NF1, Neurofibromin and Gene Therapy: Prospects of Next-Generation Therapy

Author(s): Xi-Wei Cui, Jie-Yi Ren, Yi-Hui Gu, Qing-Feng Li*, Zhi-Chao Wang*

Journal Name: Current Gene Therapy

Volume 20 , Issue 2 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Neurofibromatosis type 1 [NF1] is an autosomal dominant genetic disorder affecting multiple organs. NF1 is well known for its various clinical manifestations, including café-au-late macules, Lisch nodules, bone deformity and neurofibromas. However, there is no effective therapy for NF1. Current therapies are aimed at alleviating NF1 clinical symptoms but not curing the disease. By altering pathogenic genes, gene therapy regulates cell activities at the nucleotide level. In this review, we described the structure and functions of neurofibromin domains, including GAP-related domain [GRD], cysteine-serine rich domain [CSRD], leucine-rich domain [LRD] and C-terminal domain [CTD], which respectively alter downstream pathways. By transfecting isolated sequences of these domains, researchers can partially restore normal cell functions in neurofibroma cell lines. Furthermore, recombinant transgene sequences may be designed to encode truncated proteins, which is functional and easy to be packaged into viral vectors. In addition, the treatment effect of gene therapy is also determined by various factors such as the vectors selection, transgene packaging strategies and drug administration. We summarized multiple NF1 gene therapy strategies and discussed their feasibility from multiple angles. Different protein domains alter the function and downstream pathways of neurofibromin.

Keywords: Gene therapy, neurofibromatosis type 1, plexiform neurofibroma, malignant peripheral nerve sheath tumor, adeno associated virus vector, neurofibromin.

[1]
Friedmann T, Roblin R. Gene therapy for human genetic disease? Science 1972; 175(4025): 949-55.
[http://dx.doi.org/10.1126/science.175.4025.949] [PMID: 5061866]
[2]
Crump T. Translation of case reports in Ueber die multiplen Fibrome der Haut und ihre Beziehung zu den multiplen Neuromen by F. v. Recklinghausen. Adv Neurol 1981; 29: 259-75.
[PMID: 6798841]
[3]
Evans DG, Howard E, Giblin C, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A 2010; 152(2): 327-32.
[http://dx.doi.org/10.1002/ajmg.a.33139] [PMID: 20082463]
[4]
Kallionpää RA, Uusitalo E, Leppävirta J, Pöyhönen M, Peltonen S, Peltonen J. Prevalence of neurofibromatosis type 1 in the Finnish population. Genet Med 2018; 20(9): 1082-6.
[http://dx.doi.org/10.1038/gim.2017.215] [PMID: 29215653]
[5]
Uusitalo E, Leppävirta J, Koffert A, et al. Incidence and mortality of neurofibromatosis: a total population study in Finland. J Invest Dermatol 2015; 135(3): 904-6.
[http://dx.doi.org/10.1038/jid.2014.465] [PMID: 25354145]
[6]
Cawthon RM, Weiss R, Xu GF, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990; 62(1): 193-201.
[http://dx.doi.org/10.1016/0092-8674(90)90253-B] [PMID: 2114220]
[7]
Viskochil D, Buchberg AM, Xu G, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 1990; 62(1): 187-92.
[http://dx.doi.org/10.1016/0092-8674(90)90252-A] [PMID: 1694727]
[8]
Kang E, Kim Y-M, Seo GH, et al. Phenotype categorization of neurofibromatosis type I and correlation to NF1 mutation types. J Hum Genet 2020; 65(2): 79-89.
[http://dx.doi.org/10.1038/s10038-019-0695-0] [PMID: 31776437]
[9]
Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genomics 2017; 11(1): 13.
[http://dx.doi.org/10.1186/s40246-017-0109-3] [PMID: 28637487]
[10]
Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer 2015; 15(5): 290-301.
[http://dx.doi.org/10.1038/nrc3911] [PMID: 25877329]
[11]
Shen MH, Harper PS, Upadhyaya M. Molecular genetics of neurofibromatosis type 1 (NF1). J Med Genet 1996; 33(1): 2-17.
[http://dx.doi.org/10.1136/jmg.33.1.2] [PMID: 8825042]
[12]
Messiaen LM, Callens T, Mortier G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000; 15(6): 541-55.
[http://dx.doi.org/10.1002/1098-1004(200006)15:6<541:AID-HUMU6>3.0.CO;2-N] [PMID: 10862084]
[13]
Shin J, Padmanabhan A, de Groh ED, et al. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Dis Model Mech 2012; 5(6): 881-94.
[http://dx.doi.org/10.1242/dmm.009779] [PMID: 22773753]
[14]
Yzaguirre AD, Padmanabhan A, de Groh ED, et al. Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. eLife 2015; 4, e07780
[http://dx.doi.org/10.7554/eLife.07780] [PMID: 26460546]
[15]
Diwakar G, Zhang D, Jiang S, Hornyak TJ. Neurofibromin as a regulator of melanocyte development and differentiation. J Cell Sci 2008; 121(Pt 2): 167-77.
[http://dx.doi.org/10.1242/jcs.013912] [PMID: 18089649]
[16]
Wu X, Estwick SA, Chen S, et al. Neurofibromin plays a critical role in modulating osteoblast differentiation of mesenchymal stem/progenitor cells. Hum Mol Genet 2006; 15(19): 2837-45.
[http://dx.doi.org/10.1093/hmg/ddl208] [PMID: 16893911]
[17]
Kehrer-Sawatzki H, Mautner V-F, Cooper DN. Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet 2017; 136(4): 349-76.
[http://dx.doi.org/10.1007/s00439-017-1766-y] [PMID: 28213670]
[18]
Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature 2017; 545(7653): 175-80.
[http://dx.doi.org/10.1038/nature22071] [PMID: 28467829]
[19]
Dischinger PS, Tovar EA, Essenburg CJ, et al. NF1 deficiency correlates with estrogen receptor signaling and diminished survival in breast cancer. NPJ Breast Cancer 2018; 4: 29.
[http://dx.doi.org/10.1038/s41523-018-0080-8] [PMID: 30182054]
[20]
Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 2015; 129(6): 829-48.
[http://dx.doi.org/10.1007/s00401-015-1432-1] [PMID: 25943888]
[21]
Daston MM, Scrable H, Nordlund M, Sturbaum AK, Nissen LM, Ratner N. The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron 1992; 8(3): 415-28.
[http://dx.doi.org/10.1016/0896-6273(92)90270-N] [PMID: 1550670]
[22]
Hsueh Y-P. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation. J Biomed Sci 2012; 19: 33.
[http://dx.doi.org/10.1186/1423-0127-19-33] [PMID: 22449146]
[23]
Tokuo H, Yunoue S, Feng L, et al. Phosphorylation of neurofibromin by cAMP-dependent protein kinase is regulated via a cellular association of N(G),N(G)-dimethylarginine dimethylaminohydrolase. FEBS Lett 2001; 494(1-2): 48-53.
[http://dx.doi.org/10.1016/S0014-5793(01)02309-2] [PMID: 11297733]
[24]
Ballester R, Marchuk D, Boguski M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 1990; 63(4): 851-9.
[http://dx.doi.org/10.1016/0092-8674(90)90151-4] [PMID: 2121371]
[25]
Xu GF, Lin B, Tanaka K, et al. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990; 63(4): 835-41.
[http://dx.doi.org/10.1016/0092-8674(90)90149-9] [PMID: 2121369]
[26]
Dunzendorfer-Matt T, Mercado EL, Maly K, McCormick F, Scheffzek K. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation. Proc Natl Acad Sci USA 2016; 113(27): 7497-502.
[http://dx.doi.org/10.1073/pnas.1607298113] [PMID: 27313208]
[27]
Stowe IB, Mercado EL, Stowe TR, et al. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev 2012; 26(13): 1421-6.
[http://dx.doi.org/10.1101/gad.190876.112] [PMID: 22751498]
[28]
Hirata Y, Brems H, Suzuki M, et al. Interaction between a domain of the negative regulator of the Ras-ERK pathway, SPRED1 protein, and the gtpase-activating protein-related domain of neurofibromin is implicated in legius syndrome and neurofibromatosis type 1. J Biol Chem 2016; 291(7): 3124-34.
[http://dx.doi.org/10.1074/jbc.M115.703710] [PMID: 26635368]
[29]
Führer S, Tollinger M, Dunzendorfer-Matt T. Pathogenic mutations associated with legius syndrome modify the spred1 surface and are involved in direct binding to the ras inactivator neurofibromin. J Mol Biol 2019; 431(19): 3889-99.
[http://dx.doi.org/10.1016/j.jmb.2019.07.038] [PMID: 31401120]
[30]
Marshall MS, Hettich LA. Characterization of Ras effector mutant interactions with the NF1-GAP related domain. Oncogene 1993; 8(2): 425-31.
[PMID: 8426748]
[31]
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39(5): 676-700.
[http://dx.doi.org/10.1210/er.2017-00232] [PMID: 29924299]
[32]
Deraredj Nadim W, Chaumont-Dubel S, Madouri F, et al. Physical interaction between neurofibromin and serotonin 5-HT6 receptor promotes receptor constitutive activity. Proc Natl Acad Sci USA 2016; 113(43): 12310-5.
[http://dx.doi.org/10.1073/pnas.1600914113] [PMID: 27791021]
[33]
Fadhlullah SFB, Halim NBA, Yeo JYT, et al. Pathogenic mutations in neurofibromin identifies a leucine-rich domain regulating glioma cell invasiveness. Oncogene 2019; 38(27): 5367-80.
[http://dx.doi.org/10.1038/s41388-019-0809-3] [PMID: 30967630]
[34]
Ozawa T, Araki N, Yunoue S, et al. The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. J Biol Chem 2005; 280(47): 39524-33.
[http://dx.doi.org/10.1074/jbc.M503707200] [PMID: 16169856]
[35]
Luo G, Kim J, Song K. The C-terminal domains of human neurofibromin and its budding yeast homologs Ira1 and Ira2 regulate the metaphase to anaphase transition. Cell Cycle 2014; 13(17): 2780-9.
[http://dx.doi.org/10.4161/15384101.2015.945870] [PMID: 25486365]
[36]
Kweh F, Zheng M, Kurenova E, Wallace M, Golubovskaya V, Cance WG. Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase. Mol Carcinog 2009; 48(11): 1005-17.
[http://dx.doi.org/10.1002/mc.20552] [PMID: 19479903]
[37]
Fahsold R, Hoffmeyer S, Mischung C, et al. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 2000; 66(3): 790-818.
[http://dx.doi.org/10.1086/302809] [PMID: 10712197]
[38]
Mangoura D, Sun Y, Li C, et al. Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells. Oncogene 2006; 25(5): 735-45.
[http://dx.doi.org/10.1038/sj.onc.1209113] [PMID: 16314845]
[39]
Marchuk DA, Saulino AM, Tavakkol R, et al. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 1991; 11(4): 931-40.
[http://dx.doi.org/10.1016/0888-7543(91)90017-9] [PMID: 1783401]
[40]
Koczkowska M, Chen Y, Callens T, et al. Genotype-phenotype correlation in NF1: evidence for a more severe phenotype associated with missense mutations affecting NF1 codons 844-848. Am J Hum Genet 2018; 102(1): 69-87.
[http://dx.doi.org/10.1016/j.ajhg.2017.12.001] [PMID: 29290338]
[41]
Serra E, Rosenbaum T, Winner U, et al. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Hum Mol Genet 2000; 9(20): 3055-64.
[http://dx.doi.org/10.1093/hmg/9.20.3055] [PMID: 11115850]
[42]
Yang F-C, Ingram DA, Chen S, et al. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/- mast cells. J Clin Invest 2003; 112(12): 1851-61.
[http://dx.doi.org/10.1172/JCI19195] [PMID: 14679180]
[43]
Carroll SL, Ratner N. How does the Schwann cell lineage form tumors in NF1? Glia 2008; 56(14): 1590-605.
[http://dx.doi.org/10.1002/glia.20776] [PMID: 18803326]
[44]
Keng VW, Rahrmann EP, Watson AL, et al. PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Res 2012; 72(13): 3405-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4092] [PMID: 22700876]
[45]
McCaughan JA, Holloway SM, Davidson R, Lam WWK. Further evidence of the increased risk for malignant peripheral nerve sheath tumour from a Scottish cohort of patients with neurofibromatosis type 1. J Med Genet 2007; 44(7): 463-6.
[http://dx.doi.org/10.1136/jmg.2006.048140] [PMID: 17327286]
[46]
Rhodes SD, He Y, Smith A, et al. Cdkn2a (Arf) loss drives NF1-associated atypical neurofibroma and malignant transformation. Hum Mol Genet 2019; 28(16): 2752-62.
[http://dx.doi.org/10.1093/hmg/ddz095] [PMID: 31091306]
[47]
Le LQ, Shipman T, Burns DK, Parada LF. Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell Stem Cell 2009; 4(5): 453-63.
[http://dx.doi.org/10.1016/j.stem.2009.03.017] [PMID: 19427294]
[48]
Bargagna-Mohan P, Ishii A, Lei L, et al. Sustained activation of ERK1/2 MAPK in Schwann cells causes corneal neurofibroma. J Neurosci Res 2017; 95(9): 1712-29.
[http://dx.doi.org/10.1002/jnr.24067] [PMID: 28489286]
[49]
Park H-J, Lee S-J, Sohn YB, et al. NF1 deficiency causes Bcl-xL upregulation in Schwann cells derived from neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Int J Oncol 2013; 42(2): 657-66.
[http://dx.doi.org/10.3892/ijo.2012.1751] [PMID: 23292448]
[50]
Brundage ME, Tandon P, Eaves DW, et al. MAF mediates crosstalk between Ras-MAPK and mTOR signaling in NF1. Oncogene 2014; 33(49): 5626-36.
[http://dx.doi.org/10.1038/onc.2013.506] [PMID: 24509877]
[51]
Zhou Y, He Y, Sharma R, et al. Hyperactive RAS/PI3-K/MAPK signaling cascade in migration and adhesion of nf1 haploinsufficient mesenchymal stem/progenitor cells. Int J Mol Sci 2015; 16(6): 12345-59.
[http://dx.doi.org/10.3390/ijms160612345] [PMID: 26039236]
[52]
Anastasaki C, Gutmann DH. Neuronal NF1/RAS regulation of cyclic AMP requires atypical PKC activation. Hum Mol Genet 2014; 23(25): 6712-21.
[http://dx.doi.org/10.1093/hmg/ddu389] [PMID: 25070947]
[53]
Kobayashi D, Tokuda T, Sato K, et al. Identification of a specific translational machinery via TCTP-EF1A2 interaction regulating NF1-associated tumor growth by affinity purification and data-independent mass spectrometry acquisition (AP-DIA). Mol Cell Proteomics 2019; 18(2): 245-62.
[http://dx.doi.org/10.1074/mcp.RA118.001014] [PMID: 30381327]
[54]
Yang K, Guo W, Ren T, et al. Knockdown of HMGA2 regulates the level of autophagy via interactions between MSI2 and Beclin1 to inhibit NF1-associated malignant peripheral nerve sheath tumour growth. J Exp Clin Cancer Res 2019; 38(1): 185.
[http://dx.doi.org/10.1186/s13046-019-1183-2] [PMID: 31053152]
[55]
Shilyansky C, Lee YS, Silva AJ. Molecular and cellular mechanisms of learning disabilities: a focus on NF1. Annu Rev Neurosci 2010; 33: 221-43.
[http://dx.doi.org/10.1146/annurev-neuro-060909-153215] [PMID: 20345245]
[56]
Ivanova T, Karolczak M, Beyer C. Estrogen stimulates the mitogen-activated protein kinase pathway in midbrain astroglia. Brain Res 2001; 889(1-2): 264-9.
[http://dx.doi.org/10.1016/S0006-8993(00)03149-8] [PMID: 11166717]
[57]
Cui Y, Costa RM, Murphy GG, et al. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 2008; 135(3): 549-60.
[http://dx.doi.org/10.1016/j.cell.2008.09.060] [PMID: 18984165]
[58]
Ryu H-H, Kim T, Kim J-W, et al. Excitatory neuron-specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal 2019; 12(571): 5755.
[http://dx.doi.org/10.1126/scisignal.aau5755] [PMID: 30837304]
[59]
Ryu H-H, Kang M, Park J, Park S-H, Lee Y-S. Enriched expression of NF1 in inhibitory neurons in both mouse and human brain. Mol Brain 2019; 12(1): 60.
[http://dx.doi.org/10.1186/s13041-019-0481-0] [PMID: 31234911]
[60]
Nordlund ML, Rizvi TA, Brannan CI, Ratner N. Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains. J Neuropathol Exp Neurol 1995; 54(4): 588-600.
[http://dx.doi.org/10.1097/00005072-199507000-00013] [PMID: 7602332]
[61]
Seminog OO, Goldacre MJ. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br J Cancer 2013; 108(1): 193-8.
[http://dx.doi.org/10.1038/bjc.2012.535] [PMID: 23257896]
[62]
Uusitalo E, Rantanen M, Kallionpää RA, et al. Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol 2016; 34(17): 1978-86.
[http://dx.doi.org/10.1200/JCO.2015.65.3576] [PMID: 26926675]
[63]
Hoyt WF, Baghdassarian SA. Optic glioma of childhood. Natural history and rationale for conservative management. Br J Ophthalmol 1969; 53(12): 793-8.
[http://dx.doi.org/10.1136/bjo.53.12.793] [PMID: 5386369]
[64]
Pan Y, Xiong M, Chen R, et al. Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev 2018; 32(7-8): 491-6.
[http://dx.doi.org/10.1101/gad.310797.117] [PMID: 29632086]
[65]
Moore BD III, Slopis JM, Jackson EF, De Winter AE, Leeds NE. Brain volume in children with neurofibromatosis type 1: relation to neuropsychological status. Neurology 2000; 54(4): 914-20.
[http://dx.doi.org/10.1212/WNL.54.4.914] [PMID: 10690986]
[66]
Pride N, Payne JM, Webster R, Shores EA, Rae C, North KN. Corpus callosum morphology and its relationship to cognitive function in neurofibromatosis type 1. J Child Neurol 2010; 25(7): 834-41.
[http://dx.doi.org/10.1177/0883073809350723] [PMID: 20142468]
[67]
Zhu Y, Romero MI, Ghosh P, et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 2001; 15(7): 859-76.
[http://dx.doi.org/10.1101/gad.862101] [PMID: 11297510]
[68]
Bulgheroni S, Taddei M, Saletti V, Esposito S, Micheli R, Riva D. Visuoperceptual impairment in children with NF1: from early visual processing to procedural strategies. Behav Neurol 2019; 2019, 7146168
[http://dx.doi.org/10.1155/2019/7146168] [PMID: 30733835]
[69]
Chen L, Serdyuk T, Yang B, et al. Abnormal circadian oscillation of hippocampal MAPK activity and power spectrums in NF1 mutant mice. Mol Brain 2017; 10(1): 29.
[http://dx.doi.org/10.1186/s13041-017-0309-8] [PMID: 28673309]
[70]
Mu L, Wang J, Cao B, et al. Impairment of cognitive function by chemotherapy: association with the disruption of phase-locking and synchronization in anterior cingulate cortex. Mol Brain 2015; 8: 32.
[http://dx.doi.org/10.1186/s13041-015-0125-y] [PMID: 26001812]
[71]
Park CS, Zhong L, Tang S-J. Aberrant expression of synaptic plasticity-related genes in the NF1+/- mouse hippocampus. J Neurosci Res 2009; 87(14): 3107-19.
[http://dx.doi.org/10.1002/jnr.22134] [PMID: 19475561]
[72]
Li X-X, Zhang S-J, Chiu AP, et al. Conditional inactivation of Nf1 and Pten in schwann cells results in abnormal neuromuscular junction maturation. G3 (Bethesda) 2019; 9(1): 297-303.
[http://dx.doi.org/10.1534/g3.118.200795] [PMID: 30478082]
[73]
Tsai P-I, Wang M, Kao H-H, et al. Neurofibromin mediates FAK signaling in confining synapse growth at Drosophila neuromuscular junctions. J Neurosci 2012; 32(47): 16971-81.
[http://dx.doi.org/10.1523/JNEUROSCI.1756-12.2012] [PMID: 23175848]
[74]
Armstrong BC, Le Boutillier JC, Petit TL. Ultrastructural synaptic changes associated with neurofibromatosis type 1: a quantitative analysis of hippocampal region CA1 in a Nf1(+/-) mouse model. Synapse 2012; 66(3): 246-55.
[http://dx.doi.org/10.1002/syn.21507] [PMID: 22121000]
[75]
Wang H-F, Shih Y-T, Chen C-Y, Chao H-W, Lee M-J, Hsueh Y-P. Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J Clin Invest 2011; 121(12): 4820-37.
[http://dx.doi.org/10.1172/JCI45677] [PMID: 22105171]
[76]
Fetsch JF, Michal M, Miettinen M. Pigmented (melanotic) neurofibroma: a clinicopathologic and immunohistochemical analysis of 19 lesions from 17 patients. Am J Surg Pathol 2000; 24(3): 331-43.
[http://dx.doi.org/10.1097/00000478-200003000-00001] [PMID: 10716146]
[77]
De Schepper S, Boucneau J, Vander Haeghen Y, Messiaen L, Naeyaert J-M, Lambert J. Café-au-lait spots in neurofibromatosis type 1 and in healthy control individuals: hyperpigmentation of a different kind? Arch Dermatol Res 2006; 297(10): 439-49.
[http://dx.doi.org/10.1007/s00403-006-0644-6] [PMID: 16479403]
[78]
Larribere L, Wu H, Novak D, et al. NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model. Pigment Cell Melanoma Res 2015; 28(4): 407-16.
[http://dx.doi.org/10.1111/pcmr.12369] [PMID: 25824590]
[79]
Deo M, Huang JL-Y, Fuchs H, de Angelis MH, Van Raamsdonk CD. Differential effects of neurofibromin gene dosage on melanocyte development. J Invest Dermatol 2013; 133(1): 49-58.
[http://dx.doi.org/10.1038/jid.2012.240] [PMID: 22810304]
[80]
De Schepper S, Boucneau JMA, Westbroek W, et al. Neurofibromatosis type 1 protein and amyloid precursor protein interact in normal human melanocytes and colocalize with melanosomes. J Invest Dermatol 2006; 126(3): 653-9.
[http://dx.doi.org/10.1038/sj.jid.5700087] [PMID: 16374483]
[81]
Reimer M, Denby E, Zustiak SP, Schober JM. Ras GAP-related and C-terminal domain-dependent localization and tumorigenic activities of IQGAP1 in melanoma cells. PLoS One 2017; 12(12) e0189589
[http://dx.doi.org/10.1371/journal.pone.0189589] [PMID: 29240845]
[82]
Trenton NJ, McLaughlin RT, Bellamkonda SK, et al. Membrane and Actin Tethering Transitions Help IQGAP1 Coordinate GTPase and Lipid Messenger Signaling. Biophys J 2020; 118(3): 586-99.
[PMID: 31952801]
[83]
Carvajal RD, Piperno-Neumann S, Kapiteijn E, et al. Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: a phase iii, multicenter, randomized trial (SUMIT). J Clin Oncol 2018; 36(12): 1232-9.
[http://dx.doi.org/10.1200/JCO.2017.74.1090] [PMID: 29528792]
[84]
Dombi E, Baldwin A, Marcus LJ, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med 2016; 375(26): 2550-60.
[http://dx.doi.org/10.1056/NEJMoa1605943] [PMID: 28029918]
[85]
Hiatt KK, Ingram DA, Zhang Y, Bollag G, Clapp DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells. J Biol Chem 2001; 276(10): 7240-5.
[http://dx.doi.org/10.1074/jbc.M009202200] [PMID: 11080503]
[86]
Bodempudi V, Yamoutpoor F, Pan W, et al. Ral overactivation in malignant peripheral nerve sheath tumors. Mol Cell Biol 2009; 29(14): 3964-74.
[http://dx.doi.org/10.1128/MCB.01153-08] [PMID: 19414599]
[87]
Thomas SL, Deadwyler GD, Tang J, et al. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells. Biochem Biophys Res Commun 2006; 348(3): 971-80.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.159] [PMID: 16908010]
[88]
Bai R-Y, Esposito D, Tam AJ, et al. Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Ther 2019; 26(6): 277-86.
[http://dx.doi.org/10.1038/s41434-019-0080-9] [PMID: 31127187]
[89]
Hoyng SA, De Winter F, Gnavi S, et al. Gene delivery to rat and human Schwann cells and nerve segments: a comparison of AAV 1-9 and lentiviral vectors. Gene Ther 2015; 22(10): 767-80.
[http://dx.doi.org/10.1038/gt.2015.47] [PMID: 25938190]
[90]
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59-65.
[http://dx.doi.org/10.1038/nbt.1515] [PMID: 19098898]
[91]
Duque S, Joussemet B, Riviere C, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons Molecular therapy. J Amer Soc Gene Therap 2009; 17(7): 1187-96.
[http://dx.doi.org/10.1038/mt.2009.71]
[92]
Rafii MS, Tuszynski MH, Thomas RG, et al. AAV2-NGF Study Team. Adeno-associated viral vector (Serotype 2)-nerve growth factor for patients with alzheimer disease: a randomized clinical trial. JAMA Neurol 2018; 75(7): 834-41.
[http://dx.doi.org/10.1001/jamaneurol.2018.0233] [PMID: 29582053]
[93]
Niethammer M, Tang CC, LeWitt PA, et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight 2017; 2(7) e90133
[http://dx.doi.org/10.1172/jci.insight.90133] [PMID: 28405611]
[94]
Flanigan KM, Truxal KV, McBride KL, McNally KA, Kunkler KL, Zumberge NA, et al. A phase 1/2 clinical trial of systemic gene transfer of scAAV9.U1a.hSGSH for MPS IIIA: safety, tolerability, and preliminary evidence of biopotency Molecular therapy Conference: 20th annual meeting of the american society of gene and cell therapy. ASGCT 2017 USA 25(5): 137-8.
[95]
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10(4): 309-19.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[96]
Calcedo R, Morizono H, Wang L, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol 2011; 18(9): 1586-8.
[http://dx.doi.org/10.1128/CVI.05107-11] [PMID: 21775517]
[97]
Blacklow NR, Hoggan MD, Rowe WP. Serologic evidence for human infection with adenovirus-associated viruses. J Natl Cancer Inst 1968; 40(2): 319-27.
[PMID: 4295610]
[98]
Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 2017; 20(8): 1172-9.
[http://dx.doi.org/10.1038/nn.4593] [PMID: 28671695]
[99]
Cearley CN, Wolfe JH. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 2006; 13(3): 528-37.
[http://dx.doi.org/10.1016/j.ymthe.2005.11.015] [PMID: 16413228]
[100]
Katada Y, Kobayashi K, Tsubota K, Kurihara T. Evaluation of AAV-DJ vector for retinal gene therapy. PeerJ 2019; 7, e6317
[http://dx.doi.org/10.7717/peerj.6317] [PMID: 30671314]
[101]
Hashimoto H, Mizushima T, Chijiwa T, Nakamura M, Suemizu H. Efficient production of recombinant adeno-associated viral vector, serotype DJ/8, carrying the GFP gene. Virus Res 2017; 238: 63-8.
[http://dx.doi.org/10.1016/j.virusres.2017.05.017] [PMID: 28571759]
[102]
Alonso A, Reinz E, Leuchs B, et al. Focal delivery of AAV2/1-transgenes into the rat brain by localized ultrasound-induced BBB opening. Mol Ther Nucleic Acids 2013; 2, e73
[http://dx.doi.org/10.1038/mtna.2012.64] [PMID: 23423361]
[103]
Sorrentino NC, D’Orsi L, Sambri I, et al. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol Med 2013; 5(5): 675-90.
[http://dx.doi.org/10.1002/emmm.201202083] [PMID: 23568409]
[104]
Akil O, Dyka F, Calvet C, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci USA 2019; 116(10): 4496-501.
[http://dx.doi.org/10.1073/pnas.1817537116] [PMID: 30782832]
[105]
McClements ME, Barnard AR, Singh MS, et al. An AAV dual vector strategy ameliorates the stargardt phenotype in adult Abca4-/- mice. Hum Gene Ther 2019; 30(5): 590-600.
[http://dx.doi.org/10.1089/hum.2018.156] [PMID: 30381971]
[106]
Kodippili K, Hakim CH, Pan X, et al. Dual AAV gene therapy for duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model. Hum Gene Ther 2018; 29(3): 299-311.
[http://dx.doi.org/10.1089/hum.2017.095] [PMID: 28793798]
[107]
Thomas L, Richards M, Mort M, Dunlop E, Cooper DN, Upadhyaya M. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene. Hum Mutat 2012; 33(12): 1687-96.
[http://dx.doi.org/10.1002/humu.22162] [PMID: 22807134]
[108]
Ismat FA, Xu J, Lu MM, Epstein JA. The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1 mice. J Clin Invest 2006; 116(9): 2378-84.
[http://dx.doi.org/10.1172/JCI28341] [PMID: 16906226]
[109]
Yang JK, Wu WJ, He L. Homozygous frame-shift mutation in a Chinese family with neurofibromatosis type 1. J Dermatol 2018; 45(5): e134-5.
[http://dx.doi.org/10.1111/1346-8138.14165] [PMID: 29193275]
[110]
Grieger JC, Samulski RJ. Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 2005; 79(15): 9933-44.
[http://dx.doi.org/10.1128/JVI.79.15.9933-9944.2005] [PMID: 16014954]
[111]
Nambiar B, Cornell Sookdeo C, Berthelette P, et al. Characteristics of minimally oversized adeno-associated virus vectors encoding human factor viii generated using producer cell lines and triple transfection. Hum Gene Ther Methods 2017; 28(1): 23-38.
[http://dx.doi.org/10.1089/hgtb.2016.124] [PMID: 28166648]
[112]
Cui S, Ganjawala TH, Abrams GW, Pan ZH. Effect of proteasome inhibitors on the AAV-mediated transduction efficiency in retinal bipolar cells. Curr Gene Ther 2020; 19(6): 404-12.
[http://dx.doi.org/10.2174/1566523220666200211111326] [PMID: 32072884]
[113]
Uthoff J, Larson J, Sato TS, et al. Longitudinal phenotype development in a minipig model of neurofibromatosis type 1. Sci Rep 2020; 10(1): 5046.
[http://dx.doi.org/10.1038/s41598-020-61251-4] [PMID: 32193437]
[114]
Arun V, Wiley JC, Kaur H, Kaplan DR, Guha A. A novel neurofibromin (NF1) interaction with the leucine-rich pentatricopeptide repeat motif-containing protein links neurofibromatosis type 1 and the French Canadian variant of Leigh’s syndrome in a common molecular complex. J Neurosci Res 2013; 91(4): 494-505.
[http://dx.doi.org/10.1002/jnr.23189] [PMID: 23361976]
[115]
Sherekar M, Han S-W, Ghirlando R, et al. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020; 295(4): 1105-19.
[http://dx.doi.org/10.1074/jbc.RA119.010934] [PMID: 31836666]
[116]
Rabara D, Tran TH, Dharmaiah S, et al. KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis. Proc Natl Acad Sci USA 2019; 116(44): 22122-31.
[http://dx.doi.org/10.1073/pnas.1908353116] [PMID: 31611389]
[117]
Hegedus B, Yeh T-H, Lee DY, Emnett RJ, Li J, Gutmann DH. Neurofibromin regulates somatic growth through the hypothalamic-pituitary axis. Hum Mol Genet 2008; 17(19): 2956-66.
[http://dx.doi.org/10.1093/hmg/ddn194] [PMID: 18614544]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2020
Page: [100 - 108]
Pages: 9
DOI: 10.2174/1566523220666200806111451
Price: $65

Article Metrics

PDF: 78
HTML: 13