 30737869]
[41]
Shannon, P. J. .Adaptive liquid crystal structural interface US 9 869 887 B2, 2018, 13.,
[42]
Kuang, Z-Y.; Fan, Y-J.; Tao, L.; Li, M-L.; Zhao, N.; Wang, P.; Chen, E-Q.; Fan, F.; Xie, H-L. Alignment control of nematic liquid crystal using gold nanoparticles grafted by the liquid crystalline polymer with azobenzene mesogens as the side chains. ACS Appl. Mater. Interfaces, 2018, 10(32), 27269-27277.
[http://dx.doi.org/10.1021/acsami.8b07483] [PMID: 30028118]
[43]
Niezgoda, I.; Pociecha, D.; Galewski, Z. Monotropic or enantiotropic mesophases? Liquid-crystalline and solid state polymorphism 4-Chloro-1,3-phenylene bis-[4-(4-alkyloxyphenylazo)benzoates. Thermochim. Acta, 2014, 587, 59-66.
[http://dx.doi.org/10.1016/j.tca.2014.04.024]
[44]
Afshari, H.; Olyaeefar, B.; Khoshsima, H. The refractive index grating formation in azo dye doped nematic liquid crystal. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2012, 561(1), 36-41.
[http://dx.doi.org/10.1080/15421406.2012.686706]
[45]
Akiyama, H.; Kawara, T.; Takada, H.; Takatsu, H.; Chigrinov, V.; Prudnikova, E.; Kozenkov, V.; Kwok, H. Synthesis and properties of azo dye aligning layers for liquid crystal cells. Liq. Cryst., 2002, 29(10), 1321-1327.
[http://dx.doi.org/10.1080/713935610]
[46]
Sekkat, Z.; Moujdi, S. Azo-polymers for holographic recording: photoassisted holography and surface relief gratings Practical Holography XXXIII: Displays, Materials, and Applications, SPIE OPTO, 2019, San Francisco, California, United States;
[47]
Ryabchun, A.; Raguzin, I.; Stumpe, J.; Shibaev, V.; Bobrovsky, A. Cholesteric polymer scaffolds filled with azobenzene-containing nematic mixture with phototunable optical properties. ACS Appl. Mater. Interfaces, 2016, 8(40), 27227-27235.
[http://dx.doi.org/10.1021/acsami.6b09642] [PMID: 27633069]
[48]
Matharu, A.S.; Jeeva, S.; Ramanujam, P.S. Liquid crystals for holographic optical data storage. Chem. Soc. Rev., 2007, 36(12), 1868-1880.
[http://dx.doi.org/10.1039/b706242g] [PMID: 17982514]
[49]
Scutaru, D.; Carlescu, I.; Bulai, E-R. (Cioanca), C. Ionica Ciobanu, G. Lisa, and N. Hurduc, “Bent-Core Liquid Crystals: Structures and Mesomorphic Properties,” in Liquid Crystals - Self-Organized Soft Functional Materials for Advanced Applications; Carlescu, I., Ed.; IntechOpen, 2019.
[50]
Oscurato, S.L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics, 2018, 7(8), 1387-1422.
[http://dx.doi.org/10.1515/nanoph-2018-0040]
[51]
White, T.J. Photomechanical effects in liquid crystalline polymer networks and elastomers. J. Polym. Sci. Part B Polym. Phys., 2018, 56, 695-705.
[52]
Yu, H-T.; Tang, J-W.; Feng, Y-Y.; Feng, W. Structural design and application of azo-based supramolecular polymer systems. Chin. J. Polym. Sci., 2019, 37(12), 1183-1199.
[http://dx.doi.org/10.1007/s10118-019-2331-z]
[53]
Smith, C.A. A review of liquid crystal display technologies, electronic interconnection and failure analysis. Circuit World, 2008, 34(1), 35-41.
[http://dx.doi.org/10.1108/03056120810848789]
[54]
Kovalchuk, A.I.; Kobzar, Y.L.; Tkachenko, I.M.; Kurioz, Y.I.; Tereshchenko, O.G.; Shekera, O.V.; Nazarenko, V.G.; Shevchenko, V.V. Photoactive fluorinated poly(azomethine)s with azo groups in the main chain for optical storage applications and controlling liquid crystal orientation. ACS Appl. Polym. Mater., 2020, 2(2), 455-463.
[http://dx.doi.org/10.1021/acsapm.9b00906]
[55]
Kind, J.; Kaltschnee, L.; Leyendecker, M.; Thiele, C.M. Distinction of trans-cis photoisomers with comparable optical properties in multiple-state photochromic systems - examining a molecule with three azobenzenes via in situ irradiation NMR spectroscopy. Chem. Commun. (Camb.), 2016, 52(84), 12506-12509.
[http://dx.doi.org/10.1039/C6CC06771A] [PMID: 27722553]
[56]
Sanches, S.A.A.; Costa, W.C.; Bechtold, I.H.; Halfen, R.A.P.; Merlo, A.A.; Campo, L.F. Bromine-terminated azobenzene liquid crystals. Liq. Cryst., 2019, 46(5), 655-665.
[http://dx.doi.org/10.1080/02678292.2018.1517226]
[57]
Sunil, B.N.; Yam, W.S.; Gurumurthy, H. Photoresponsive behavior of hydrophilic/hydrophobic-based novel azobenzene mesogens: Synthesis, characterization and their application in optical storage devices. RSC Adv, 2019, 9(69), 40588-40606.
[http://dx.doi.org/10.1039/C9RA08211E]
[58]
Subala, S.S.; Sundar, B.S.; Sastry, S.S. Synthesis and characterization of nonsymmetric liquid crystal dimer containing biphenyl and azobenzene moiety. J. Chem., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/939406]
[59]
Pal, A.; Voudouris, P.; Koenigs, M.M.E.; Besenius, P.; Wyss, H.M.; Degirmenci, V.; Sijbesma, R.P. Topochemical polymerization in self-assembled rodlike micelles of bisurea bolaamphiphiles. Soft Matter, 2014, 10(7), 952-956.
[http://dx.doi.org/10.1039/c3sm52605d] [PMID: 24983103]
[60]
Han, G.D.; Park, S.S.; Liu, Y.; Zhitomirsky, D.; Cho, E.; Dincă, M.; Grossman, J.C. Photon energy storage materials with high energy densities based on diacetylene–azobenzene derivatives. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(41), 16157-16165.
[http://dx.doi.org/10.1039/C6TA07086H]
[61]
Yue, Y.; Norikane, Y.; Azumi, R.; Koyama, E. Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nat. Commun., 2018, 9(1), 3234.
[http://dx.doi.org/10.1038/s41467-018-05744-x] [PMID: 30104602]
[62]
Budagovsky, I.A.; Zolot’ko, A.S.; Koval’skaya, T.E.; Smayev, M.P.; Shvetsov, S.A.; Boiko, N.I.; Bugakov, M.A.; Barnik, M.I. Light-induced orientation of the molecules of nematic liquid crystals doped with comb-shaped polymers with different spatial distributions of chromophores. Bull. Lebedev Phys. Inst., 2014, 41(5), 135-139.
[http://dx.doi.org/10.3103/S1068335614050042]
[63]
S. B. N.. M. K. Srinatha, G. Shanker, H. Gurumurthy, M. Alaasar, and C. Tschierske, . Effective tuning of optical storage devices using photosensitive bent-core liquid crystals. J. Mol. Liq., 2020, 304112719
[http://dx.doi.org/10.1016/j.molliq.2020.112719]
[64]
Vijay Srinivasan, M.; Kannan, P. Photo-switching and nonlinear optical behaviors of center linked bent-core azobenzene liquid crystalline polymers. J. Mater. Sci., 2011, 46(15), 5029-5043.
[http://dx.doi.org/10.1007/s10853-011-5423-x]
[65]
Devi, S.; Bala, I.; Gupta, S.P.; Kumar, P.; Pal, S.K.; Venkataramani, S. Reversibly photoswitchable alkoxy azobenzenes connected benzenetricarboxamide discotic liquid crystals with perpetual long range columnar assembly. Org. Biomol. Chem., 2019, 17(7), 1947-1954.
[http://dx.doi.org/10.1039/C8OB01579A] [PMID: 30328463]
[66]
Huzum, C-C.; Carlescu, I.; Lisa, G.; Scutaru, D. Nonsymmetric Liquid Crystalline Cholesteric Dimers Derived from Resorcinol REV CHIM, 2013, 1, 8.
[67]
Al-shargabi, A.; Yeap, G-Y.; Mahmood, W.A.K.; Han, C-C.; Lin, H-C.; Ito, M.M. Liquid crystal dimers containing cholesteryl and triazole-containing mesogenic units. Liq. Cryst., 2020, 47(2), 219-230.
[http://dx.doi.org/10.1080/02678292.2019.1641637]
[68]
Kawabata, H.; Murata, K.; Harada, T.; Shinkai, S. Monolayer formation properties of cholesterol-based azobenzene amphiphiles with the natural and the inverted C3 configuration. Langmuir, 1995, 11(2), 623-626.
[http://dx.doi.org/10.1021/la00002a044]
[69]
Shen, C.; de la Serna, J.; Struth, B.; Klösgen, B. Azobenzene-cholesterol as a photoactivator in biomimetic membranes: 2. membrane structure. Biophys. J., 2017, 112(3), 319a.
[http://dx.doi.org/10.1016/j.bpj.2016.11.1730]
[70]
Xiong, J.; Lin, X.; Guo, H.; Yang, F.; Lai, J. Liquid crystalline oligomers derived from cholesterol: Synthesis and columnar mesomorphism. Liq. Cryst., 2018, 45(3), 362-369.
[http://dx.doi.org/10.1080/02678292.2017.1326635]
[71]
Tan, X.; Li, Z.; Xia, M.; Cheng, X. Reversible photoresponsive chiral liquid crystal and multistimuli responsive organogels based on a cholesterol-azobenzene dimesogen. RSC Adv, 2016, 6(24), 20021-20026.
[http://dx.doi.org/10.1039/C6RA00065G]
[72]
Kumaresan, S.; Mallia, V.A.; Kida, Y.; Tamaoki, N. Thermal and photo optical properties of azoxybenzene/alkyloxy-azobenzene–cholesterol dimesogens with alkyl diacetylene linker. J. Mater. Res., 2005, 20(12), 3431-3438.
[http://dx.doi.org/10.1557/jmr.2005.0426]
[73]
Kim, K.; Do, E.; Kwon, Y.; Jin, J. Dimesogenic compounds consisting of cholesterol and azobenzene‐based moieties: Dependence of liquid crystal properties on spacer length and fluorination of the terminal chain. Liq. Cryst., 2005, 32(2), 229-237.
[http://dx.doi.org/10.1080/02678290412331329305]
[74]
Tamaoki, N.; Aoki, Y.; Moriyama, M.; Kidowaki, M. Photochemical control of helical pitch of glass-forming dimeric cholesteric liquid crystals by isomerization of embedded di-mesogenic compounds with both cholesterol and azobenzene groups the In Liquid Crystals VI, 2002, 4799, 103-112.
[http://dx.doi.org/10.1117/12.453260]
[75]
Achalkumar, A.S.; Shankar Rao, D.S.; Yelamaggad, C.V. Non-symmetric dimers comprising chalcone and cholesterol entities: an investigation on structure–property correlations. New J. Chem., 2014, 38(9), 4235-4248.
[http://dx.doi.org/10.1039/C4NJ00426D]
[76]
Kim, Y.; Tamaoki, N. Asymmetric Dimers of Chiral Azobenzene Dopants Exhibiting Unusual Helical Twisting Power upon Photoswitching in Cholesteric Liquid Crystals. ACS Appl. Mater. Interfaces, 2016, 8(7), 4918-4926.
[http://dx.doi.org/10.1021/acsami.5b11888] [PMID: 26815738]
[77]
Yu, X.; Chen, H.; Shi, X.; Albouy, P-A.; Guo, J.; Hu, J.; Li, M-H. Liquid crystal gelators with photo-responsive and AIE properties. Mater. Chem. Front., 2018, 2(12), 2245-2253.
[http://dx.doi.org/10.1039/C8QM00340H]
[78]
Huzum, C-C.; Carlescu, I.; Lisa, G.; Scutaru, D. New cholesteryl containing bent core liquid crystals. J. Serb. Chem. Soc., 2013, 78(5), 669-680.
[http://dx.doi.org/10.2298/JSC120810114H]
[79]
Ndaya, D.; Bosire, R.; Kasi, R.M. Cholesteric–azobenzene liquid crystalline copolymers: design, structure and thermally responsive optical properties. Polym. Chem., 2019, 10(28), 3868-3878.
[http://dx.doi.org/10.1039/C9PY00536F]
[80]
Zhang, Y.; He, X-Z.; Zheng, J-J.; Tian, M.; Meng, F-B. Side-chain cholesteric liquid-crystalline elastomers containing azobenzene derivative as cross-linking agent – synthesis and characterisation. Liq. Cryst., 2018, 45(6), 912-923.
[http://dx.doi.org/10.1080/02678292.2017.1397782]
[81]
Amaral-Machado, L.; Oliveira, W.N.; Moreira-Oliveira, S.S.; Pereira, D.T.; Alencar, É.N.; Tsapis, N.; Egito, E.S.T. Use of Natural Products in Asthma Treatment. Evid. Based Complement. Alternat. Med., 2020.20201021258
[http://dx.doi.org/10.1155/2020/1021258] [PMID: 32104188]
[82]
Kalemba, D.; Synowiec, A. Agrobiological Interactions of Essential Oils of Two Menthol Mints: Mentha piperita and Mentha arvensis. Molecules, 2019, 25(1), 59.
[http://dx.doi.org/10.3390/molecules25010059] [PMID: 31878007]
[83]
Croteau, R.B.; Davis, E.M.; Ringer, K.L.; Wildung, M.R. (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften, 2005, 92(12), 562-577.
[http://dx.doi.org/10.1007/s00114-005-0055-0] [PMID: 16292524]
[84]
Liu, Y.; Xu, X.; Su, D.; Guo, Z.; Chen, Q.; Hu, J. New chiral liquid crystal materials based on menthol: Synthesis and phase behavior. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2017, 658(1), 108-119.
[http://dx.doi.org/10.1080/15421406.2018.1432128]
[85]
Luo, C-C.; Sun, S-L.; Wang, Y-S.; Meng, F-B.; Hu, J-S.; Jia, Y-G. The effect of various functional groups on mesophase behavior and optical property of blue phase liquid crystal compounds based on (−)-menthol. J. Mol. Liq., 2018, 269, 755-765.
[http://dx.doi.org/10.1016/j.molliq.2018.08.100]
[86]
Kovács, T.; Szűcs, R.; Holló, G.; Zuba, Z.; Molnár, J.; Christenson, H.K.; Lagzi, I. Self-Assembly of Chiral Menthol Molecules from a Liquid Film into Ring-Banded Spherulites. Cryst. Growth Des., 2019, 19(7), 4063-4069.
[http://dx.doi.org/10.1021/acs.cgd.9b00465]
[87]
Jiang, Y.; Gao, Y.; Lin, Z.; Yan, G.; Wang, J.; Li, J. Synthesis and characterisation of novel chiral smectic liquid crystalline elastomers containing menthol dimer-type side chain. Liq. Cryst., 2018, 45(12), 1783-1794.
[http://dx.doi.org/10.1080/02678292.2018.1487090]
[88]
Luo, C.; Jia, Y.; Sun, B.; Meng, F. Effect of chain length in the terminal group on mesomorphic behavior of novel (-)-menthol-based chiral liquid crystal compounds with blue phas. New J. Chem., 2017, 41(9), 3677-3686.
[http://dx.doi.org/10.1039/C7NJ00099E]
[89]
Luo, C-C.; Wang, X-J.; Han, L-J.; Jia, Y-G.; Ying, S-M.; Wang, J-W. Preparation, structure and optical properties of thermochromic liquid crystal compounds containing (−)-menthyl with selective reflection. J. Mol. Liq., 2019, 275, 241-250.
[http://dx.doi.org/10.1016/j.molliq.2018.11.088]
[90]
Jia, Y-G.; Luo, C-C.; Zhu, Z-X.; Hu, J-S. Synthesis and properties of new (−)-menthol-derived chiral liquid crystal compounds with alkyl or alkoxy terminal groups. Liq. Cryst., 2017, 44(3), 526-537.
[http://dx.doi.org/10.1080/02678292.2016.1225843]
[91]
Zeng, W.; Zhang, W-H.; Jia, Y-G. Synthesis of novel (-)-menthol-based azobenzene chiral liquid crystals and effect of terminal alkyl chains on mesomorphic behaviour. Liq. Cryst., 2019, 46(12), 1889-1898.
[http://dx.doi.org/10.1080/02678292.2019.1613688]
[92]
Zhang, X-X.; Zhang, J-H.; Cong, Y-H.; Wang, Q-L.; Jia, Y-G. Synthesis, mesomorphic and photo-switching behaviours of novel azobenzene chiral liquid crystals containing (-)-menthyl. Liq. Cryst., 2020, (Jan), 1-9.
[http://dx.doi.org/10.1080/02678292.2020.1716275]
[93]
Farooq, S.; Ngaini, Z. Recent Synthetic Methodologies for Chalcone Synthesis (2013-2018). Curr. Organocatal., 2019, 06(3), 184-192.
[http://dx.doi.org/10.2174/2213337206666190306155140]
[94]
Arif, R.; Rana, M.; Yasmeen, S.; Amaduddin, M.S. Khan, M. Abid, M. S. Khan, Rahisuddin facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. J. Mol. Struct., 2020, 1208127905
[http://dx.doi.org/10.1016/j.molstruc.2020.127905]
[95]
Rahman, N.I.A.; Ngaini, Z. Synthesis, Characterization, and Liquid Crystalline Properties of Phosphazenes Incorporated (E)-3-(4-alkyloxyphenyl)-1-(4-hydroxyphenyl) prop-2-en-1-one Malays. J. Chem., 2011, 13(1), 50-56.
[96]
Lim, Y-W.C.; Ha, S-T.; Yeap, G-Y.; Sastry, S.S. Synthesis and mesomorphic properties of new heterocyclic liquid crystals with Central Ester–Chalcone linkages. J. Taibah Univ. Sci., 2017, 11(1), 133-140.
[http://dx.doi.org/10.1016/j.jtusci.2015.12.004]
[97]
S. P. T and K. M. Lokanatha Rai. Synthesis and characterization of new homologous series of unsymmetrical liquid crystalline compounds based on chalcones and 3, 5-disubstituted isoxazoles. J. Chem. Sci., 2017, 129(1), 67-73.
[http://dx.doi.org/10.1007/s12039-016-1205-y]
[98]
Nam, S.W.; Kang, S.H.; Chang, J.Y. Synthesis and photopolymerization of photoreactive mesogens based on chalcone. Macromol. Res., 2007, 15(1), 74-81.
[http://dx.doi.org/10.1007/BF03218755]
[99]
Li, J.L.; Zhang, W.M.; Zhao, Y.L.; Pu, J.L. Synthesis and property of liquid crystal polymers containing photosensitive groups. Solid State Phenom., 2011, 181-182, 131-134.
[http://dx.doi.org/10.4028/www.scientific.net/SSP.181-182.131]
[100]
Nafee, S.S.; Ahmed, H.A.; Hagar, M. Theoretical, experimental and optical study of new thiophene-based liquid crystals and their positional isomers. Liq. Cryst., 2020, (Jan), 1-12.
[http://dx.doi.org/10.1080/02678292.2019.1710778]
[101]
Jain, B.B.; Sharma, V.S.; Chauhan, H.N.; Patel, R.B. Mesomorphism of azo-esters and chalcone-esters. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2016, 630(1), 102-111.
[http://dx.doi.org/10.1080/15421406.2016.1146910]
[102]
Patel, P.K.; Patel, R.B.; Shah, R.R. Mesomorphic properties of liquid crystalline compounds with central linkage chalconyl ester and laterally substituted bromo group. World Sci. News, 2016, 54, 202-216.
[103]
Srinivasa, H.T.; Kumar, S. Synthesis and characterisation of some new chalcone liquid crystals. Liq. Cryst., 2017, 44(10), 1506-1514.
[http://dx.doi.org/10.1080/02678292.2017.1290283]
[104]
Zhu, X.; Yin, F.; Zhao, H.; Chen, S.; Bian, Z. Some new azobenzene liquid crystals involving chalcone and ester linkages. RSC Adv, 2017, 7(73), 46344-46353.
[http://dx.doi.org/10.1039/C7RA06958H]
[105]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013.2013963248
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[106]
Concellón, A.; Schenning, A.P.H.J.; Romero, P.; Marcos, M.; Serrano, J.L. Size-selective adsorption in nanoporous polymers from coumarin photo-cross-linked columnar liquid crystals. Macromolecules, 2018, 51(6), 2349-2358.
[http://dx.doi.org/10.1021/acs.macromol.8b00067]
[107]
Madiahlagan, E.; Sunil, B.N.; Ngaini, Z.; Gurumurthy, H. Synthesis, liquid crystalline properties and photo switching properties of coumarin-azo bearing aliphatic chains: Application in optical storage devices. J. Mol. Liq., 2019, 292111328
[http://dx.doi.org/10.1016/j.molliq.2019.111328]
[108]
Hagar, M.; Ahmed, H.A.; El-Sayed, T.H.; Alnoman, R. Mesophase behavior and DFT conformational analysis of new symmetrical diester chalcone liquid crystals. J. Mol. Liq., 2019, 285, 96-105.
[http://dx.doi.org/10.1016/j.molliq.2019.04.083]
[109]
Zirak, M.; Eftekhari-Sis, B. Kojic acid in organic synthesis. Turk. J. Chem., 2015, 39(3), 439-496.
[http://dx.doi.org/10.3906/kim-1502-55]
[110]
Sie, C.Z.W.; Ngaini, Z.; Suhaili, N.; Madiahlagan, E. Synthesis of kojic ester derivatives as potential antibacterial agent. J. Chem., 2018, 20181245712
[http://dx.doi.org/10.1155/2018/1245712]
[111]
Gurumurthy, H.; Siew Mei, G.; Ting Chua, S. Photo-crosslinking permanent optical storage devices using biocompatible kojic acids. ResearchGate; Malaysia University Conference Engineering Technology, 2014.
[112]
Cao, Z.; Qiu, F.; Cao, G.; Guan, Y.; Zhuang, L.; Ye, F.; Yang, D. Preparation of a main-chain azo polyurethane-urea and its application of Y-branch and Mach–Zehnder thermo-optic switch. Polym. Bull., 2015, 72(2), 323-337.
[http://dx.doi.org/10.1007/s00289-014-1275-2]
[113]
Bazregar, M.; Rajabi, M.; Yamini, Y.; Asghari, A. Abdossalami asl, Y. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples. J. Chromatogr. A, 2015, 1410, 35-43.
[http://dx.doi.org/10.1016/j.chroma.2015.07.084] [PMID: 26256917]
[114]
Ikeda, T.; Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science, 1995, 268(5219), 1873-1875.
[http://dx.doi.org/10.1126/science.268.5219.1873] [PMID: 17797528]
[115]
Yu, Y.; Ikeda, T. Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions. J. Photochem. Photobiol. C Photochem. Rev., 2004, 5(3), 247-265.
[http://dx.doi.org/10.1016/j.jphotochemrev.2004.10.004]
[116]
Ho, T-J.; Chen, C-W.; Khoo, I.C. Polarisation-free and high-resolution holographic grating recording and optical phase conjugation with azo-dye doped blue-phase liquid crystals. Liq. Cryst., 2018, 45(13–15), 1944-1952.
[http://dx.doi.org/10.1080/02678292.2018.1491068]
[117]
Oscurato, S.L.; Salvatore, M.; Borbone, F.; Maddalena, P.; Ambrosio, A. Computer-generated holograms for complex surface reliefs on azopolymer films. Sci. Rep., 2019, 9(1), 6775.
[http://dx.doi.org/10.1038/s41598-019-43256-w] [PMID: 31043674]
[118]
V. PAGLIARULO. A. CALABUIG, S. GRILLI, and P. FERRARO, “Direct quantitative imaging of writing stage in photosensitive azopolymer by digital holography. Soft Matter, 2017, 13(45), 8368-8378.
[http://dx.doi.org/10.1039/C7SM01619K] [PMID: 29038802]
[119]
Moreddu, R.; Elsherif, M.; Butt, H.; Vigolo, D.; Yetisen, A.K. Contact lenses for continuous corneal temperature monitoring. RSC Adv, 2019, 9(20), 11433-11442.
[http://dx.doi.org/10.1039/C9RA00601J]
[120]
Homocianu, M.; Airinei, A. Solvent effects on non-linear optical properties (NLO) and intramolecular charge transfer (ICT) characteristics of disperse red 19 dye. Optik (Stuttg.), 2020, 202163606
[http://dx.doi.org/10.1016/j.ijleo.2019.163606]
[121]
Merlo, A.A.; Tavares, A.; Khan, S.; Leite Santos, M.J.; Teixeira, S.R. Liquid-crystalline coumarin derivatives: contribution to the tailoring of metal-free sensitizers for solar cells. Liq. Cryst., 2018, 45(2), 310-322.
[http://dx.doi.org/10.1080/02678292.2017.1324644]
[122]
Xing, H.; Li, J.; Shi, Y.; Guo, J.; Wei, J. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl. Mater. Interfaces, 2016, 8(14), 9440-9445.
[http://dx.doi.org/10.1021/acsami.6b01033] [PMID: 26996608]
[123]
Dłubacz, A.; Marzeca, M.; Dardasb, D. New antiferroelectric liquid crystal for use in LCD. Phase Transit., 2016, 89(4), 349-358.
[http://dx.doi.org/10.1080/01411594.2015.1116531]
[124]
Oh, S-W.; Baek, J-M.; Kim, S-H.; Yoon, T-H. Optical and electrical switching of cholesteric liquid crystals containing azo dye. RSC Adv, 2017, 7(32), 19497-19501.
[http://dx.doi.org/10.1039/C7RA01507K]
[125]
Yang, D.-K.; Shi, L.; Bao, R. Bistable switchable liquid crystal US 8913215 B2,, 2014.
[126]
Park, J-Y.; Kim, H-K. Highly stretchable polymer-dispersed liquid crystal-based smart windows with transparent and stretchable hybrid electrodes. RSC Advances, 2018, 8(64), 36549-36557.
[http://dx.doi.org/10.1039/C8RA07033D]
[127]
Khoo, I.C. Cholesteric and blue-phase liquid photonic crystals for nonlinear optics and ultrafast laser pulse modulations. Liq. Cryst. Rev., 2018, 6(1), 53-77.
[http://dx.doi.org/10.1080/21680396.2018.1509387]
[128]
Shechter, J.; Atzin, N.; Mozaffari, A.; Zhang, R.; Zhou, Y.; Strain, B.; Oster, L. M.; dePablo, J. J.; Ross, J. L. Direct Observation of Liquid Crystal Droplet Configurational Transitions using Optical Tweezers Langmuir, 2020.
[http://dx.doi.org/10.1021/acs.langmuir.9b03629]
[129]
Galstian, T.; Sova, O.; Asatryan, K.; Presniakov, V.; Zohrabyan, A.; Evensen, M. Optical camera with liquid crystal autofocus lens. Opt. Express, 2017, 25(24), 29945-29964.
[http://dx.doi.org/10.1364/OE.25.029945] [PMID: 29221030]
[130]
Liu, Z-P.; Cong, Y-H.; He, X-Z.; Zhang, B-Y.; Zheng, J-J.; Meng, F-B. Synthesis and characterization of chiral azo LCPs with optical properties. Liq. Cryst., 2019, 46(11), 1696-1706.
[http://dx.doi.org/10.1080/02678292.2019.1595758]
[131]
Schadt, M. Liquid crystal displays, LC-materials and LPP photo-alignment. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2017, 647(1), 253-268.
[http://dx.doi.org/10.1080/15421406.2017.1289604]
[132]
DuPr’e, D.B. A digital scientific calculator for overhead projection. J. Chem. Educ., 1994, 71(1), 155-156.
[http://dx.doi.org/10.1021/ed071p155.2]
[133]
Yoon, W.; Choi, Y.; Lim, S.; Koo, J.; Yang, S.; Jung, D.; Kang, S.; Jeong, K. A single‐step dual stabilization of smart window by the formation of liquid crystal physical gels and the construction of liquid crystal chambers. Adv. Funct. Mater., 2020, 30(4)1906780
[http://dx.doi.org/10.1002/adfm.201906780]
[134]
Ryabchun, A.; Bobrovsky, A. Cholesteric liquid crystal materials for tunable diffractive optics. Adv. Opt. Mater., 2018, 6(15)1800335
[http://dx.doi.org/10.1002/adom.201800335]
[135]
Zhang, Y.; Wang, C.; Zhao, W.; Li, M.; Wang, X.; Yang, X.; Hu, X.; Yuan, D.; Yang, W.; Zhang, Y.; Lv, P.; He, J.; Zhou, G. Polymer stabilized liquid crystal smart window with flexible substrates based on low-temperature treatment of polyamide acid technology. Polymers (Basel), 2019, 11(11), 1869.
[http://dx.doi.org/10.3390/polym11111869] [PMID: 31766151]
[136]
Ogiwara, A.; Kakiuchida, H. Study for basis of thermal operated smart windows using temperature dependent cholesteric liquid crystals Gd. Renew.Energy 2018 Proc., 2018.
[137]
Baliyan, V.K.; Jeong, K-U.; Kang, S-W. Dichroic-dye-doped short pitch cholesteric liquid crystals for the application of electrically switchable smart windows. Dyes Pigments, 2019, 166, 403-409.
[http://dx.doi.org/10.1016/j.dyepig.2019.03.045]
[138]
Oh, S-W.S-H. kim, J.-M. Baek, and T.-H. Yoon, “Self-Shading with Optically- and Thermally-Switchable Liquid Crystals SID Symp. Dig. Tech. Pap., 2018, 49(1), 554-556.
[139]
Liu, C-K.; Tu, C-Y.; Lin, H-R.; Cheng, K-T. Asymmetrical transmission windows for daily privacy protection using cholesteric liquid crystals. Opt. Laser Technol., 2020.121105778
[http://dx.doi.org/10.1016/j.optlastec.2019.105778]
[140]
White, T.J.; Freer, A.S.; Tabiryan, N.V.; Bunning, T.J. Photoinduced broadening of cholesteric liquid crystal reflectors. J. Appl. Phys., 2010, 107(7)073110
[http://dx.doi.org/10.1063/1.3369437]
[141]
Talukder, J.R.; Lee, Y-H.; Wu, S-T. Photo-responsive dye-doped liquid crystals for smart windows. Opt. Express, 2019, 27(4), 4480-4487.
[http://dx.doi.org/10.1364/OE.27.004480] [PMID: 30876066]
[142]
Fuh, A.Y-G.; Wu, Z-H.; Cheng, K-T.; Liu, C-K.; Chen, Y-D. Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals. Opt. Express, 2013, 21(19), 21840-21846.
[http://dx.doi.org/10.1364/OE.21.021840] [PMID: 24104076]
[143]
Lai, J-C.; Cheng, W-F.; Liu, C-K.; Cheng, K-T. Optically switchable bistable guest–host displays in chiral-azobenzene- and dichroic-dye-doped cholesteric liquid crystals. Dyes Pigments, 2019, 163, 641-646.
[http://dx.doi.org/10.1016/j.dyepig.2018.12.030]
[144]
Matsumori, M.; Takahashi, A.; Tomioka, Y.; Hikima, T.; Takata, M.; Kajitani, T.; Fukushima, T. Photoalignment of an azobenzene-based chromonic liquid crystal dispersed in triacetyl cellulose: single-layer alignment films with an exceptionally high order parameter.ACS Appl. Mater. Interfaces, 2015, 7(21), 11074-11078.,
[http://dx.doi.org/10.1021/acsami.5b02577] [PMID: 25984633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy