The Antitumor Efficiency of Zinc Finger Nuclease Combined with Cisplatin and Trichostatin A in Cervical Cancer Cells

Author(s): Ci Ren, Chun Gao, Xiaomin Li, Jinfeng Xiong, Hui Shen, Liming Wang, Da Zhu, Peng Wu, Wencheng Ding*, Hui Wang*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 17 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation.

Objective: Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA).

Methods: SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis.

Results: Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs.

Conclusion: Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.

Keywords: Zinc finger nucleases, chemotherapy drugs, E7, RB1, human papillomavirus, synergistic, Siha, HeLa.

[1]
Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature, 2017, 543, 378-384.
[2]
Ginsburg, O.; Bray, F.; Coleman, M.P.; Vanderpuye, V.; Eniu, A.; Kotha, S.R.; Sarker, M.; Huong, T.T.; Allemani, C.; Dvaladze, A.; Gralow, J.; Yeates, K.; Taylor, C.; Oomman, N.; Krishnan, S.; Sullivan, R.; Kombe, D.; Blas, M.M.; Parham, G.; Kassami, N.; Conteh, L. The global burden of women’s cancers: A grand challenge in global health. Lancet, 2017, 389(10071), 847-860.
[http://dx.doi.org/10.1016/S0140-6736(16)31392-7] [PMID: 27814965]
[3]
Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human papillomavirus and cervical cancer. Lancet, 2013, 382(9895), 889-899.
[http://dx.doi.org/10.1016/S0140-6736(13)60022-7] [PMID: 23618600]
[4]
Woodman, C.B.; Collins, S.I.; Young, L.S. The natural history of cervical HPV infection: Unresolved issues. Nat. Rev. Cancer, 2007, 7(1), 11-22.
[http://dx.doi.org/10.1038/nrc2050] [PMID: 17186016]
[5]
Uyar, D.; Rader, J. Genomics of cervical cancer and the role of human papillomavirus pathobiology. Clin. Chem., 2014, 60(1), 144-146.
[http://dx.doi.org/10.1373/clinchem.2013.212985] [PMID: 24046199]
[6]
Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet, 2007, 370(9590), 890-907.
[http://dx.doi.org/10.1016/S0140-6736(07)61416-0] [PMID: 17826171]
[7]
Moody, C.A.; Laimins, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer, 2010, 10(8), 550-560.
[http://dx.doi.org/10.1038/nrc2886] [PMID: 20592731]
[8]
Rajasekaran, N.; Jung, H.S.; Bae, S.H.; Chelakkot, C.; Hong, S.; Choi, J.S.; Yim, D.S.; Oh, Y.K.; Choi, Y.L.; Shin, Y.K. Effect of HPV E6/E7 siRNA with chemotherapeutic agents on the regulation of TP53/E2F dynamic behavior for cell fate decisions. Neoplasia, 2017, 19(10), 735-749.
[http://dx.doi.org/10.1016/j.neo.2017.07.005] [PMID: 28843398]
[9]
Hu, Z.; Yu, L.; Zhu, D.; Ding, W.; Wang, X.; Zhang, C.; Wang, L.; Jiang, X.; Shen, H.; He, D.; Li, K.; Xi, L.; Ma, D.; Wang, H. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Res. Int., 2014, 2014612823
[http://dx.doi.org/10.1155/2014/612823] [PMID: 25136604]
[10]
Ding, W.; Hu, Z.; Zhu, D.; Jiang, X.; Yu, L.; Wang, X.; Zhang, C.; Wang, L.; Ji, T.; Li, K.; He, D.; Xia, X.; Liu, D.; Zhou, J.; Ma, D.; Wang, H. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin. Cancer Res., 2014, 20(24), 6495-6503.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0250] [PMID: 25336692]
[11]
Hu, Z.; Ding, W.; Zhu, D.; Yu, L.; Jiang, X.; Wang, X.; Zhang, C.; Wang, L.; Ji, T.; Liu, D.; He, D.; Xia, X.; Zhu, T.; Wei, J.; Wu, P.; Wang, C.; Xi, L.; Gao, Q.; Chen, G.; Liu, R.; Li, K.; Li, S.; Wang, S.; Zhou, J.; Ma, D.; Wang, H. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J. Clin. Invest., 2015, 125(1), 425-436.
[http://dx.doi.org/10.1172/JCI78206] [PMID: 25500889]
[12]
Wang, C.X.; Cannon, P.M. The clinical applications of genome editing in HIV. Blood, 2016, 127(21), 2546-2552.
[http://dx.doi.org/10.1182/blood-2016-01-678144] [PMID: 27053530]
[13]
Tebas, P.; Stein, D.; Tang, W.W.; Frank, I.; Wang, S.Q.; Lee, G.; Spratt, S.K.; Surosky, R.T.; Giedlin, M.A.; Nichol, G.; Holmes, M.C.; Gregory, P.D.; Ando, D.G.; Kalos, M.; Collman, R.G.; Binder-Scholl, G.; Plesa, G.; Hwang, W.T.; Levine, B.L.; June, C.H. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med., 2014, 370(10), 901-910.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[14]
Perez, E.E.; Wang, J.; Miller, J.C.; Jouvenot, Y.; Kim, K.A.; Liu, O.; Wang, N.; Lee, G.; Bartsevich, V.V.; Lee, Y.L.; Guschin, D.Y.; Rupniewski, I.; Waite, A.J.; Carpenito, C.; Carroll, R.G.; Orange, J.S.; Urnov, F.D.; Rebar, E.J.; Ando, D.; Gregory, P.D.; Riley, J.L.; Holmes, M.C.; June, C.H. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol., 2008, 26(7), 808-816.
[http://dx.doi.org/10.1038/nbt1410] [PMID: 18587387]
[15]
Tanaka, A.; Takeda, S.; Kariya, R.; Matsuda, K.; Urano, E.; Okada, S.; Komano, J. A novel therapeutic molecule against HTLV-1 infection targeting provirus. Leukemia, 2013, 27(8), 1621-1627.
[http://dx.doi.org/10.1038/leu.2013.46] [PMID: 23411465]
[16]
Oh, Y.K.; Park, T.G. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev., 2009, 61(10), 850-862.
[http://dx.doi.org/10.1016/j.addr.2009.04.018] [PMID: 19422869]
[17]
Castanotto, D.; Rossi, J.J. The promises and pitfalls of RNA-interference-based therapeutics. Nature, 2009, 457(7228), 426-433.
[http://dx.doi.org/10.1038/nature07758] [PMID: 19158789]
[18]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[19]
Ali, I.; Wani, W.A.; Haque, A.; Saleem, K. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs. Future Med. Chem., 2013, 5(8), 961-978.
[http://dx.doi.org/10.4155/fmc.13.62] [PMID: 23682571]
[20]
Ali, I.; Wani, W.A.; Saleem, K.; Wesselinova, D. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes. Med. Chem., 2013, 9(1), 11-21.
[http://dx.doi.org/10.2174/157340613804488297] [PMID: 22741786]
[21]
Ali, I.; Haque, A.; Saleem, K.; Hsieh, M.F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[http://dx.doi.org/10.1016/j.bmc.2013.04.018] [PMID: 23643901]
[22]
Ali, I.; Haque, A.; Wani, W.A.; Saleem, K.; Al Za’abi, M. Analyses of anticancer drugs by capillary electrophoresis: A review. Biomed. Chromatogr., 2013, 27(10), 1296-1311.
[http://dx.doi.org/10.1002/bmc.2953] [PMID: 23843248]
[23]
Ali, I.; Wani, W.A.; Saleem, K.; Haque, A. Platinum compounds: A hope for future cancer chemotherapy. Anticancer. Agents Med. Chem., 2013, 13(2), 296-306.
[http://dx.doi.org/10.2174/1871520611313020016] [PMID: 22583420]
[24]
Zhang, M.; Du, W.; Acklin, S.; Jin, S.; Xia, F. SIRT2 protects peripheral neurons from cisplatin-induced injury by enhancing nucleotide excision repair. J. Clin. Invest., 2020, 130(6), 2953-2965.
[http://dx.doi.org/10.1172/JCI123159] [PMID: 32134743]
[25]
Singh, B.N.; Zhou, H.; Li, J.; Tipton, T.; Wang, B.; Shao, G.; Gilbert, E.N.; Li, Q.; Jiang, S.W. Preclinical studies on histone deacetylase inhibitors as therapeutic reagents for endometrial and ovarian cancers. Future Oncol., 2011, 7(12), 1415-1428.
[http://dx.doi.org/10.2217/fon.11.124] [PMID: 22112317]
[26]
Lin, Z.; Bazzaro, M.; Wang, M.C.; Chan, K.C.; Peng, S.; Roden, R.B. Combination of proteasome and HDAC inhibitors for uterine cervical cancer treatment. Clin. Cancer Res., 2009, 15(2), 570-577.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1813] [PMID: 19147762]
[27]
de la Cruz-Hernández, E.; Pérez-Cárdenas, E.; Contreras-Paredes, A.; Cantú, D.; Mohar, A.; Lizano, M.; Dueñas-González, A. The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol. J., 2007, 4, 18.
[http://dx.doi.org/10.1186/1743-422X-4-18] [PMID: 17324262]
[28]
Lee, J.H.; Choy, M.L.; Marks, P.A. Mechanisms of resistance to histone deacetylase inhibitors. Adv. Cancer Res., 2012, 116, 39-86.
[http://dx.doi.org/10.1016/B978-0-12-394387-3.00002-1] [PMID: 23088868]
[29]
Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev., 2012, 64(3), 706-721.
[http://dx.doi.org/10.1124/pr.111.005637] [PMID: 22659329]
[30]
Gil, S.; Carmona, A.; Martínez-Criado, G.; León, A.; Prezado, Y.; Sabés, M. Analysis of platinum and trace metals in treated glioma rat cells by X-ray fluorescence emission. Biol. Trace Elem. Res., 2015, 163(1-2), 177-183.
[http://dx.doi.org/10.1007/s12011-014-0097-2] [PMID: 25216793]
[31]
Ali, P.I. Natural Products. Human Friendly Anti-Cancer Medications. Egypt. Pharmaceut. J., 2010, 9, 133-179.
[32]
Chang, J.T.; Kuo, T.F.; Chen, Y.J.; Chiu, C.C.; Lu, Y.C.; Li, H.F.; Shen, C.R.; Cheng, A.J. Highly potent and specific siRNAs against E6 or E7 genes of HPV16- or HPV18-infected cervical cancers. Cancer Gene Ther., 2010, 17(12), 827-836.
[http://dx.doi.org/10.1038/cgt.2010.38] [PMID: 20885450]
[33]
Jung, H.S.; Erkin, O.C.; Kwon, M.J.; Kim, S.H.; Jung, J.I.; Oh, Y.K.; Her, S.W.; Ju, W.; Choi, Y.L.; Song, S.Y.; Kim, J.K.; Kim, Y.D.; Shim, G.Y.; Shin, Y.K. The synergistic therapeutic effect of cisplatin with Human papillomavirus E6/E7 short interfering RNA on cervical cancer cell lines in vitro and in vivo. Int. J. Cancer, 2012, 130(8), 1925-1936.
[http://dx.doi.org/10.1002/ijc.26197] [PMID: 21630254]
[34]
Tan, S.; de Vries, E.G.; van der Zee, A.G.; de Jong, S. Anticancer drugs aimed at E6 and E7 activity in HPV-positive cervical cancer. Curr. Cancer Drug Targets, 2012, 12(2), 170-184.
[http://dx.doi.org/10.2174/156800912799095135] [PMID: 22165971]
[35]
Brickner, J.R.; Soll, J.M.; Lombardi, P.M.; Vågbø, C.B.; Mudge, M.C.; Oyeniran, C.; Rabe, R.; Jackson, J.; Sullender, M.E.; Blazosky, E.; Byrum, A.K.; Zhao, Y.; Corbett, M.A.; Gécz, J.; Field, M.; Vindigni, A.; Slupphaug, G.; Wolberger, C.; Mosammaparast, N. A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair. Nature, 2017, 551(7680), 389-393.
[http://dx.doi.org/10.1038/nature24484] [PMID: 29144457 ]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 17
Year: 2020
Page: [2125 - 2135]
Pages: 11
DOI: 10.2174/1871520620666200804102300
Price: $65

Article Metrics

PDF: 24
HTML: 2
EPUB: 1
PRC: 1