Iron (III) Chloride Hexahydrate as a Highly Efficient Catalyst for Acetylation of Protic Nucleophiles with Acetic Anhydride under Solvent-free Conditions

Author(s): Naoures J. Eddine, Fayçal Jennen, Yakdhane Kacem, Jamil Kraiem*

Journal Name: Current Organocatalysis

Volume 8 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Acetylation of protic nucleophiles is used to protect these functional groups. Most of the methods described in the literature use solvents, one or more equivalent of toxic bases or expensive and toxic catalysts. Therefore, new methodologies, above all, greener and more economical procedures, are still in demand.

Objective: An eco-efficient method was developed for the acetylation of alcohols, phenols, thiols, amines, and carbohydrates, using acetic anhydride and a catalytic amount of the environmentally benign and inexpensive FeCl3.6H2O, under solvent-free conditions.

Methods: Acetylation of a variety of protic nucleophiles was performed using 0.2 mol % of FeCl3.6H2O as the catalyst, and 1.2 equivalent of Ac2O as the acetylating agent at room temperature and under solvent-free conditions.

Results: This procedure appears to be highly efficient and promoted rapid and quantitative acetylation under simple and minimum manipulation. Chromatography or recrystallization was generally not necessary for the purification of products.

Conclusion: This eco-friendly protocol appears to be potentially universally applicable in organic design to protect protic nucleophiles and isscalable for industrial fields.

Keywords: Green chemistry, protic nucleophiles, solventless, catalysis, acetylation, iron (III) chloride hexahydrate.

[1]
Green, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 3rd ed; John Wiley & Sons, Inc.: New York, 1999.
[http://dx.doi.org/10.1002/0471220574]
[2]
Collins, P.C.; Ferrier, R.J. Monosaccharides: Their Chemistry and Their Roles in Natural Products; John Wiley & Sons, Inc.: New York, 1995. (b) Bartoli, G.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Procopio, A.; Tagarelli, A. Per-O-acetylation of sugars catalyzed by Ce (OTf)3. Green Chem., 2004, 6, 191-192.
[http://dx.doi.org/10.1039/b400920g]
[3]
Vedejs, E.; Fields, S.C.; Schrimpf, M.R. Asymmetric transformation in synthesis: chiral amino acid enolate equivalents. J. Am. Chem. Soc., 1993, 115, 11612-11613.
[http://dx.doi.org/10.1021/ja00077a076]
[4]
Sarvari, M.H.; Sharghi, H. SolventQFree Catalytic Friedel–Crafts Acylation of Aromatic Compounds with Carboxylic Acids by Using a Novel Heterogeneous Catalyst System: pQToluenesulfonic Acid/Graphit. Helv. Chim. Acta, 2005, 88, 2282-2287.
[http://dx.doi.org/10.1002/hlca.200590162]
[5]
Martin-Aranda, R.M.; Cejka, J. Recent Advances in Catalysis Over Mesoporous Molecular Sieves. Top. Catal., 2010, 53, 141-153.
[http://dx.doi.org/10.1007/s11244-009-9419-6]
[6]
Chakraborti, A.K.; Gulhane, R. Perchloric acid adsorbed on silica gel as a new, highly efficient, and versatile catalyst for acetylation of phenols, thiols, alcohols, and amines. Chem. Commun. (Camb.), 2003, (15), 1896-1897.
[http://dx.doi.org/10.1039/B304178F ] [PMID: 12932021]
[7]
Khaligh, N.G. Poly(N-vinylimidazole) as an efficient catalyst for acetylation of alcohols, phenols, thiols and amines under solvent-free conditions. RSC Advances, 2013, 3, 99-110.
[http://dx.doi.org/10.1039/C2RA21295A]
[8]
Rahmatpout, A. Polystyrene-supported GaCl3: A new, highly efficient and recyclable heterogeneous Lewis acid catalyst for acetylation and benzoylation of alcohols and phenols. C. R. Chim., 2012, 15, 1048-1054.
[http://dx.doi.org/10.1016/j.crci.2012.08.005]
[9]
Ballini, R.; Bosica, G.; Carloni, S.; Ciaralli, L.; Maggi, R.; Sartori, G. Zeolite HSZ-360 as a new reusable catalyst for the direct acetylation of alcohols and phenols under solventless conditions. Tetrahedron Lett., 1998, 39, 6049-6052.
[http://dx.doi.org/10.1016/S0040-4039(98)01244-1]
[10]
Liu, Z.; Ma, Q.; Liu, Y.; Wang, Q. 4-(N,N-Dimethylamino)pyridine hydrochloride as a recyclable catalyst for acylation of inert alcohols: substrate scope and reaction mechanism. Org. Lett., 2014, 16(1), 236-239.
[http://dx.doi.org/10.1021/ol4030875 ] [PMID: 24328854]
[11]
Gulhane, S.R.; Chakraborti, A.K. Zinc perchlorate hexahydrate [Zn(ClO4)2.6H2O] as acylation catalyst for poor nucleophilic phenols, alcohols and amines: Scope and limitations. J. Mol. Catal. Chem., 2007, 264, 208-213.
[http://dx.doi.org/10.1016/j.molcata.2006.09.015]
[12]
Kantam, M.L.; Aziz, K.; Likhar, P.R. Bis(cyclopentadienyl) zirconium dichloride catalyzed acetylation of phenols, alcohols and amines. Catal. Commun., 2006, 7, 484-487.
[http://dx.doi.org/10.1016/j.catcom.2005.10.001]
[13]
Chandrasekhar, S.; Ramachander, T.; Taki, M. Acylation of alcohols with acetic anhydride catalyzed by TaCl5: Some implications in kinetic resolution. Tetrahedron Lett., 1998, 39, 3263-3266.
[http://dx.doi.org/10.1016/S0040-4039(98)00465-1]
[14]
Chakraborti, A.K.; Gulhane, R. Zirconium(IV) Chloride as a New, Highly Efficient, and Reusable Catalyst for Acetylation of Phenols, Thiols, Amines, and Alcohols under Solvent-Free Conditions. Synlett, 2004, 4, 627-630.
[http://dx.doi.org/10.1055/s-2004-815442]
[15]
Chakraborti, A.K.; Gulhane, R. Indium (III) chloride as a new, highly efficient, and versatile catalyst for acylation of phenols, thiols, alcohols, and amines. Tetrahedron Lett., 2003, 44, 6749-6753.
[http://dx.doi.org/10.1016/S0040-4039(03)01641-1]
[16]
De, S.K. Ruthenium (III) chloride catalyzed acylation of alcohols, phenols, thiols, and amines. Tetrahedron Lett., 2004, 45, 2919-2922.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.071]
[17]
Chakraborti, A.K.; Sharma, L.; Gulhane, R. Shivani. Electrostatic catalysis by ionic aggregates: scope and limitations of Mg(ClO4)2 as acylation catalyst. Tetrahedron, 2003, 59, 7661-7668.
[http://dx.doi.org/10.1016/j.tet.2003.08.007]
[18]
Baltork, I.M.; Aliyan, H.; Khosropour, A.R. Bismuth (III) salts as convenient and efficient catalysts for the selective acetylation and benzoylation of alcohols and phenols. Tetrahedron, 2001, 57, 5851-5854.
[http://dx.doi.org/10.1016/S0040-4020(01)00521-X]
[19]
Nardi, M.; Di Gioia, M.L.; Costanzo, P.; De Nino, A.; Maiuolo, L.; Oliverio, M.; Olivito, F.; Procopio, A. Selective Acetylation of Small Biomolecules and Their Derivatives Catalyzed by Er(OTf)3. Catalysts, 2017, 7, 269-282.
[http://dx.doi.org/10.3390/catal7090269]
[20]
Chandra, K.L.; Saravanan, P.; Singh, R.K.; Singh, V.K. Lewis Acid Catalyzed Acylation Reactions: Scope and Limitations. Tetrahedron, 2002, 58, 1369-1374.
[http://dx.doi.org/10.1016/S0040-4020(01)01229-7]
[21]
Firouzabadi, H.; Iranpoor, N.; Farahi, S. Solid trichlorotitanium(IV) trifluoromethanesulfonate TiCl3(OTf) catalyzed efficient acylation of –OH and –SH: Direct esterification of alcohols with carboxylic acids and transesterification of alcohols with esters under neat conditions. J. Mol. Catal. Chem., 2008, 289, 61-68.
[http://dx.doi.org/10.1016/j.molcata.2008.04.010]
[22]
Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Procopio, A.; Nardi, M.; Bartoli, G.; Romeo, R. Highly efficient and versatile acetylation of alcohols catalyzed by cerium (III) triflate. Tetrahedron Lett., 2003, 44, 5621-5624.
[http://dx.doi.org/10.1016/S0040-4039(03)01358-3]
[23]
Wakasougi, K.; Misaki, T.; Yamada, K.; Tanabe, Y. Diphenylammonium triflate (DPAT): efficient catalyst for esterification of carboxylic acids and for transesterification of carboxylic esters with nearly equimolar amounts of alcohols. Tetrahedron Lett., 2000, 41, 5249-5252.
[http://dx.doi.org/10.1016/S0040-4039(00)00821-2]
[24]
Kamal, A.; Khan, M.N.A.; Reddy, K.S.; Srikanth, Y.V.V.; Al Krishnaji, T. (OTf)3 as a highly efficient catalyst for the rapid acetylation of alcohols, phenols and thiophenols under solvent-free conditions. Tetrahedron Lett., 2007, 48, 3813-3818.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.162]
[25]
Baldwin, N.J.; Nord, A.N.; O’Donnell, B.D.; Mohan, R.S. Iron (III) tosylate catalyzed acylation of alcohols, phenols, and aldehydes. Tetrahedron Lett., 2012, 53, 6946-6949.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.033]
[26]
Shi, L.; Zhang, G.; Pan, F. Fe2(SO4)3.xH2O-catalyzed per-O-acetylation of sugars compatible with acid-labile protecting groups adopted in carbohydrate chemistry. Tetrahedron, 2008, 64, 2572-2575.
[http://dx.doi.org/10.1016/j.tet.2008.01.027]
[27]
Dasgupta, F.; Singh, P.P.; Srivastava, H.C. Acetylation of carbohydrates using ferric chloride. Carbohydr. Res., 1980, 80, 346-349.
[28]
Driowya, M.; Bougrin, K.; Benhida, R. Sono-Transition-Metal-Catalysis of One pot Three-stepSynthesis of glycosyl-1,2,3-triazoles. Synth. Commun., 2013, 43, 1808-1817.
[29]
Mihara, M.; Nakai, T.; Iwai, T.; Ito, T.; Ohno, T.; Mizuno, T. Solvent-Free Iron (III) Chloride Catalyzed O-, S-, and N-Acylation under Mild Conditions. Synlett, 2010, 253-255.
[http://dx.doi.org/10.1055/s-0029-1219163]
[30]
Anbu, N.; Nagarjun, N.; Jacob, M.; Vimala Kumari Kalaiarasi, J.M.; Dhakshinamoorthy, A. Acetylation of alcohols, amines phenols, thiols under catalyst and solvent-free conditions. Chemistry, 2019, 1, 69-79.
[http://dx.doi.org/10.3390/chemistry1010006]
[31]
Bauer, I.; Knölker, H-J. Iron catalysis in organic synthesis. Chem. Rev., 2015, 115(9), 3170-3387.
[http://dx.doi.org/10.1021/cr500425u ] [PMID: 25751710]
[32]
Garegg, P.J. Saccharides of biological importance: challenges and opportunities for organic synthesis. Acc. Chem. Res., 1992, 25, 575-580.
[http://dx.doi.org/10.1021/ar00024a005]
[33]
(a)Hölfe, P-V.G.; Steglich, W.; Vorbrüggen, H. 4-Dialkylaminopyridines as highly active acylation catalysts. An Chem. Int. Ed. Engl., 1978, 17, 569-583.
[http://dx.doi.org/10.1002/anie.197805691]
(b)Scriven, E.F.V. 4-Dialky laminopyridines. Super Acylation and Alkylation Catalysts. Chem. Soc. Rev., 1983, 12, 129-161.
(c)Nicolaou, K.C.; Pfefferkorn, J.A.; Roecker, A.J.; Cao, G-Q.; Barluenga, S.; Mitchell, H.J. Natural Product-like Combinatorial Libraries Based on Privileged Structures. 1. General Principles and Solid-Phase Synthesis of Benzopyrans. J. Am. Chem. Soc., 2000, 122, 9939-9953.
[http://dx.doi.org/10.1021/ja002033k]
[34]
(a)Metz, T.O.; Alderson, N.L.; Chachich, M.E.; Thorpe, S.R.; Baynes, J.W. Pyridoxamine traps intermediates in lipid peroxidation reactions in vivo: evidence on the role of lipids in chemical modification of protein and development of diabetic complications. J. Biol. Chem.,, 2003, 278(43), 42012-42019.
[http://dx.doi.org/10.1074/jbc.M304292200] [PMID: 12923193]
(b)Garg, P.; Keul, H.; Klee, D.; Möller, M. M. Concept and synthesisof poly (ester amides) with one isolated. two or three consecutive amide bond randomly distributed along the polyester Des. Monomers Polym., , 2009, 12, 405-424.
[http://dx.doi.org/ 10.1163/138577209X12486896623454]
(c)Fischbach, M.A.; Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. d Chem. Rev., , 2006, 106(8), 3468-3496.
[http://dx.doi.org/10.1021/cr0503097] [PMID: 16895337]
(d)Valeur, E.; Bradley, M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev., 2009, 38(2), 606-631.
[http://dx.doi.org/10.1039/B701677H ] [PMID: 19169468]
[35]
Kua, Y.L.; Gan, S.; Morris, A.; Kiat Ng, H. Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustain. Chem. Pharm, 2016, 4, 21-31.
[http://dx.doi.org/10.1016/j.scp.2016.07.003]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 8
ISSUE: 2
Year: 2021
Published on: 31 July, 2020
Page: [162 - 171]
Pages: 10
DOI: 10.2174/2213337207999200731184638
Price: $25

Article Metrics

PDF: 386
HTML: 1