The Learning-based Automatic Segmentation Algorithm of Brain MR Images Based on 7T

Author(s): Minghui Deng*, Jin Zhenhao, Ran Yu, Qingshuang Zeng

Journal Name: Current Medical Imaging
Formerly: Current Medical Imaging Reviews

Volume 17 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The learning-based algorithms provide an ability to automatically estimate and refine GM, WM and CSF. The ground truth manually achieved from the 3T MR image may not be accurate and reliable with poor image intensity contrast. It will seriously influence the classification performance because the supervised learning-based algorithms extremely rely on the ground truth. Recently, the 7T MR images brings about the excellent image intensity contrast, while Structured Random Forest (SRF) performs the pixel-level classification and achieves structural and contextual information in images.

Materials and Methods: In this paper, a automatic segmentation algorithm is proposed based on ground truth achieved by the corresponding 7T subjects for segmenting the 3T&1.5T brain tissues using SRF classifiers. Through taking advantage of the 7T brain MR images, we can achieve the highly accuracy and reliable ground truth and then implement the training of SRF classifiers. Our proposed algorithm effectively integrates the T1-weighed images along with the probability maps to train the SRF classifiers for brain tissue segmentation.

Results: Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved 95.14%±0.9%, 90.17%±1.83%, and 81.96%±4.32% for WM, GM, and CSF. With the experiment results, the proposed algorithm can achieve better performances than other automatic segmentation methods. Further experiments are performed on the 200 3T&1.5T brain MR images of ADNI dataset and our proposed method shows promised performances.

Conclusion: The authors have developed and validated a novel fully automated method for 3T brain MR image segmentation.

Keywords: Magnetic resonance imaging, machine learning, structured random forest, image processing, cerebral tissues, principal components analysis.

[1]
Benoit Caldairou N, Piotr A. Habas, ColinStudholme, Francois Rousseau. A non-local fuzzy segmentation method: Application to brain MRI. Pattern Recognit 2011; 44: 12.
[2]
Han X, Fischl B. Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Trans Med Imaging 2007; 26(4): 479-86.
[http://dx.doi.org/10.1109/TMI.2007.893282] [PMID: 17427735]
[3]
Chen Y, Zhao B, Zhang J, Zheng Y. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model. Magn Reson Imaging 2014; 32(7): 941-55.
[http://dx.doi.org/10.1016/j.mri.2014.05.003] [PMID: 24832358]
[4]
Morra JH, Tu Z, Apostolova LG, Green AE, Toga AW, Thompson PM. Comparison of AdaBoost and support vector machines for detecting Alzheimer’s disease through automated hippocampal segmentation. IEEE Trans Med Imaging 2010; 29(1): 30-43.
[http://dx.doi.org/10.1109/TMI.2009.2021941] [PMID: 19457748]
[5]
Powell S, Magnotta VA, Johnson H, Jammalamadaka VK, Pierson R, Andreasen NC. Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. Neuroimage 2008; 39(1): 238-47.
[http://dx.doi.org/10.1016/j.neuroimage.2007.05.063] [PMID: 17904870]
[6]
Pitiot A, Delingette H, Thompson PM, Ayache N. Expert knowledge-guided segmentation system for brain MRI. Neuroimage 2004; 23(Suppl. 1): S85-96.
[http://dx.doi.org/10.1016/j.neuroimage.2004.07.040] [PMID: 15501103]
[7]
Golland P, Grimson WE, Shenton ME, Kikinis R. Detection and analysis of statistical differences in anatomical shape. Med Image Anal 2005; 9(1): 69-86.
[http://dx.doi.org/10.1016/j.media.2004.07.003] [PMID: 15581813]
[8]
Zhang W, Li R, Deng H, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 2015; 108: 214-24.
[http://dx.doi.org/10.1016/j.neuroimage.2014.12.061] [PMID: 25562829]
[9]
Kim EY. Machine-learning based automated segmentation tool development for large-scale multicenter MRI data analysis. Dissertations of University of Iowa 2013.
[http://dx.doi.org/10.17077/etd.u5b4jszi]
[10]
Amod Jog SR, Jerry L. Prince, Aaron Carass. Brain MR Segmentation using Decision Trees. MRBrains 2013; 13: 9.
[11]
Sérgio Pereira JF. José António Mariz, Nuno Sousa, et al. Automatic Brain Tissue Segmentation of Multi-sequence MR images using Random Decision Forests. Proceedings of NCI-MICCAI BRATS. 6
[12]
Mitra J, Bourgeat P, Fripp J, et al. Lesion segmentation from multimodal MRI using random forest following ischemic stroke. Neuroimage 2014; 98: 324-35.
[http://dx.doi.org/10.1016/j.neuroimage.2014.04.056] [PMID: 24793830]
[13]
Wang L, Shi F, Gao Y, et al. Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. Neuroimage 2014; 89: 152-64.
[http://dx.doi.org/10.1016/j.neuroimage.2013.11.040] [PMID: 24291615]
[14]
Beisteiner R, Robinson S, Wurnig M, et al. Clinical fMRI: evidence for a 7T benefit over 3T. Neuroimage 2011; 57(3): 1015-21.
[http://dx.doi.org/10.1016/j.neuroimage.2011.05.010] [PMID: 21620980]
[15]
Bernstein MA, Huston J III, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging 2006; 24(4): 735-46.
[http://dx.doi.org/10.1002/jmri.20698] [PMID: 16958057]
[16]
Hahn A, Kranz GS, Seidel EM, et al. Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7 T. Neuroimage 2013; 82: 336-43.
[http://dx.doi.org/10.1016/j.neuroimage.2013.06.010] [PMID: 23769917]
[17]
Sladky R, Baldinger P, Kranz GS, et al. High-resolution functional MRI of the human amygdala at 7 T. Eur J Radiol 2013; 82(5): 728-33.
[http://dx.doi.org/10.1016/j.ejrad.2011.09.025] [PMID: 22138120]
[18]
Braun J, Guo J, Lützkendorf R, et al. High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T. Neuroimage 2014; 90: 308-14.
[http://dx.doi.org/10.1016/j.neuroimage.2013.12.032] [PMID: 24368262]
[19]
Shi F, Wang L, Dai Y, Gilmore JH, Lin W, Shen D. LABEL: pediatric brain extraction using learning-based meta-algorithm. Neuroimage 2012; 62(3): 1975-86.
[http://dx.doi.org/10.1016/j.neuroimage.2012.05.042] [PMID: 22634859]
[20]
Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17(1): 87-97.
[http://dx.doi.org/10.1109/42.668698] [PMID: 9617910]
[21]
Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31(3): 1116-28.
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.015] [PMID: 16545965]
[22]
Amit Y, Geman D. Shape quantization and recognition with randomized trees. Neural Comput 1991; 9(7): 43.
[23]
Breiman L. Bagging predictors. Mach Learn 1996; 24(2): 18.
[http://dx.doi.org/10.1007/BF00058655]
[24]
Ho T. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 1998; 20(8): 13.
[25]
Josu Maiora BA. Manuel Graña. Random forest active learning for AAA thrombus segmentation in computed tomography angiography images. Neurocomputing 2014; 126: 8.
[26]
Adriano Pinto SP, Hugo Dinis, Carlos A Silva. Random decision forests for automatic brain tumor segmentation on multi-modal MRI images. IEEE 4th Portuguese BioEngineering Meeting Porto: 3 Portugal, 2015.
[27]
Kontschieder P, Bulo S, Bischof H, et al. Structured class-labels in random forests for semantic image labelling. 2011.
[http://dx.doi.org/10.1109/ICCV.2011.6126496]
[28]
Cheng H, Liu Z, Yang L. Sparsity induced similaritymeasure for label propagation.
[29]
Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 2009; 31(2): 210-27.
[http://dx.doi.org/10.1109/TPAMI.2008.79] [PMID: 19110489]
[30]
Burges CC. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998; 2: 121-67.
[http://dx.doi.org/10.1023/A:1009715923555]
[31]
Criminisi A, Shotton J. Decision Forests for Computer Vision and Medical Image Analysis. Springer 2013.
[http://dx.doi.org/10.1007/978-1-4471-4929-3]
[32]
Criminisi A, Shotton J, Konukoglu E. Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis 2012; 7(2-3): 81-227.
[33]
Wang L, Shi F, Lin W, Gilmore JH, Shen D. Automatic segmentation of neonatal images using convex optimization and coupled level sets. Neuroimage 2011; 58(3): 805-17.
[http://dx.doi.org/10.1016/j.neuroimage.2011.06.064] [PMID: 21763443]
[34]
Kuklisova-Murgasova M, Aljabar P, Srinivasan L, et al. A dynamic 4D probabilistic atlas of the developing brain. Neuroimage 2011; 54(4): 2750-63.
[http://dx.doi.org/10.1016/j.neuroimage.2010.10.019] [PMID: 20969966]
[35]
Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 2011; 54(2): 940-54.
[http://dx.doi.org/10.1016/j.neuroimage.2010.09.018] [PMID: 20851199]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2021
Published on: 06 August, 2020
Page: [342 - 351]
Pages: 10
DOI: 10.2174/1573405616666200806171509

Article Metrics

PDF: 31
HTML: 9