Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Molecular Context of ADP-ribosylation in Schistosomes for Drug Discovery and Vaccine Development

Author(s): Amandla Chutshela, Priscilla Masamba, Babatunji Emmanuel Oyinloye and Abidemi Paul Kappo*

Volume 18, Issue 4, 2021

Published on: 06 August, 2020

Page: [473 - 484] Pages: 12

DOI: 10.2174/1570163817666200806170654

open access plus

Abstract

Schistosome infection is regarded as one of the most important and neglected tropical diseases associated with poor sanitation. Like other living organisms, schistosomes employ multiple biological processes, of which some are regulated by a post-translational modification called Adenosine Diphosphate-ribosylation (ADP-ribosylation), catalyzed by ADP-ribosyltransferases. ADP-ribosylation is the addition of ADP-ribose moieties from Nicotinamide Adenine Dinucleotide (NAD+) to various targets, which include proteins and nucleotides. It is crucial in biological processes such as DNA repair, apoptosis, carbohydrate metabolism and catabolism. In the absence of a vaccine against schistosomiasis, this becomes a promising pathway in the identification of drug targets against various forms of this infection. The tegument of the worm is an encouraging immunogenic target for anti-schistosomal vaccine development. Vaccinology, molecular modeling and target-based drug discovery strategies have been used for years in drug discovery and for vaccine development. In this paper, we outline ADP-ribosylation and other different approaches to drug discovery and vaccine development against schistosomiasis.

Keywords: ADP-ribosylation, praziquantel, schistosomulae, sirtuins, Sm14, vaccinology.

Graphical Abstract
[1]
Jank T, Aktories K. Strain-alleviation model of ADP-ribosylation. Proc Natl Acad Sci USA 2013; 110(11): 4163-4.
[http://dx.doi.org/10.1073/pnas.1302537110] [PMID: 23457263]
[2]
Ueda K, Hayaishi O. ADP-ribosylation. Annu Rev Biochem 1985; 54(1): 73-100.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.000445] [PMID: 3927821]
[3]
Herceg Z, Murr R. Mechanisms of histone modifications Handbook of Epigenetics. Elsevier 2011; pp. 25-45.
[http://dx.doi.org/10.1016/B978-0-12-375709-8.00003-4]
[4]
Liu C, Yu X. ADP-ribosyltransferases and poly ADP-ribosylation. Curr Protein Pept Sci 2015; 16(6): 491-501.
[http://dx.doi.org/10.2174/1389203716666150504122435] [PMID: 25938242]
[5]
Žaja R, Mikoč A, Barkauskaite E, Ahel I. Molecular insights into poly (ADP-ribose) recognition and processing. Biomolecules 2012; 3(1): 1-17.
[http://dx.doi.org/10.3390/biom3010001] [PMID: 24970154]
[6]
Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H. DNA fragmentation and NAD depletion. Their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins. J Biol Chem 1982; 257(21): 12872-7.
[PMID: 6813330]
[7]
Holbourn KP, Shone CC, Acharya KR. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins. FEBS J 2006; 273(20): 4579-93.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05442.x] [PMID: 16956368]
[8]
Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 2005; 6(1): 139.
[http://dx.doi.org/10.1186/1471-2164-6-139] [PMID: 16202152]
[9]
Yates SP, Jørgensen R, Andersen GR, Merrill AR. Stealth and mimicry by deadly bacterial toxins. Trends Biochem Sci 2006; 31(2): 123-33.
[http://dx.doi.org/10.1016/j.tibs.2005.12.007] [PMID: 16406634]
[10]
Tsurumura T, Tsumori Y, Qiu H, et al. Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc Natl Acad Sci USA 2013; 110(11): 4267-72.
[http://dx.doi.org/10.1073/pnas.1217227110] [PMID: 23382240]
[11]
Fieldhouse RJ, Merrill AR. Needle in the haystack: structure-based toxin discovery. Trends Biochem Sci 2008; 33(11): 546-56.
[http://dx.doi.org/10.1016/j.tibs.2008.08.003] [PMID: 18815047]
[12]
Lang AE, Schmidt G, Schlosser A, et al. Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 2010; 327(5969): 1139-42.
[http://dx.doi.org/10.1126/science.1184557] [PMID: 20185726]
[13]
Estey SJ, Mansour TE. GTP binding regulatory proteins of adenylate cyclase in Schistosoma mansoni at different stages of development. Mol Biochem Parasitol 1988; 30(1): 67-75.
[http://dx.doi.org/10.1016/0166-6851(88)90133-8] [PMID: 3135495]
[14]
Bokoch GM, Katada T, Northup JK, Ui M, Gilman AG. Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J Biol Chem 1984; 259(6): 3560-7.
[PMID: 6323429]
[15]
Katada T, Amano T, Ui M. Modulation by islet-activating protein of adenylate cyclase activity in C6 glioma cells. J Biol Chem 1982; 257(7): 3739-46.
[PMID: 6277948]
[16]
Pamu S, Singh T, Chandrudu J. Schistosoma and Human Schistosomiasis. In Educreation Publishing 2018.
[17]
Doughty BL. Schistosomes and other trematodesMedical microbiology. 4th ed. Galveston: University of Texas Medical Branch at Galveston 1996.
[18]
Cassel D, Pfeuffer T. Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 1978; 75(6): 2669-73.
[http://dx.doi.org/10.1073/pnas.75.6.2669] [PMID: 208069]
[19]
Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035): 913-7.
[http://dx.doi.org/10.1038/nature03443] [PMID: 15829966]
[20]
Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917-21.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[21]
Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361(2): 123-34.
[http://dx.doi.org/10.1056/NEJMoa0900212] [PMID: 19553641]
[22]
Kato J, Zhu J, Liu C, et al. ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis. Cancer Res 2011; 71(15): 5327-35.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0733] [PMID: 21697277]
[23]
Krueger KM, Barbieri JT. The family of bacterial ADP-ribosylating exotoxins. Clin Microbiol Rev 1995; 8(1): 34-47.
[http://dx.doi.org/10.1128/CMR.8.1.34] [PMID: 7704894]
[24]
Lancelot J, Caby S, Dubois-Abdesselem F, et al. Schistosoma mansoni Sirtuins: Characterization and potential as chemotherapeutic targets. PLoS Negl Trop Dis 2013; 7(9): e2428.
[http://dx.doi.org/10.1371/journal.pntd.0002428] [PMID: 24069483]
[25]
Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: A new frontier for drug discovery. Nat Rev Drug Discov 2012; 11(5): 384-400.
[http://dx.doi.org/10.1038/nrd3674] [PMID: 22498752]
[26]
Moss J, Burns DL, Hsia JA, Hewlett EL, Guerrant RL, Vaughan M. NIH conference. Cyclic nucleotides: Mediators of bacterial toxin action in disease. Ann Intern Med 1984; 101(5): 653-66.
[http://dx.doi.org/10.7326/0003-4819-101-5-653] [PMID: 6148909]
[27]
Lee H, Moody-Davis A, Saha U, et al. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis. BMC Genomics 2012; 13(1)(Suppl. 1): S4.
[http://dx.doi.org/10.1186/1471-2164-13-S1-S4] [PMID: 22369037]
[28]
Stanley RJ, Thomas GM. Activation of G proteins by guanine nucleotide exchange factors relies on GTPase activity. PLoS One 2016; 11(3): e0151861.
[http://dx.doi.org/10.1371/journal.pone.0151861] [PMID: 26986850]
[29]
Itoh H, Kaziro Y. Heterotrimeric G-Proteins: α, β, and γ Subunits GTPases in Biology. In: Berlin, Hielderberg: Springer 1993; pp. 131-49.
[30]
Mizuno N, Itoh H. Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals 2009; 17(1): 42-54.
[http://dx.doi.org/10.1159/000186689] [PMID: 19212139]
[31]
Crowther GJ, Shanmugam D, Carmona SJ, et al. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis 2010; 4(8): e804.
[http://dx.doi.org/10.1371/journal.pntd.0000804] [PMID: 20808766]
[32]
Zamanian M, Kimber MJ, McVeigh P, Carlson SA, Maule AG, Day TA. The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea. BMC Genomics 2011; 12(1): 596.
[http://dx.doi.org/10.1186/1471-2164-12-596] [PMID: 22145649]
[33]
Kasschau MR, Mansour TE. Adenylate cyclase in adults and cercariae of Schistosoma mansoni. Mol Biochem Parasitol 1982; 5(2): 107-16.
[http://dx.doi.org/10.1016/0166-6851(82)90045-7] [PMID: 7043262]
[34]
Barker LR, Bueding E, Timms AR. The possible role of acetylcholine in Schistosoma mansoni. Br J Pharmacol Chemother 1966; 26(3): 656-65.
[http://dx.doi.org/10.1111/j.1476-5381.1966.tb01845.x] [PMID: 4381202]
[35]
Cassel D, Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 1977; 74(8): 3307-11.
[http://dx.doi.org/10.1073/pnas.74.8.3307] [PMID: 198781]
[36]
Patocka N, Sharma N, Rashid M, Ribeiro P. Serotonin signaling in Schistosoma mansoni: a serotonin-activated G protein-coupled receptor controls parasite movement. PLoS Pathog 2014; 10(1): e1003878.
[http://dx.doi.org/10.1371/journal.ppat.1003878] [PMID: 24453972]
[37]
Mbah AN, Kamga HL, Awofolu OR, Isokpehi RD. rug target exploitable structural features of adenylyl cyclase activity in Schistosoma mansoni. Drug Target Insights 2012.
[38]
Swierczewski BE, Davies SJ. A schistosome cAMP-dependent protein kinase catalytic subunit is essential for parasite viability. PLoS Negl Trop Dis 2009; 3(8): e505.
[http://dx.doi.org/10.1371/journal.pntd.0000505] [PMID: 19707280]
[39]
Engels D, Chitsulo L, Montresor A, Savioli L. The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Trop 2002; 82(2): 139-46.
[http://dx.doi.org/10.1016/S0001-706X(02)00045-1] [PMID: 12020886]
[40]
Amiri P, Locksley RM, Parslow TG, et al. Tumour necrosis factor α restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature 1992; 356(6370): 604-7.
[http://dx.doi.org/10.1038/356604a0] [PMID: 1560843]
[41]
Davies SJ, Grogan JL, Blank RB, Lim KC, Locksley RM, McKerrow JH. Modulation of blood fluke development in the liver by hepatic CD4+ lymphocytes. Science 2001; 294(5545): 1358-61.
[http://dx.doi.org/10.1126/science.1064462] [PMID: 11701932]
[42]
Saule P, Adriaenssens E, Delacre M, et al. Early variations of host thyroxine and interleukin-7 favor Schistosoma mansoni development. J Parasitol 2002; 88(5): 849-55.
[http://dx.doi.org/10.1645/00223395(2002)088[0849:EVOHTA]2.0.CO;2] [PMID: 12435119]
[43]
Wolowczuk I, Nutten S, Roye O, et al. Infection of mice lacking interleukin-7 (IL-7) reveals an unexpected role for IL-7 in the development of the parasite Schistosoma mansoni. Infect Immun 1999; 67(8): 4183-90.
[http://dx.doi.org/10.1128/IAI.67.8.4183-4190.1999] [PMID: 10417190]
[44]
Enomoto K, Gill DM. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component. J Biol Chem 1980; 255(4): 1252-8.
[PMID: 6766444]
[45]
Silva CLM. Purinergic signaling in schistosomal infection. Biomed J 2016; 39(5): 316-25.
[http://dx.doi.org/10.1016/j.bj.2016.06.006] [PMID: 27884378]
[46]
Higashida H. ADP-ribosyl cyclase coupled with receptors via G proteins. FEBS Lett 1997; 418(3): 355-6.
[http://dx.doi.org/10.1016/S0014-5793(97)01410-5] [PMID: 9428744]
[47]
Ferrero E, Lo Buono N, Horenstein AL, Funaro A, Malavasi F. The ADP-ribosyl cyclases--The current evolutionary state of the ARCs. Front Biosci 2014; 19: 986-1002.
[http://dx.doi.org/10.2741/4262] [PMID: 24896331]
[48]
Alvarez-Gonzalez R, Jacobson MK. Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry 1987; 26(11): 3218-24.
[http://dx.doi.org/10.1021/bi00385a042] [PMID: 3038179]
[49]
Slade D, Dunstan MS, Barkauskaite E, et al. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 2011; 477(7366): 616-20.
[http://dx.doi.org/10.1038/nature10404] [PMID: 21892188]
[50]
Mortusewicz O, Fouquerel E, Amé J-C, Leonhardt H, Schreiber V. PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res 2011; 39(12): 5045-56.
[http://dx.doi.org/10.1093/nar/gkr099] [PMID: 21398629]
[51]
Tuteja N. Signaling through G protein coupled receptors. Plant Signal Behav 2009; 4(10): 942-7.
[http://dx.doi.org/10.4161/psb.4.10.9530] [PMID: 19826234]
[52]
Newton AC, Bootman MD, Scott JD. Second Messengers. Cold Spring Harb Perspect Biol 2016; 8(8): a005926.
[http://dx.doi.org/10.1101/cshperspect.a005926] [PMID: 27481708]
[53]
Bornfeldt KE. A single second messenger: Several possible cellular responses depending on distinct subcellular pools. Circ Res 2006; 99(8): 790-2.
[http://dx.doi.org/10.1161/01.RES.0000247760.34779.f5] [PMID: 17038646]
[54]
Fajardo AM, Piazza GA, Tinsley HN. The role of cyclic nucleotide signaling pathways in cancer: targets for prevention and treatment. Cancers (Basel) 2014; 6(1): 436-58.
[http://dx.doi.org/10.3390/cancers6010436] [PMID: 24577242]
[55]
Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai) 2008; 40(7): 651-62.
[http://dx.doi.org/10.1111/j.1745-7270.2008.00438.x] [PMID: 18604457]
[56]
Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 2011; 12(3): 141-51.
[http://dx.doi.org/10.1038/nrm3072] [PMID: 21346730]
[57]
Borba-Murad GR, Vardanega-Peicher M, Galende SB, et al. Central role of cAMP in the inhibition of glycogen breakdown and gluconeogenesis promoted by leptin and insulin in perfused rat liver. Pol J Pharmacol 2004; 56(2): 223-31.
[PMID: 15156073]
[58]
Hoffmann E, Wallenda T, Schaeffer C, Hampp R. Cyclic AMP, a possible regulator of glycolysis in the ectomycorrhizal fungus Amanita muscaria. New Phytol 1997; 137(2): 351-6.
[http://dx.doi.org/10.1046/j.1469-8137.1997.00798.x]
[59]
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381(Pt 3): 561-79.
[http://dx.doi.org/10.1042/BJ20040752] [PMID: 15170386]
[60]
Rehmann H, Wittinghofer A, Bos JL. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat Rev Mol Cell Biol 2007; 8(1): 63-73.
[http://dx.doi.org/10.1038/nrm2082] [PMID: 17183361]
[61]
Pfeifer A, Kilić A, Hoffmann LS. Regulation of metabolism by cGMP. Pharmacol Ther 2013; 140(1): 81-91.
[http://dx.doi.org/10.1016/j.pharmthera.2013.06.001] [PMID: 23756133]
[62]
Moro C, Lafontan M. Drug target exploitable structural features of adenylyl cyclase activity in Schistosoma mansoni. Drug Target Insights 2013.
[http://dx.doi.org/10.1152/ajpheart.00704.2012]
[63]
Arshad N, Visweswariah SS. Cyclic nucleotide signaling in intestinal epithelia: getting to the gut of the matter. Wiley Interdiscip Rev Syst Biol Med 2013; 5(4): 409-24.
[http://dx.doi.org/10.1002/wsbm.1223] [PMID: 23610087]
[64]
Coué M, Barquissau V, Morigny P, et al. Natriuretic peptides promote glucose uptake in a cGMP-dependent manner in human adipocytes. Sci Rep 2018; 8(1): 1097.
[http://dx.doi.org/10.1038/s41598-018-19619-0] [PMID: 29348496]
[65]
Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr 2012; 3(3): 286-94.
[http://dx.doi.org/10.3945/an.112.002089] [PMID: 22585902]
[66]
Bhardwaj R, Skelly PJ. Purinergic signaling and immune modulation at the schistosome surface? Trends Parasitol 2009; 25(6): 256-60.
[http://dx.doi.org/10.1016/j.pt.2009.03.004] [PMID: 19423396]
[67]
Da’dara AA, Bhardwaj R, Skelly PJ. Schistosome apyrase SmATPDase1, but not SmATPDase2, hydrolyses exogenous ATP and ADP. Purinergic Signal 2014; 10(4): 573-80.
[http://dx.doi.org/10.1007/s11302-014-9416-5] [PMID: 24894599]
[68]
[69]
Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 2009; 122(3): 216-38.
[http://dx.doi.org/10.1016/j.pharmthera.2009.02.009] [PMID: 19306895]
[70]
Klabunde R. General Pharmacology of cAMP-Dependent Phosphodiesterase Inhibitors (PDE3) 2012.https://cvpharmacology.com/vasodilator/PDEI
[71]
Kuo IY, Ehrlich BE. Signaling in muscle contraction. Cold Spring Harb Perspect Biol 2015; 7(2): a006023.
[http://dx.doi.org/10.1101/cshperspect.a006023] [PMID: 25646377]
[72]
Barisione G, Baroffio M, Crimi E, Brusasco V. Beta-Adrenergic Agonists. Pharmaceuticals (Basel) 2010; 3(4): 1016-44.
[http://dx.doi.org/10.3390/ph3041016] [PMID: 27713285]
[73]
Kapoor A, Raju S. Illustrated medical pharmacology. P Medical Ltd. 2013.
[http://dx.doi.org/10.5005/jp/books/12078]
[74]
Khromov AS, Momotani K, Jin L, et al. Molecular mechanism of telokin-mediated disinhibition of myosin light chain phosphatase and cAMP/cGMP-induced relaxation of gastrointestinal smooth muscle. J Biol Chem 2012; 287(25): 20975-85.
[http://dx.doi.org/10.1074/jbc.M112.341479] [PMID: 22544752]
[75]
Huang SA, Lie JD. Phosphodiesterase-5 (PDE5) inhibitors in the management of erectile dysfunction. P&T 2013; 38(7): 407-19.
[PMID: 24049429]
[76]
Schmitt JM, Stork PJ. Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1. Mol Cell Biol 2001; 21(11): 3671-83.
[http://dx.doi.org/10.1128/MCB.21.11.3671-3683.2001] [PMID: 11340161]
[77]
Friedman DL. Role of cyclic nucleotides in cell growth and differentiation. Physiol Rev 1976; 56(4): 652-708.
[http://dx.doi.org/10.1152/physrev.1976.56.4.652] [PMID: 185633]
[78]
Vogel A, Pollack R. Isolation and characterization of revertant cell lines. IV. Direct selection of serum-revertant sublines of SV40-transformed 3T3 mouse cells. J Cell Physiol 1973; 82(2): 189-98.
[http://dx.doi.org/10.1002/jcp.1040820207] [PMID: 4356676]
[79]
Naderi EH, Findley HW, Ruud E, Blomhoff HK, Naderi S. Activation of cAMP signaling inhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood 2009; 114(3): 608-18.
[http://dx.doi.org/10.1182/blood-2009-02-204883] [PMID: 19451550]
[80]
Christopher R. Drug addiction 2016.https://streetdrugs.org/drug-addiction/
[81]
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012; 2(2): 303-36.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[82]
Kiser AK, Pronovost PJ. Management of diseases without current treatment options: something can be done. JAMA 2009; 301(16): 1708-9.
[http://dx.doi.org/10.1001/jama.2009.506] [PMID: 19383962]
[83]
Lionta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 2014; 14(16): 1923-38.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[84]
Kenakin T. A pharmacology primer: techniques for more effective and strategic drug discovery. Academic Press 2018.
[85]
Prakash N, Devangi P. Drug Discovery. J Antivir Antiretrovir 2010; 2(4)
[http://dx.doi.org/10.4172/jaa.1000025]
[86]
Dani N, Barbosa AJ, Del Rio A, Di Girolamo M. ADP-ribosylated proteins as old and new drug targets for anticancer therapy: the example of ARF6. Curr Pharm Des 2013; 19(4): 624-33.
[http://dx.doi.org/10.2174/138161213804581882] [PMID: 23016858]
[87]
Venkannagari H, Verheugd P, Koivunen J, et al. Small-molecule chemical probe rescues cells from mono-ADP-ribosyltransferase ARTD10/PARP10-induced apoptosis and sensitizes cancer cells to DNA damage. Cell Chem Biol 2016; 23(10): 1251-60.
[http://dx.doi.org/10.1016/j.chembiol.2016.08.012] [PMID: 27667561]
[88]
Holechek J, Lease R, Thorsell A-G, et al. Design, synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl)transferases PARP10 and PARP14. Bioorg Med Chem Lett 2018; 28(11): 2050-4.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.056] [PMID: 29748053]
[89]
Murthy S, Desantis J, Verheugd P, et al. 4-(Phenoxy) and 4-(benzyloxy)benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10. Eur J Med Chem 2018; 156: 93-102.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.047] [PMID: 30006177]
[90]
Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005; 4(5): 421-40.
[http://dx.doi.org/10.1038/nrd1718] [PMID: 15864271]
[91]
Beaumont C, Young GC, Cavalier T, Young MA. Human absorption, distribution, metabolism and excretion properties of drug molecules: a plethora of approaches. Br J Clin Pharmacol 2014; 78(6): 1185-200.
[http://dx.doi.org/10.1111/bcp.12468] [PMID: 25041729]
[92]
Brown D, Superti-Furga G. Rediscovering the sweet spot in drug discovery. Drug Discov Today 2003; 8(23): 1067-77.
[http://dx.doi.org/10.1016/S1359-6446(03)02902-7] [PMID: 14693466]
[93]
Ferreira LG, Oliva G, Andricopulo AD. Target-based molecular modeling strategies for schistosomiasis drug discovery. Future Med Chem 2015; 7(6): 753-64.
[http://dx.doi.org/10.4155/fmc.15.21] [PMID: 25996068]
[94]
Mutapi F, Maizels R, Fenwick A, Woolhouse M. Human schistosomiasis in the post mass drug administration era. Lancet Infect Dis 2017; 17(2): e42-8.
[http://dx.doi.org/10.1016/S1473-3099(16)30475-3] [PMID: 27988094]
[95]
Abdulla M-H, Ruelas DS, Wolff B, et al. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis 2009; 3(7): e478.
[http://dx.doi.org/10.1371/journal.pntd.0000478] [PMID: 19597541]
[96]
Tavares NC, de Aguiar PHN, Gava SG, Oliveira G, Mourão MM. Schistosomiasis: setting routes for drug discovery. Special Topics Drug Discov 2016; 30: 105.
[97]
dos Santos Carvalho O, Coelho PMZ, Lenzi HL. Schistosoma mansoni & Esquistossomose: uma visão multidisciplinar. SciELOEditora FIOCRUZ 2008.
[98]
Inglese J, Johnson RL, Simeonov A, et al. High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 2007; 3(8): 466-79.
[http://dx.doi.org/10.1038/nchembio.2007.17] [PMID: 17637779]
[99]
Lemieux GA, Liu J, Mayer N, Bainton RJ, Ashrafi K, Werb Z. A whole-organism screen identifies new regulators of fat storage. Nat Chem Biol 2011; 7(4): 206-13.
[http://dx.doi.org/10.1038/nchembio.534] [PMID: 21390037]
[100]
Peak E, Chalmers IW, Hoffmann KF. Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma viability. PLoS Negl Trop Dis 2010; 4(7): e759.
[http://dx.doi.org/10.1371/journal.pntd.0000759] [PMID: 20668553]
[101]
Kotze AC, Clifford S, O’Grady J, Behnke JM, McCarthy JS. An in vitro larval motility assay to determine anthelmintic sensitivity for human hookworm and Strongyloides species. Am J Trop Med Hyg 2004; 71(5): 608-16.
[http://dx.doi.org/10.4269/ajtmh.2004.71.608] [PMID: 15569793]
[102]
Rinaldi G, Loukas A, Brindley PJ, Irelan JT, Smout MJ. Viability of developmental stages of Schistosoma mansoni quantified with xCELLigence worm real-time motility assay (xWORM). Int J Parasitol Drugs Drug Resist 2015; 5(3): 141-8.
[http://dx.doi.org/10.1016/j.ijpddr.2015.07.002] [PMID: 26288742]
[103]
Marcellino C, Gut J, Lim KC, Singh R, McKerrow J, Sakanari J. WormAssay: a novel computer application for whole-plate motion-based screening of macroscopic parasites. PLoS Negl Trop Dis 2012; 6(1): e1494.
[http://dx.doi.org/10.1371/journal.pntd.0001494] [PMID: 22303493]
[104]
Berriman M, Haas BJ, LoVerde PT, et al. The genome of the blood fluke Schistosoma mansoni. Nature 2009; 460(7253): 352-8.
[http://dx.doi.org/10.1038/nature08160] [PMID: 19606141]
[105]
Herranz D, Muñoz-Martin M, Cañamero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 2010; 1(1): 3.
[http://dx.doi.org/10.1038/ncomms1001] [PMID: 20975665]
[106]
Kaeberlein M. Lessons on longevity from budding yeast. Nature 2010; 464(7288): 513-9.
[http://dx.doi.org/10.1038/nature08981] [PMID: 20336133]
[107]
Curtin NJ. Poly (ADP-ribose) polymerase (PARP) and PARP inhibitors. Drug Discov Today Dis Models 2012; 9(2): e51-8.
[http://dx.doi.org/10.1016/j.ddmod.2012.01.004]
[108]
Gouveia MJ, Brindley PJ, Gärtner F, Costa JMCD, Vale N. Drug repurposing for schistosomiasis: combinations of drugs or biomolecules. Pharmaceuticals (Basel) 2018; 11(1): 15.
[http://dx.doi.org/10.3390/ph11010015] [PMID: 29401734]
[109]
Maenza J, Flexner C. Combination antiretroviral therapy for HIV infection. Am Fam Physician 1998; 57(11): 2789-98.
[PMID: 9636341]
[110]
King CH. Schistosomiasis: challenges and opportunitiesThe causes and impacts of neglected tropical and zoonotic diseases: Opportunities for integrated intervention strategies. United States of America: National Academies Press 2011.
[111]
Abdul-Ghani R, Loutfy N, el-Sahn A, Hassan A. Current chemotherapy arsenal for schistosomiasis mansoni: alternatives and challenges. Parasitol Res 2009; 104(5): 955-65.
[http://dx.doi.org/10.1007/s00436-009-1371-7] [PMID: 19255786]
[112]
Shaw JR, Brammer KW. The treatment of experimental schistosomiasis with a combination of oxamniquine and praziquantel. Trans R Soc Trop Med Hyg 1983; 77(1): 39-40.
[http://dx.doi.org/10.1016/0035-9203(83)90008-1] [PMID: 6679362]

© 2024 Bentham Science Publishers | Privacy Policy