Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Coordinated Roadmap to Grip Pandemic COVID-19

Author(s): Rohini S. Kharwade and Sachin M. More*

Volume 2, Issue 4, 2021

Published on: 31 July, 2020

Page: [468 - 480] Pages: 13

DOI: 10.2174/2666796701999200801023110

Abstract

Coronavirus disease 2019 named COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been reported in Wuhan city of Hubei Province of China become a global pandemic. Genomic sequencing of SARS-CoV-2 unveils which showed multiple mutations relative to SARS-CoV. SARS-CoV-2 showed a very high receptor-binding domain (RBD) affinity towards the ACE-2 receptor in host cells, similar to SARS. Lack of immediate supervision and diagnostic measures hurdles prevention and treatment strategies against COVID-19. However, from SARS and MERS epidemics, WHO launched SOLIDARITY, a strategic and technical advisory group for infection hazards (STAG-IH) for the regular supervision and alert, which identified the estimated risk of COVID-19 and recommended the health emergence program to respond COVID-19. This article will briefly review the rationale history, structural genome with mutation, pathogenesis, preventive measure, and targeted treatment strategy to handle this pandemic COVID-19.

Keywords: COVID-19, SARS-Cov-2, ACE-2 receptor, social isolation, hydroxychloroquine, coronavirus disease.

Graphical Abstract
[1]
Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr 2020; 87: 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6]
[2]
Rabi FA, Zoubi MS. Al, Kasasbeh GA, Salameh DM. SARS-CoV-2 and Coronavirus Disease 2019 : What we know so far. Pathogens 2020; 9(3): 231.
[http://dx.doi.org/10.3390/pathogens9030231]
[3]
Kahn JS, Mcintosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J 2005; 24(11): 223-7.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60]
[4]
Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit Health 2020; 2(4): e201--e8.
[5]
WHO. Coronavirus disease (COVID-19) pandemic Available frrom: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[6]
Rabi FA, Zoubi MS. Al, Kasasbeh GA, Salameh DM, Al-nasser AD. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens 2020; 9(3): 231.
[http://dx.doi.org/10.3390/pathogens9030231]]
[7]
Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. SAGE J 1966; 121: 190-3.
[http://dx.doi.org/10.3181/00379727-121-30734]
[8]
Cabeça TK, Carraro E, Watanabe A, Granato C, Bellei N. Infections with human coronaviruses NL63 and OC43 among hospitalised and outpatient individuals in São Paulo, Brazil. Mem Inst Oswaldo Cruz 2012; 107(5): 693-4.
[http://dx.doi.org/10.1590/S0074-02762012000500020] [PMID: 22850964]
[9]
Peiris JSM. Coronaviruses. 18th ed. Med Microbiol 2012; pp. 587-93.
[11]
Park M, Thwaites RS, Openshaw PJM. COVID-19: Lessons from SARS and MERS. Eur J Immunol 2020; 50(3): 308-11.
[http://dx.doi.org/10.1002/eji.202070035]
[12]
Peeri NC, Shrestha N, Rahman S, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol 2020; 49: 717-26.
[http://dx.doi.org/10.1093/ije/dyaa033]]
[13]
[14]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[15]
Fahmi I. Coronavirus disease 2019. Available from: https://pers.droneemprit.id/covid19
[16]
ffar A, Allimuddin Z, Ziad M. Coronaviruses: severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus in travelers. Curr Opin Infect Dis 2014; 27(5): 411-7.
[http://dx.doi.org/10.1097/QCO.0000000000000089]
[17]
Brown EG, Tetro JA. Comparative analysis of the SARS coronavirus genome: a good start to a long journey. Lancet 2003; 361(9371): 1756-7.
[http://dx.doi.org/10.1016/S0140-6736(03)13444-7] [PMID: 12781529]
[18]
Yin C. Genotyping coronavirus SARS-CoV-2 : methods and implications. Genomics 2020; 112(5): 3588-96.
[http://dx.doi.org/1010.1016/j.ygeno.2020.04.0162020; 19: 1-12.]
[20]
Sardar AR, Satish D, Birla S, Gupta D. Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis Available from: https://www.biorxiv.org/content/10.1101/2020.03.21.001586v1
[21]
Kirchdoerfer RN, Wang N, Pallesen J, et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci Rep 2018; 8(1): 15701.
[http://dx.doi.org/10.1038/s41598-018-34171-7] [PMID: 30356097]
[22]
Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine (Lond) 2019; 18: 196-220.
[http://dx.doi.org/10.1016/j.nano.2019.03.004] [PMID: 30904587]
[23]
Hierholzer JC, Palmer EL, Whitfield SG, Dowdle WR. Protein composition of coronavirus OC 43. Virology 1972; 48(2): 516-27.
[http://dx.doi.org/10.1016/0042-6822(72)90062-1 s]
[24]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003 ] [PMID: 27012512]
[25]
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[26]
Dhama K, Sharun K, Tiwari R, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother 2020; 16(6): 1232-8.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[27]
Huang C, Liu WJ, Xu W, et al. A bat-derived putative cross-family recombinant coronavirus with a reovirus gene. PLoS Pathog 2016; 12(9)e1005883
[http://dx.doi.org/10.1371/journal.ppat.1005883] [PMID: 27676249]
[28]
Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020; 368(6489): 409-12.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[29]
Tok TT, Tatar G. Structures and functions of coronavirus proteins: molecular modeling of viral nucleoprotein. Int J Virol Infect Dis 2017; 2(1): 1-7.
[30]
Maier HJ, Bickerton E, Britton P. Coronaviruses: Methods and protocols. US: Humana Press 2015.
[31]
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol 2018; 419: 1-42.
[32]
Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 2006; 13(8): 751-2.
[http://dx.doi.org/10.1038/nsmb1123 ] [PMID: 16845391]
[33]
Abdullah A, Allison M, Trish M, et al. Hospital outbreak of middle east resiratory syndrome coronavirus. New Engl J Med 2013; 369(5): 407-16.
[34]
de Wilde AH, Falzarano D, Zevenhoven-Dobbe JC, et al. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Res 2017; 228: 7-13.
[http://dx.doi.org/10.1016/j.virusres.2016.11.011] [PMID: 27840112]
[35]
Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[36]
Thiel V, Siddell SG. Current topics in microbiology and immunology. Coronavirus replication and reverse genetics. Curr Top Micro Immu 2005; 287: 199-227.
[37]
Zhao Z, Li H, Wu X, et al. Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol 2004; 4: 21.
[http://dx.doi.org/10.1186/1471-2148-4-21] [PMID: 15222897]
[38]
Imbert I, Guillemot JC, Bourhis JM, et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 2006; 25(20): 4933-42.
[http://dx.doi.org/10.1038/sj.emboj.7601368] [PMID: 17024178]
[39]
te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SHE, Snijder EJ. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 2010; 38(1): 203-14.
[http://dx.doi.org/10.1093/nar/gkp904] [PMID: 19875418]
[40]
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 2007; 170(4): 1136-47.
[http://dx.doi.org/10.2353/ajpath.2007.061088] [PMID: 17392154]
[41]
He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006; 210(3): 288-97.
[http://dx.doi.org/10.1002/path.2067] [PMID: 17031779]
[42]
Cheung CY, Poon LLM, Ng IHY, et al. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 2005; 79(12): 7819-26.
[http://dx.doi.org/10.1128/JVI.79.12.7819-7826.2005] [PMID: 15919935]
[43]
Chan-Yeung M, Yu WC. Outbreak of severe acute respiratory syndrome in Hong Kong special administrative Region: case report. BMJ 2003; 326(7394): 850-2.
[http://dx.doi.org/10.1136/bmj.326.7394.850] [PMID: 12702616]
[44]
Tsui PT, Kwok ML, Yuen H, Lai ST. Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Emerg Infect Dis 2003; 9(9): 1064-9.
[http://dx.doi.org/10.3201/eid0909.030362] [PMID: 14519241]
[45]
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109102433
[http://dx.doi.org/10.1016/j.jaut.2020.102433 ] [PMID: 32113704]
[46]
Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020; 104(3): 246-51.
[http://dx.doi.org/10.1016/j.jhin.2020.01.022] [PMID: 32035997]
[47]
Herrero-Uribe L. Viruses, definitions and reality. Rev Biol Trop 2011; 59(3): 993-8.
[PMID: 22017106]
[48]
Mubareka S, Lowen AC, Steel J, Coates AL, García-Sastre A, Palese P. Transmission of influenza virus via aerosols and fomites in the guinea pig model. J Infect Dis 2009; 199(6): 858-65.
[http://dx.doi.org/10.1086/597073] [PMID: 19434931]
[49]
Faix RG. Survival of cytomegalovirus on environmental surfaces. J Pediatr 1985; 106(4): 649-52.
[http://dx.doi.org/10.1016/S0022-3476(85)80096-2] [PMID: 2984398]
[50]
Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. MBio 2015; 6(6): e01697-15.
[http://dx.doi.org/10.1128/mBio.01697-15] [PMID: 26556276]
[51]
Wolff MH, Sattar SA, Adegbunrin O, Tetro J. Environmental survival and microbicide inactivation of coronaviruses. In: Schmidt A, Wolff MH, Weber O, Eds. Coronaviruses with Spec Emphas First Insights Concern SARS. Switzerland: Birkhäuser Verlag Base 2005; pp. 201-12.
[http://dx.doi.org/10.1007/3-7643-7339-3_10]
[52]
Lai MYY, Cheng PKC, Lim WWL. Survival of severe acute respiratory syndrome coronavirus. Clin Infect Dis 2005; 41(7): e67-71.
[http://dx.doi.org/10.1086/433186] [PMID: 16142653]
[53]
Chan KH, Peiris JSM, Lam SY, Poon LLM, Yuen KY, Seto WH. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv Virol 2011; 734690: 7.
[http://dx.doi.org/10.1155/2011/734690]
[54]
Ansari SA, Springthorpe VS, Sattar SA, Rivard S, Rahman M. Potential role of hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 and rhinovirus 14. J Clin Microbiol 1991; 29(10): 2115-9.
[http://dx.doi.org/10.1128/JCM.29.10.2115-2119.1991] [PMID: 1658033]
[55]
Yen MY, Lu YC, Huang PH, Chen CM, Chen YC, Lin YE. Quantitative evaluation of infection control models in the prevention of nosocomial transmission of SARS virus to healthcare workers: implication to nosocomial viral infection control for healthcare workers. Scand J Infect Dis 2010; 42(6-7): 510-5.
[http://dx.doi.org/10.3109/00365540903582400] [PMID: 20148749]
[56]
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020; 172(9): 577-82.
[57]
Mackay B. Steffensen Emily H, Frank K MB. Dendrimers Based on [1,3,5]-Triazines. J Polym Sci 2006; 44: 3411-33.
[http://dx.doi.org/10.1002/pola.21333]
[58]
Jeong YL, Sojung B, Jinjong M. Middle east respiratory syndrome coronavirus encoded ORF8b strongly antagonizes IFN-β pramotor activation: its implication for vaccine design. J Micro 2019; 57: 803-11.
[http://dx.doi.org/10.1007/s12275-019-9272-7 ]
[59]
Ghinai I, McPherson TD, Hunter JC, et al. First known person-toperson transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA Lancet [Internet] 2020; 2(Cdc): 1-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30607-3]
[60]
Xiao Y, Pan H, She Q, Wang F, Chen M. Prevention of SARS-CoV-2 infection in patients with decompensated cirrhosis. Lancet Gastroenterol Hepatol 2020; 5(6): 528-9.
[http://dx.doi.org/10.1016/S2468-1253(20)30080-7]] [PMID: 32197093]
[61]
Jasper FW, Kwok HC, Richard YT, et al. Broad spectrum antivirals for the emerging middle east respiratory syndrome coronavirus. J Inf 2013; 67(6): 606-16.
[62]
Muller MP, Richardson SE, McGeer A, et al. Early diagnosis of SARS: lessons from the Toronto SARS outbreak. Eur J Clin Microbiol Infect Dis 2006; 25(4): 230-7.
[http://dx.doi.org/10.1007/s10096-006-0127-x] [PMID: 16586072]
[63]
Lewnard JA, Lo NC. Scientific and ethical basis for social-distancing interventions against COVID-19. Lancet Infect Dis 2020; 20(6): 631-3.
[http://dx.doi.org/10.1016/S1473-3099(20)30190-0] [PMID: 32213329]
[64]
Mackay IM, Arden KE. Middle east respiratory syndrome an emerging coronavirus infection tracked by crowd. Virus Res 2015; 202(16): 60-88.
[http://dx.doi.org/10.1016/j.virusres.2015.01.021]
[65]
Prem K, Liu Y, Russell T, et al. The effect of control strategies that reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China. medRxiv 2020; 2667(20): e261-70.
[66]
Rabenau HF, Kampf G, Cinatl J, Doerr HW. Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect 2005; 61(2): 107-11.
[http://dx.doi.org/10.1016/j.jhin.2004.12.023] [PMID: 15923059]
[67]
Saknimit M, Inatsuki I, Sugiyama Y, Yagami K. Virucidal efficacy of physico-chemical treatments against coronaviruses and parvoviruses of laboratory animals. Jikken Dobutsu 1988; 37(3): 341-5.
[http://dx.doi.org/10.1538/expanim1978.37.3_341] [PMID: 3416941]
[68]
Wood A, Payne D. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J Hosp Infect 1998; 38(4): 283-95.
[http://dx.doi.org/10.1016/S0195-6701(98)90077-9] [PMID: 9602977]
[69]
Omidbakhsh N, Sattar SA. Broad-spectrum microbicidal activity, toxicologic assessment, and materials compatibility of a new generation of accelerated hydrogen peroxide-based environmental surface disinfectant. Am J Infect Control 2006; 34(5): 251-7.
[http://dx.doi.org/10.1016/j.ajic.2005.06.002] [PMID: 16765201]
[70]
Kariwa H, Fujii N, Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology (Basel) 2006; 212(Suppl. 1): 119-23.
[http://dx.doi.org/10.1159/000089211] [PMID: 16490989]
[71]
Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther 2018; 7(2): 249-59.
[http://dx.doi.org/10.1007/s40121-018-0200-7] [PMID: 29633177]
[72]
Allegranzi B, Pittet D. Role of hand hygiene in healthcare-associated infection prevention. J Hosp Infect 2009; 73(4): 305-15.
[http://dx.doi.org/10.1016/j.jhin.2009.04.019] [PMID: 19720430]
[73]
Kwok YLA, Gralton J, McLaws ML. Face touching: a frequent habit that has implications for hand hygiene. Am J Infect Control 2015; 43(2): 112-4.
[http://dx.doi.org/10.1016/j.ajic.2014.10.015] [PMID: 25637115]
[74]
Yaoqing C, Kanagalaghatta R, et al. Crystal structure of the receptar binding domain from newly emerged middle east respiratory syndrome coronavirus. J Virol 2013; 87(19): 10777-83.
[75]
Chen J, Lau YF, Lamirande EW, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol 2010; 84(3): 1289-301.
[http://dx.doi.org/10.1128/JVI.01281-09] [PMID: 19906920]
[76]
Kevin VZ, Christopher IJ, Carl AB, Nicholas GD, Timothy WS. Response strategies for COVID-19 epidemics inAfrican settings: a mathematical modelling study. BMC Med 2020; 18: 324-43.
[77]
Qin L, Xiong B, Luo C, Guo ZM, Hao P, Su J, et al. Identification of probable genomic packaging signal sequence from SARS_CoV genome by bioinformatics analysis. Acta Pharmacol Sin 2003; 24(6): 489-96.
[78]
Chua F, Armstrong-James D, Sujal R, et al. The role of CT in case ascertainment and management of COVID-19 pneumonia in the UK: insights from high-incidence regions. Lancet Respir Med 2020; 2600(20): 19-20.
[79]
Lau SKP, Woo PCY, Wong BHL, et al. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in sars patients by enzyme-linked immunosorbent assay. J Clin Microbiol 2004; 42(7): 2884-9.
[http://dx.doi.org/10.1128/JCM.42.7.2884-2889.2004] [PMID: 15243033]
[80]
Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203(2): 622-30.
[http://dx.doi.org/10.1002/path.1560] [PMID: 15141376]
[81]
Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn 2020; 0(0): 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1758788] [PMID: 32306836]
[82]
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- An update on the status. Mil Med Res 2020; 7(1): 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[83]
An J, Liao X, Xiao T, et al. Clinical characteristics of the recovered COVID-19 patients with re-detectable positive RNA test. medRxiv 2020 2020; 1-12.
[84]
Yang L, Christian M, James K, Rachel L. The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across130 countries and teritories. BMC Med 2021; 19: 40-52.
[85]
Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 318(5): E736-41.
[http://dx.doi.org/10.1152/ajpendo.00124.2020] [PMID: 32228322]
[86]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[87]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[88]
Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology 2018; 517(517): 9-15.
[http://dx.doi.org/10.1016/j.virol.2017.11.012] [PMID: 29217279]
[89]
Khan RJ, Jha RK, Amera GM, et al. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J Biomol Struct Dyn 2020; 0(0): 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1753577] [PMID: 32266873]
[90]
Ulhaq ZS, Soraya GV, Fauziah FA. Recurrent positive SARS-CoV-2 RNA tests in recovered and discharged patients. Rev Clin Espa 2020; 220(8): 524-6.
[91]
Lancet IT, Wang Y. Remdesivir for COVID-19: challenges of underpowered studies. Lancet 2020; 6736(20): 31022-3.
[http://dx.doi.org/10.1016/S0140-6736(20)31023-0]
[92]
Pant S, Singh M, Ravichandiran V, Murty USN, Srivastava HK. Peptide-like and small-molecule inhibitors against Covid-19. J Biomol Struct Dyn 2020; 0(0): 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1757510] [PMID: 32306822]
[93]
Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 2020; 55(3)105923
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923 ]
[94]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949 ]
[95]
Chen D, Xu W, Lei Z, Huang Z, Liu J. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. Int J Infect Dis 2020; 93: 297-9.
[96]
Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020; 92(6): 556-63.
[http://dx.doi.org/10.1002/jmv.25729 ss]
[97]
Ritchie AI, Singanayagam A. Correspondence immunosuppression for hyperinflammation in. Lancet 2020; 6736(20): 30691.
[http://dx.doi.org/10.1016/S0140-6736(20)30691-7]
[98]
Chu CM, Cheng VCC, Hung IFN, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[99]
Lo IL, Lio CF, Cheong HH, Lei CI, Cheong TH. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int J Biol Sci 2020; 16: 1698-707.
[100]
Qu YM, Kang EM, Cong HY. Positive result of SARS-CoV-2 in sputum from a cured patient with COVID-19. Travel Med Infect Dis 2020; 220(8): 524-6.
[101]
Ling Y, Xu SB, Lin YX, Tian D, Zhu ZQ. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J 2020; 133(9): 1039-43.
[102]
Xu Y, Li X, Zhu B, Xu Y, Li X, Zhu B. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 2020; 26(4): 502-4.

© 2024 Bentham Science Publishers | Privacy Policy