A Mini-Review on Nano Technology in the Tumour Targeting Strategies: Drug Delivery to Cancer Cells

Author(s): Loveleen Kaur, Harvinder S. Sohal*, Manvinder Kaur, Dharambeer S. Malhi, Sonali Garg

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 17 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Recently, the application of cancer nanotechnology-based drug delivery to cancer cells has arisen as an important method to resolve multiple molecular, biophysical, and biochemical obstacles, which the body is preparing to resist against the productive implementation of chemotherapeutic medications. Drug delivery technologies focused on nanoparticles, which have resolved some of the drawbacks of conventional chemotherapy as, decreased drug viscosity, chemo-resistance, precise malignity, limited medicative measures with low oral bioactivity. Due to their adjustable size and surface properties, the half-life period of a drug can be increased in the bloodstream.

Objective: The aim of the current study is to collect and document the data available on the drug delivery system for anticancer drugs. The present study includes some of the drug carriers like liposomes, carbon dots, micelles, carbon nanotubes, magnetic nanoparticles, etc.

Methods: To write this review, an exhaustive literature survey was carried out using relevant work published in various SCI, Scopus, and non-SCI indexed journals. The different search engines used to download the research/ review papers are Google search, PubMed, Science Direct, Google Scholar, Scientific Information Database and Research Gate, etc.

Results: Nanotechnology offers better pharmacokinetics, reduces the systematic toxicities related to the chemotherapies and a better route of drug administration. In the analysis, we critically highlight recent studies on carcinoma-fighting nanotechnology.

Conclusion: In the present study, different kinds of nano-based drug delivery systems have been discussed along with their characteristic features, the encapsulation of anticancer agents into different types of nanometresized vehicles and their general mechanism.

Keywords: Nanoparticles, liposomes, carbon dots, micelles, drug delivery systems, tumour targeting strategies.

[1]
[2]
Conway, K.; Edmiston, S.N.; Parrish, E.; Bryant, C.; Tse, C.K.; Swift-Scanlan, T.; McCullough, L.E.; Kuan, P.F. Breast tumor DNA methylation patterns associated with smoking in the Carolina Breast Cancer Study. In: Breast Cancer Res. Treat; , 2017; 163, pp. (2)349-361.
[http://dx.doi.org/10.1007/s10549-017-4178-8] [PMID: 28275920]
[3]
Mahira, S.; Kommineni, N.; Husain, G.M.; Khan, W. Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed. Pharmacother., 2019, 110, 803-817.
[http://dx.doi.org/10.1016/j.biopha.2018.11.145] [PMID: 30554119]
[4]
Revenco, T.; Lapouge, G.; Moers, V.; Brohée, S.; Sotiropoulou, P.A. Low dose radiation causes skin cancer in mice and has a differential effect on distinct epidermal stem cells. Stem Cells, 2017, 35(5), 1355-1364.
[http://dx.doi.org/10.1002/stem.2571] [PMID: 28100039]
[5]
Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today, 2012, 17(17-18), 1044-1052.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[6]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(7), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[7]
Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54, 101350-101377.
[http://dx.doi.org/10.1016/j.jddst.2019.101350]
[8]
Kieler-Ferguson, H.M.; Chan, D.; Sockolosky, J.; Finney, L.; Maxey, E.; Vogt, S.; Szoka, F.C., Jr Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids. Eur. J. Pharm. Sci., 2017, 103, 85-93.
[http://dx.doi.org/10.1016/j.ejps.2017.03.003] [PMID: 28263913]
[9]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 907-924.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[10]
Briuglia, M.L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res., 2015, 5(3), 231-242.
[http://dx.doi.org/10.1007/s13346-015-0220-8] [PMID: 25787731]
[11]
Jin, Y.; Gad, S.C. Nanotechnology in pharmaceutical manufacturing. In: Pharmaceutical Manufacturing Handbook: Production and Processes; Gad, S.C., Ed.; John Wiley and Sons. Inc. Hoboken, NJ, USA: , 2008, pp. 1249-1288.
[http://dx.doi.org/10.1002/9780470259818.ch32]
[12]
Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol., 2018, 113(1), 40-48.
[http://dx.doi.org/10.1016/j.fct.2018.01.017] [PMID: 29337230]
[13]
Singh, S.K.; Singh, S.; Lillard, J.W., Jr; Singh, R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine, 2017, 12(1), 6205-6218.
[http://dx.doi.org/10.2147/IJN.S140325] [PMID: 28883730]
[14]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[15]
Motamarry, A.; Asemani, D.; Haemmerich, D. Thermosensitive liposomes.In: Liposomes; InTech Open: UK; , 2017, pp. 187-211.
[16]
Gogoi, M.; Kumar, N.; Patra, S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications.Nanoarchitectonics Smart Delivery Drug Targeting; Holban, A.M.; Grumezescu, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016, pp. 743-782.
[http://dx.doi.org/10.1016/B978-0-323-47347-7.00027-6]
[17]
Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem. Rev., 2015, 115(19), 10907-10937.
[http://dx.doi.org/10.1021/cr500314d] [PMID: 26166537]
[18]
Xiao, Y.; Liu, Q.; Clulow, A.J.; Li, T.; Manohar, M.; Gilbert, E.P.; de Campo, L.; Hawley, A.; Boyd, B.J. PEGylation and surface functionalization of liposomes containing drug nanocrystals for cell-targeted delivery. Colloids Surf. B Biointerfaces, 2019, 182, 110362-110371.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110362] [PMID: 31351271]
[19]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[20]
Ricciuti, G.; Finolezzi, E.; Luciani, S.; Ranucci, E.; Federico, M.; Di Nicola, M.; Zecca, I.A.L.; Angrilli, F. Combination of Rituximab and Nonpegylated Liposomal Doxorubicin (R-NPLD) as front-line therapy for aggressive Non-Hodgkin Lymphoma (NHL) in patients 80 years of age or older: A single-center retrospective study. Hematol. Oncol., 2018, 36(1), 44-48.
[http://dx.doi.org/10.1002/hon.2386] [PMID: 28156055]
[21]
Kang, C.; Sun, Y.; Zhu, J.; Li, W.; Zhang, A.; Kuang, T.; Xie, J.; Yang, Z. Delivery of nanoparticles for treatment of brain tumor. Curr. Drug Metab., 2016, 17(8), 745-754.
[http://dx.doi.org/10.2174/1389200217666160728152939] [PMID: 27469219]
[22]
Kang, D.I.; Kang, H.K.; Gwak, H.S.; Han, H.K.; Lim, S.J. Liposome composition is important for retention of liposomal rhodamine in P-glycoprotein-overexpressing cancer cells. Drug Deliv., 2009, 16(5), 261-267.
[http://dx.doi.org/10.1080/10717540902937562] [PMID: 19538007]
[23]
Wang, F.; Zhang, D.; Zhang, Q.; Chen, Y.; Zheng, D.; Hao, L.; Duan, C.; Jia, L.; Liu, G.; Liu, Y. Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials, 2011, 32(35), 9444-9456.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.041] [PMID: 21903258]
[24]
Hu, C.M.; Aryal, S.; Zhang, L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv., 2010, 1(2), 323-334.
[http://dx.doi.org/10.4155/tde.10.13] [PMID: 22816135]
[25]
Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today, 2010, 15(19-20), 842-850.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[26]
Misra, R.; Kandoi, S.; Varadaraj, S.; Vijayalakshmi, S.; Nanda, A.; Verma, R.S. Nanotheranostics: A tactic for cancer stem cells prognosis and management. J. Drug Deliv. Sci. Technol., 2020, 55101457
[http://dx.doi.org/10.1016/j.jddst.2019.101457]
[27]
Kapse, A.; Anup, N.; Patel, V.; Saraogi, G.K.; Mishra, D.K.; Tekade, R.K. Polymeric micelles: A ray of hope among new drug delivery systems. Drug Deliv. Syst., 2020, 236-267.
[28]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71-104.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[29]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[30]
Chen, T.; Tu, L.; Wang, G.; Qi, N.; Wu, W.; Zhang, W.; Feng, J. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int. J. Pharm., 2020, 578119105
[http://dx.doi.org/10.1016/j.ijpharm.2020.119105] [PMID: 32018019]
[31]
Cagela, M.; Morettona, M.A.; Bernabeua, E.; Zubillaga, M.; Lagomarsino, E.; Vanzulli, S.; Nicoud, M.B.; Medina, V.A.; Salgueiro, M.J.; Chiappetta, D.A. Antitumor efficacy and cardiotoxic effect of doxorubicin-loaded mixed micelles in 4T1 murine breast cancer model. Comparative studies using Doxil and free doxorubicin. J. Drug Deliv. Sci. Technol., 2020, 156101506
[http://dx.doi.org/10.1016/j.jddst.2020.101506]
[32]
Yuan, Y.; Cai, T.; Xia, X.; Zhang, R.; Chiba, P.; Cai, Y. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv., 2016, 23(9), 3350-3357.
[http://dx.doi.org/10.1080/10717544.2016.1178825] [PMID: 27098896]
[33]
Sadat, S.M.; Saeidnia, S.; Nazarali, A.J.; Haddadi, A. Nano-pharmaceutical formulations for targeted drug delivery against HER2 in breast cancer. Curr. Cancer Drug Targets, 2015, 15(1), 71-86.
[http://dx.doi.org/10.2174/1568009615666150105115047] [PMID: 25564255]
[34]
Shin, H.C.; Alani, A.W.; Cho, H.; Bae, Y.; Kolesar, J.M.; Kwon, G.S. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol. Pharm., 2011, 8(4), 1257-1265.
[http://dx.doi.org/10.1021/mp2000549] [PMID: 21630670]
[35]
Katragadda, U.; Teng, Q.; Rayaprolu, B.M.; Chandran, T.; Tan, C. Multi-drug delivery to tumor cells via micellar nanocarriers. Int. J. Pharm., 2011, 419(1-2), 281-286.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.033] [PMID: 21820041]
[36]
Khan, T.; Gurav, P. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Front. Pharmacol., 2018, 8, 1002.
[http://dx.doi.org/10.3389/fphar.2017.01002] [PMID: 29479316]
[37]
Kumari, P.; Swami, M.O.; Sravan, K.N.; Srividya, M. BalaramGhosh, B.; Swati, B. Curcumin delivery by poly(lactide)-based copolymericmicelles: An in vitro anticancer study. Pharm. Res., 2016, 33(1), 826-841.
[http://dx.doi.org/10.1007/s11095-015-1830-z] [PMID: 26597940]
[38]
Zhu, M.; Chen, S.; Hua, L.; Zhang, C.; Chen, M.; Chen, D.; Dong, Y.; Zhang, Y.; Li, M.; Song, X.; Chen, H.; Zheng, H. Self-targeted salinomycin-loaded DSPE-PEG-methotrexate nanomicelles for targeting both head and neck squamous cell carcinoma cancer cells and cancer stem cells. Nanomedicine (Lond.), 2017, 12(4), 295-315.
[http://dx.doi.org/10.2217/nnm-2016-0382] [PMID: 28093940]
[39]
Yang, Z.; Guo, Q.; Cai, Y.; Zhu, X.; Zhu, C.; Li, Y.; Li, B. Poly(ethylene glycol)-sheddable reduction-sensitive polyurethane micelles for triggered intracellular drug delivery for osteosarcoma treatment. J. Orthop. Translat., 2019, 21, 57-65.
[http://dx.doi.org/10.1016/j.jot.2019.11.001] [PMID: 32099805]
[40]
Pereira-Silva, M.; Alvarez-Lorenzo, C.; Concheiro, A.; Santos, A.C.; Veiga, F.; Figueiras, A. Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur. J. Pharm. Biopharm., 2020, 148, 88-106.
[http://dx.doi.org/10.1016/j.ejpb.2019.10.013] [PMID: 31958514]
[41]
Gonzalez-Fernandez, Y.; Imbuluzqueta, E.; Zalacain, M.; Sierrasesumaga, L.; Patino-Garcia, A.; Blanco-Prieto, M.J. Lipid nanoparticles enhance the efficacy of chemotherapy in primary and metastatic human osteosarcoma cells J. Drug Deliv. Sci. Tec, 2015, 30(B), 435-442.
[42]
González-Fernández, Y.; Imbuluzqueta, E.; Zalacain, M.; Mollinedo, F.; Patiño-García, A.; Blanco-Prieto, M.J. Doxorubicin and edelfosine lipid nanoparticles are effective acting synergistically against drug-resistant osteosarcoma cancer cells. Cancer Lett., 2017, 388, 262-268.
[http://dx.doi.org/10.1016/j.canlet.2016.12.012] [PMID: 27998763]
[43]
Gillies, E.R.; Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[44]
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci., 2008, 97(1), 123-143.
[http://dx.doi.org/10.1002/jps.21079] [PMID: 17721949]
[45]
Ghaffari, M.; Dehghan, G.; Behzad, B.; Zarebkohan, A.; Mansoori, B.; Soleymani, J.; Dolatabadi, J.E.N.; Hamblin, M.R. Co-delivery of curcumin and Bcl-2 siRNAby PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf. B Biointerfaces, 2019, 188110762
[http://dx.doi.org/10.1016/j.colsurfb.2019.110762] [PMID: 31911391]
[46]
Ge, P.; Niu, B.; Wu, Y.; Xu, W.; Li, M.; Sun, H.; Zhou, H.; Zhang, X.; Xie, J. Enhanced cancertherapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chem. Eng., 2019, 383, 12328.
[47]
Kalaydina, R.V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int. J. Nanomedicine, 2018, 13(1), 4727-4745.
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
[48]
Chen, K.; Cai, H.; Zhang, H.; Zhu, H.; Gu, Z.; Gong, Q.; Luo, K. Stimuli-responsive polymer-doxorubicin conjugate: Antitumor mechanism and potential as nano-prodrug. Acta Biomater., 2019, 84, 339-355.
[http://dx.doi.org/10.1016/j.actbio.2018.11.050] [PMID: 30503561]
[49]
Gorzkiewicz, M.; Konopka, M.; Janaszewska, A.; Tarasenko, I.I.; Sheveleva, N.N.; Gajek, A.; Neelov, I.M.; Klajnert-Maculewicz, B. Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro. Bioorg. Chem., 2020, 95103504
[http://dx.doi.org/10.1016/j.bioorg.2019.103504] [PMID: 31864904]
[50]
Saleem, J.; Wang, L.; Chen, C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Healthc. Mater., 2018, 7(20)e1800525
[http://dx.doi.org/10.1002/adhm.201800525] [PMID: 30073803]
[51]
Phan, Q.T.; Patil, M.P.; Tu, T.T.K.; Le, C.M.Q.; Kim, G-D.; Lim, K.T. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. Polymer (Guildf.), 2020, 193122340
[http://dx.doi.org/10.1016/j.polymer.2020.122340]
[52]
Madani, S.Y.; Naderi, N.; Dissanayake, O.; Tan, A.; Seifalian, A.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int. J. Nanomedicine, 2011, 6(1), 2963-2979.
[PMID: 22162655]
[53]
Singhai, N.J.; Maheshwari, R.; Ramteke, S. CD44 receptor targeted ‘smart’ multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interfac. Sci., 2020, 35100235
[http://dx.doi.org/10.1016/j.colcom.2020.100235]
[54]
Lara-Martínez, L.A.; Massó, F.; Palacios González, E.; García-Peláez, I.; Contreras-Ramos, A.; Valverde, M.; Rojas, E.; Cervantes-Sodi, F.; Hernández-Gutiérrez, S. Evaluating the biological risk of functionalized multiwalled carbon nanotubes and functionalized oxygen-doped multiwalled carbon nanotubes as possible toxic, carcinogenic, and embryotoxic agents. Int. J. Nanomedicine, 2017, 12(1), 7695-7707.
[http://dx.doi.org/10.2147/IJN.S144777] [PMID: 29089764]
[55]
Yusefi, M.; Shameli, K.; Ali, R.R.; Pang, S-W.; Teow, S-Y. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J. Mol. Struct., 2020, 1204127539
[http://dx.doi.org/10.1016/j.molstruc.2019.127539]
[56]
Guo, H.; Zhang, D.; Fu, Q. Inhibition of cervical cancer by promoting IGFBP7 expression using ellagic acid from pomegranate peel. Med. Sci. Monit., 2016, 22, 4881-4886.
[http://dx.doi.org/10.12659/MSM.898658] [PMID: 27941714]
[57]
Deng, Y.; Li, Y.; Yang, F.; Zeng, A.; Yang, S.; Luo, Y.; Zhang, Y.; Xie, Y.; Ye, T.; Xia, Y.; Yin, W. The extract from Punica granatum (pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells. Biomed. Pharmacother., 2017, 93, 976-984.
[http://dx.doi.org/10.1016/j.biopha.2017.07.008] [PMID: 28724216]
[58]
Li, Y.; Ye, T.; Yang, F.; Hu, M.; Liang, L.; He, H.; Li, Z.; Zeng, A.; Li, Y.; Yao, Y.; Xie, Y.; Li, Z.; An, S. Punica granatum (pomegranate) peel extract exerts potent antitumor and anti-metastasis activity in thyroid cancer. RSC Advances, 2016, 6(87), 84523-84535.
[http://dx.doi.org/10.1039/C6RA13167K]]
[59]
Palanisamy, S.; Wang, Y.M. Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans., 2019, 48(26), 9490-9515.
[http://dx.doi.org/10.1039/C9DT00459A] [PMID: 31211303]
[60]
Mou, X.; Ali, Z.; Li, S.; He, N. Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol., 2015, 15(1), 54-62.
[http://dx.doi.org/10.1166/jnn.2015.9585] [PMID: 26328305]
[61]
Mansouri, M.; Nazarpak, M.H.; Solouk, A.; Akbari, S.; Hasani-Sadrabadi, M.M. Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan. J. Magn. Magn. Mater., 2017, 421, 316-325.
[http://dx.doi.org/10.1016/j.jmmm.2016.07.066]
[62]
He, J.; Li, C.; Ding, L.; Huang, Y.; Yin, X.; Zhang, J.; Zhang, J.; Yao, C.; Liang, M.; Pirraco, R.P.; Chen, J.; Lu, Q.; Baldridge, R.; Zhang, Y.; Wu, M.; Reis, R.L.; Wang, Y. Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Adv. Mater., 2019, 31(40)e1902409
[http://dx.doi.org/10.1002/adma.201902409] [PMID: 31369176]
[63]
Eksin, E.; Senturk, H.; Zor, E.; Bingol, H.; Erdem, A. Carbon quantum dot modified electrodes developed for electrochemical monitoring of Daunorubicin-DNA interaction. J. Electroanal. Chem. (Lausanne Switz.), 2020, 862114011
[http://dx.doi.org/10.1016/j.jelechem.2020.114011]
[64]
Sun, X.; Lei, Y. Fluorescent carbon dots and their sensing applications. Trends Analyt. Chem., 2017, 89, 163-180.
[http://dx.doi.org/10.1016/j.trac.2017.02.001]
[65]
Kairdolf, B.A.; Smith, A.M.; Stokes, T.H.; Wang, M.D.; Young, A.N.; Nie, S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2013, 6(1), 143-162.
[http://dx.doi.org/10.1146/annurev-anchem-060908-155136] [PMID: 23527547]
[66]
Shi, Y.; Pramanik, A.; Tchounwou, C.; Pedraza, F.; Crouch, R.A.; Chavva, S.R.; Vangara, A.; Sinha, S.S.; Jones, S.; Sardar, D.; Hawker, C.; Ray, P.C. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells. ACS Appl. Mater. Interfaces, 2015, 7(20), 10935-10943.
[http://dx.doi.org/10.1021/acsami.5b02199] [PMID: 25939643]
[67]
Han, H-S.; Niemeyer, E.; Huang, Y.; Kamoun, W.S.; Martin, J.D.; Bhaumik, J.; Chen, Y.; Roberge, S.; Cui, J.; Martin, M.R.; Fukumura, D.; Jain, R.K.; Bawendi, M.G.; Duda, D.G. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl. Acad. Sci. USA, 2015, 112(5), 1350-1355.
[http://dx.doi.org/10.1073/pnas.1421632111] [PMID: 25605916]
[68]
Bilan, R.; Nabiev, I.; Sukhanova, A. Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem, 2016, 17(22), 2103-2114.
[http://dx.doi.org/10.1002/cbic.201600357] [PMID: 27535363]
[69]
Huang, C.L.; Huang, C.C.; Mai, F.D.; Yen, C.L.; Tzing, S.H.; Hsieh, H.T.; Ling, Y.C.; Chang, J.Y. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(4), 651-664.
[http://dx.doi.org/10.1039/C4TB01650E] [PMID: 32262348]
[70]
Li, Z.; Xu, W.; Wang, Y.; Shah, B.R.; Zhang, C.; Chen, Y.; Li, Y.; Li, B. Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohydr. Polym., 2015, 121, 477-485.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.016] [PMID: 25659723]
[71]
Olerile, L.D.; Liu, Y.; Zhang, B.; Wang, T.; Mu, S.; Zhang, J.; Selotlegeng, L.; Zhang, N. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf. B Biointerfaces, 2017, 150, 121-130.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.032] [PMID: 27907859]
[72]
Cai, X.; Luo, Y.; Zhang, W.; Du, D.; Lin, Y. pH-Sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(34), 22442-22450.
[http://dx.doi.org/10.1021/acsami.6b04933] [PMID: 27463610]
[73]
Yang, T.; Tang, Y.; Liu, L.; Lv, X.; Wang, Q.; Ke, H.; Deng, Y.; Yang, H.; Yang, X.; Liu, G.; Zhao, Y.; Chen, H. Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano, 2017, 11(2), 1848-1857.
[http://dx.doi.org/10.1021/acsnano.6b07866] [PMID: 28117993]
[74]
Du, D.; Wang, K.; Wen, Y.; Li, Y.; Li, Y.Y. Photodynamic graphene quantum dot: Reduction condition regulated photoactivity and size dependent efficacY. ACS Appl. Mater. Interfaces, 2016, 8(5), 3287-3294.
[http://dx.doi.org/10.1021/acsami.5b11154] [PMID: 26761130]
[75]
Balaji, A.B.; Pakalapati, H.; Khalid, M.; Walvekar, R.; Siddiqui, H. Natural and synthetic biocompatible and biodegradable polymers. In: Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications; Shimpi NG Ed; Woodhead Publishing series in composites science and engineering: Woodhead Publishing: UK; , 2017, pp. 3-32.
[76]
Bassas-Galia, M.; Follonier, S.; Pusnik, M.; Zinn, M. 2-Natural polymers: A source of inspiration. In: Bioresorbable Polymers for Biomedical Applications; Perale, G.; Hilborn, J., Eds.; Woodhead Publishing: Cambridge, UK, 2017, pp. 31-64.
[http://dx.doi.org/10.1016/B978-0-08-100262-9.00002-1]
[77]
Sun, B.; Zhang, M.; Shen, J.; He, Z.; Fatehi, P.; Ni, Y. Applications of cellulose based materials in sustained drug delivery systems. Curr. Med. Chem., 2019, 26(14), 2485-2501.
[http://dx.doi.org/10.2174/0929867324666170705143308] [PMID: 28685683]
[78]
Hansen, K.; Kim, G.; Desai, K.G.; Patel, H.; Olsen, K.F.; Curtis-Fisk, J.; Tocce, E.; Jordan, S.; Schwendeman, S.P. Feasibility investigation of cellulose polymers formu coadhesive nasal drug delivery applications. Mol. Pharm., 2015, 12(8), 2732-2741.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00264] [PMID: 26097994]
[79]
Jain, A.; Jain, S.K. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1917-1926.
[http://dx.doi.org/10.3109/21691401.2015.1111236] [PMID: 26678861]
[80]
Román, J.V.; Galán, M.A.; Del Valle, E.M.M. Preparation and preliminary evaluation of alginate cross linked microcapsules as potential Drug Delivery System (DDS) for human lung cancer therapy. Biomed. Phys. Eng. Express, 2016, 2(3)035015
[http://dx.doi.org/10.1088/2057-1976/2/3/035015]
[81]
Abasalizadeh, F.; Moghaddam, S.; Alizadeh, E.; Akbari, E.; Kashani, E.; Bagher Fazljou, S.M.; Torbati, M.; Akbarzadeh, A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng., 2020, 14(8), 1-22.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 17
Year: 2020
Page: [2012 - 2024]
Pages: 13
DOI: 10.2174/1871520620666200804103714
Price: $65

Article Metrics

PDF: 29
HTML: 2
EPUB: 1
PRC: 1