Release Characteristics of an Essential Oil Component Encapsulated with Cyclodextrin Shell Matrices

(E-pub Ahead of Print)

Author(s): Zhe Li, Wangwen Wen, Xulong Chen, Lin Zhu, Genjinsheng Cheng, Zhenggen Liao, Hao Huang, Liangshan Ming*

Journal Name: Current Drug Delivery

Become EABM
Become Reviewer

Abstract:

Background: Essential oils are poor aqueous solubility and high volatility compounds. The encapsulation of essential oils with cyclodextrins (CDs) can protect them from the adverse environmental conditions and improve their stability. Therefore, increasing the functional capabilities of essential oils when they were used as additives in pharmaceutical and food systems. Additionally, the release of active compounds is an important issue. However, there were few studies about the effect of different CDs on the release of drugs after encapsulation. Therefore, the information on the study of release models is considerably limited.

Objective: This study aimed to (i) characterize the physico-chemical properties and release behavior of myrcene encapsulated in the four different shell matrices of α-CD, β-CD, γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), which were selected from the perspective of stability, and (ii) determine the release mechanism of myrcene in inclusion complexes (ICs).

Methods: ICs of myrcene and four CDs were prepared by freeze-drying. The physico-chemical properties of ICs were fully characterized by laser diffraction particle size analyzer, scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR) and differential scanning calorimeter (DSC). The release behaviors of ICs at 50, 60, 70 and 80 °C were determined and described by zero-order or first-order kinetics with the Henderson-Pabis, Peppas, Avrami and Page mathematical models. Moreover, the possible binding modes of ICs were identified with molecular modelling technique.

Results: Firstly, the structure of particle size distribution (PSD), FT-IR, DSC and SEM showed that (i) CDs could effectively encapsulate the myrcene molecules, and (ii) the release kinetics were well simulated by Avrami and Page models. Secondly, the release rates of the ICs experienced unsteady state in the early stage, and gradually became almost constants period after 20 hours. Except that the release of myrcene in γ-CD/myrcene belonged to the first-order kinetic, the release models of the remaining three ICs belonged to diffusion mode. Thirdly, the calculated binding energies of the optimized structures for α-CD/myrcene, β-CD/myrcene, γ-CD/myrcene, and HP-β-CD/myrcene ICs were −4.28, −3.82, −4.04, and −3.72 kcal/mol, respectively. Finally, the encapsulation of myrcene with α-CD and β-CD was preferable according to the stability and release characteristics.

Conclusion: The encapsulation of myrcene was profoundly affected by the type of CDs, and the stability could be improved by complexation with suitable CDs. The binding behavior between guest and CD molecules, and the release profile of the guest molecules could be effectively explained by the kinetics parameters and molecular modelling. This study can provide an effective basis and guide for screening suitable shell matrices.

Keywords: Myrcene, effective diffusivity, release kinetics, cyclodextrins, inclusion complexes (ICs)

Rights & PermissionsPrintExport Cite as

Article Details

(E-pub Ahead of Print)
DOI: 10.2174/1567201817666200731164902
Price: $95

Article Metrics

PDF: 3