Exosomes: Structure, Biogenesis, Types and Application in Diagnosis and Gene and Drug Delivery

Author(s): Shriya Agarwal, Vinayak Agarwal, Mugdha Agarwal, Manisha Singh*

Journal Name: Current Gene Therapy

Volume 20 , Issue 3 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

In recent times, several approaches for targeted gene therapy (GT) had been studied. However, the emergence of extracellular vesicles (EVs) as a shuttle carrying genetic information between cells has gained a lot of interest in scientific communities. Owing to their higher capabilities in dealing with short sequences of nucleic acid (mRNA, miRNA), proteins, recombinant proteins, exosomes, the most popular form of EVs are viewed as reliable biological therapeutic conveyers. They have natural access through every biological membrane and can be employed for site-specific and efficient drug delivery without eliciting any immune responses hence, qualifying as an ideal delivery vehicle. Also, there are many research studies conducted in the last few decades on using exosome-mediated gene therapy into developing an effective therapy with the concept of a higher degree of precision in gene isolation, purification and delivery mechanism loading, delivery and targeting protocols. This review discusses several facets that contribute towards developing an efficient therapeutic regime for gene therapy, highlighting limitations and drawbacks associated with current GT and suggested therapeutic regimes.

Keywords: Extracellular vesicles (EVs), viral vectors, genome, microRNA (miRNA), short hairpin RNA (shRNA), immunogenicity.

[1]
Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev 2013; 65(3): 357-67.
[http://dx.doi.org/10.1016/j.addr.2012.06.014] [PMID: 22820532]
[2]
Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21(R1): R125-34.
[http://dx.doi.org/10.1093/hmg/dds317] [PMID: 22872698]
[3]
O’Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther 2012; 12(4): 262-74.
[http://dx.doi.org/10.2174/156652312802083594] [PMID: 22856601]
[4]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinf 2015; 13(1): 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[5]
Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 2013; 11(1): 88.
[http://dx.doi.org/10.1186/1478-811X-11-88] [PMID: 24245560]
[6]
Srivastava A, Filant J, Moxley KM, Sood A, McMeekin S, Ramesh R. Exosomes: a role for naturally occurring nanovesicles in cancer growth, diagnosis and treatment. Curr Gene Ther 2015; 15(2): 182-92.
[http://dx.doi.org/10.2174/1566523214666141224100612] [PMID: 25537774]
[7]
Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene 2016; 575(2 Pt 2): 377-84.
[http://dx.doi.org/10.1016/j.gene.2015.08.067] [PMID: 26341056]
[8]
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219: 396-405.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.030] [PMID: 26241750]
[9]
Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O’Byrne KJ. Functions and therapeutic roles of exosomes in cancer. Front Oncol 2014; 4: 127.
[http://dx.doi.org/10.3389/fonc.2014.00127] [PMID: 24904836]
[10]
Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012; 3: 228.
[http://dx.doi.org/10.3389/fphys.2012.00228] [PMID: 22754538]
[11]
Wahlgren J, De L, Karlson T, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 2012; 40(17) e130
[http://dx.doi.org/10.1093/nar/gks463] [PMID: 22618874]
[12]
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016; 6(4): 287-96.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[13]
Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013; 21(1): 185-91.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[14]
Wassmer SJ, Carvalho LS, György B, Vandenberghe LH, Maguire CA. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Sci Rep 2017; 7(1): 45329.
[http://dx.doi.org/10.1038/srep45329] [PMID: 28361998]
[15]
Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 2017; 312(1): L110-21.
[http://dx.doi.org/10.1152/ajplung.00423.2016] [PMID: 27881406]
[16]
Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C. Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 2013; 525(2): 191-9.
[http://dx.doi.org/10.1016/j.gene.2013.03.095] [PMID: 23566843]
[17]
Silva G, Poirot L, Galetto R, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11(1): 11-27.
[http://dx.doi.org/10.2174/156652311794520111] [PMID: 21182466]
[18]
Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2016; 240: 165-90.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.012] [PMID: 26686079]
[19]
Phillips AJ. The challenge of gene therapy and DNA delivery. J Pharm Pharmacol 2001; 53(9): 1169-74.
[http://dx.doi.org/10.1211/0022357011776603] [PMID: 11578098]
[20]
Ramamoorth M, Narvekar A. Non-viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[21]
Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery past, present, and future. Prog Polym Sci 2007; 32(8-9): 799-837.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.007]
[22]
Montier T, Delépine P, Pichon C, Férec C, Porteous DJ, Midoux P. Non-viral vectors in cystic fibrosis gene therapy: progress and challenges. Trends Biotechnol 2004; 22(11): 586-92.
[http://dx.doi.org/10.1016/j.tibtech.2004.09.009] [PMID: 15491803]
[23]
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12(5): 341-55.
[http://dx.doi.org/10.1038/nrg2988] [PMID: 21499295]
[24]
Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 2006; 17(1): 1-9.
[http://dx.doi.org/10.1089/hum.2006.17.1] [PMID: 16409120]
[25]
Manfredsson FP, Okun MS, Mandel RJ. Gene therapy for neurological disorders: challenges and future prospects for the use of growth factors for the treatment of Parkinson’s disease. Curr Gene Ther 2009; 9(5): 375-88.
[http://dx.doi.org/10.2174/156652309789753400] [PMID: 19860652]
[26]
Alqawlaq S, Huzil JT, Ivanova MV, Foldvari M. Challenges in neuroprotective nanomedicine development: progress towards noninvasive gene therapy of glaucoma. Nanomedicine (Lond) 2012; 7(7): 1067-83.
[http://dx.doi.org/10.2217/nnm.12.69] [PMID: 22846092]
[27]
Bates K, Kostarelos K. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv Drug Deliv Rev 2013; 65(15): 2023-33.
[http://dx.doi.org/10.1016/j.addr.2013.10.003] [PMID: 24184373]
[28]
Zhang Y, Satterlee A, Huang L. In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol Ther 2012; 20(7): 1298-304.
[http://dx.doi.org/10.1038/mt.2012.79] [PMID: 22525514]
[29]
Elsabahy M, Nazarali A, Foldvari M. Non-viral nucleic acid delivery: key challenges and future directions. Curr Drug Deliv 2011; 8(3): 235-44.
[http://dx.doi.org/10.2174/156720111795256174] [PMID: 21291381]
[30]
Sheridan C. Gene therapy finds its niche. Nat Biotechnol 2011; 29(2): 121-8.
[http://dx.doi.org/10.1038/nbt.1769] [PMID: 21301435]
[31]
Yáñez RJ, Porter AC. Therapeutic gene targeting. Gene Ther 1998; 5(2): 149-59.
[http://dx.doi.org/10.1038/sj.gt.3300601] [PMID: 9578833]
[32]
Trams EG, Lauter CJ, Salem JN, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta (BBA). Biomembranes 1981; 645(1): 63-70.
[http://dx.doi.org/10.1016/0005-2736(81)90512-5]
[33]
Galieva LR, James V, Mukhamedshina YO, Rizvanov AA. Therapeutic potential of extracellular vesicles for the treatment of nerve disorders. Front Neurosci 2019; 13: 163.
[http://dx.doi.org/10.3389/fnins.2019.00163] [PMID: 30890911]
[34]
György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68(16): 2667-88.
[http://dx.doi.org/10.1007/s00018-011-0689-3] [PMID: 21560073]
[35]
EL Andaloussi S. Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347-57.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[36]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[37]
Taylor DD, Gercel-Taylor C. The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Front Genet 2013; 4: 142.
[http://dx.doi.org/10.3389/fgene.2013.00142] [PMID: 23908664]
[38]
Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4(1): 30087.
[http://dx.doi.org/10.3402/jev.v4.30087] [PMID: 26725829]
[39]
Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med 2018; 379(10): 958-66.
[http://dx.doi.org/10.1056/NEJMra1704286] [PMID: 30184457]
[40]
De Jong OG, Van Balkom BW, Schiffelers RM, Bouten CV, Verhaar MC. Extracellular vesicles: potential roles in regenerative medicine. Front Immunol 2014; 5: 608.
[http://dx.doi.org/10.3389/fimmu.2014.00608] [PMID: 25520717]
[41]
Momen-Heravi F, Balaj L, Alian S, et al. Current methods for the isolation of extracellular vesicles. Biol Chem 2013; 394(10): 1253-62.
[http://dx.doi.org/10.1515/hsz-2013-0141] [PMID: 23770532]
[42]
Doeppner TR, Herz J, Görgens A, et al. Extracellular vesicles improve post‐stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 2015; 4(10): 1131-43.
[http://dx.doi.org/10.5966/sctm.2015-0078] [PMID: 26339036]
[43]
György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 2015; 55: 439-64.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124630] [PMID: 25292428]
[44]
Armstrong JP, Holme MN, Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano 2017; 11(1): 69-83.
[http://dx.doi.org/10.1021/acsnano.6b07607] [PMID: 28068069]
[45]
Lo Cicero A, Stahl PD, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 2015; 35: 69-77.
[http://dx.doi.org/10.1016/j.ceb.2015.04.013] [PMID: 26001269]
[46]
Mentkowski KI, Snitzer JD, Rusnak S, Lang JK. Therapeutic potential of engineered extracellular vesicles. AAPS J 2018; 20(3): 50.
[http://dx.doi.org/10.1208/s12248-018-0211-z] [PMID: 29546642]
[47]
Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 2013; 13(10-11): 1637-53.
[http://dx.doi.org/10.1002/pmic.201200373] [PMID: 23335344]
[48]
Baietti MF, Zhang Z, Mortier E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012; 14(7): 677-85.
[http://dx.doi.org/10.1038/ncb2502] [PMID: 22660413]
[49]
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[50]
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[51]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-89.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[52]
Melo SA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014; 26(5): 707-21.
[http://dx.doi.org/10.1016/j.ccell.2014.09.005] [PMID: 25446899]
[53]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[54]
Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G. The biogenesis and functions of exosomes. Traffic 2002; 3(5): 321-30.
[http://dx.doi.org/10.1034/j.1600-0854.2002.30502.x] [PMID: 11967126]
[55]
Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett 2006; 107(2): 102-8.
[http://dx.doi.org/10.1016/j.imlet.2006.09.005] [PMID: 17067686]
[56]
Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 2013; 113(1): 1-11.
[http://dx.doi.org/10.1007/s11060-013-1084-8] [PMID: 23456661]
[57]
Alenquer M, Amorim MJ. Exosome biogenesis, regulation, and function in viral infection. Viruses 2015; 7(9): 5066-83.
[http://dx.doi.org/10.3390/v7092862] [PMID: 26393640]
[58]
Urbanelli L, Magini A, Buratta S, et al. Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel) 2013; 4(2): 152-70.
[http://dx.doi.org/10.3390/genes4020152] [PMID: 24705158]
[59]
Pant S, Hilton H, Burczynski ME. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol 2012; 83(11): 1484-94.
[http://dx.doi.org/10.1016/j.bcp.2011.12.037] [PMID: 22230477]
[60]
Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21(4): 575-81.
[http://dx.doi.org/10.1016/j.ceb.2009.03.007] [PMID: 19442504]
[61]
Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010; 18(9): 1606-14.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[62]
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 2014; 1846(1): 75-87.
[PMID: 24747178]
[63]
Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35(7): 2383-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[64]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[65]
Jiang XC, Gao JQ. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 2017; 521(1-2): 167-75.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.038] [PMID: 28216464]
[66]
Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011; 19(10): 1769-79.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[67]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[68]
van Dommelen SM, Vader P, Lakhal S, et al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Control Release 2012; 161(2): 635-44.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.021] [PMID: 22138068]
[69]
Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 2012; 7: 1525-41.
[PMID: 22619510]
[70]
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 2017; 38(6): 754-63.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[71]
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond) 2016; 12(3): 655-64.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[72]
Lai RC, Yeo RW, Tan KH, Lim SK. Exosomes for drug delivery - a novel application for the mesenchymal stem cell. Biotechnol Adv 2013; 31(5): 543-51.
[http://dx.doi.org/10.1016/j.biotechadv.2012.08.008] [PMID: 22959595]
[73]
Lakhal S, Wood MJ. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays 2011; 33(10): 737-41.
[http://dx.doi.org/10.1002/bies.201100076] [PMID: 21932222]
[74]
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery Adv Drug Deliv Rev 2016; 106(Pt A): 148-56
[http://dx.doi.org/10.1016/j.addr.2016.02.006 ] [PMID: 26928656]
[75]
Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2018; 150: 137-49.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[76]
Rana S, Zöller M. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans 2011; 39(2): 559-62.
[http://dx.doi.org/10.1042/BST0390559] [PMID: 21428939]
[77]
Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017; 174: 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[78]
Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2014; 2(5): 606-19.
[http://dx.doi.org/10.1016/j.stemcr.2014.04.006] [PMID: 24936449]
[79]
Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 2011; 6(4): 481-92.
[http://dx.doi.org/10.2217/rme.11.35] [PMID: 21749206]
[80]
Khoshsirat S, Keramatinia A, Khoramgah MS, et al. Exosome Therapy in Spinal Cord Injury: A Review. J Otorhinolaryngol Fac Plas Surg 2019; 5(2): 1-8.
[http://dx.doi.org/10.22037/orlfps.v5i2.28004]
[81]
Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017; 49(6) e346
[http://dx.doi.org/10.1038/emm.2017.63] [PMID: 28620221]
[82]
Smith JA, Alfaro-Cervello C, Cossetti C, Iraci N, Stefanini M, Pluchino S. Extracellular membrane vesicles and extracellular membrane vesicle–based therapeutics for brain diseases RNA. Nanotechnol Therap 2013; 427-46..
[http://dx.doi.org/10.1201/b15152-28]
[83]
Sims B, Gu L, Krendelchtchikov A, Matthews QL. Neural stem cell-derived exosomes mediate viral entry. Int J Nanomedicine 2014; 9: 4893-7.
[http://dx.doi.org/10.2147/IJN.S70999] [PMID: 25364247]
[84]
Zhou Y, Xu H, Xu W, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 2013; 4(2): 34.
[http://dx.doi.org/10.1186/scrt194] [PMID: 23618405]
[85]
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes ci Rep 2016; 6(1): 34: 842..
[http://dx.doi.org/10.1038/srep34842] [PMID: 27721418]
[86]
Lee M, Liu T, Im W, Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur J Neurosci 2016; 44(4): 2114-9.
[http://dx.doi.org/10.1111/ejn.13275] [PMID: 27177616]
[87]
Li Y, Liu Z, Xin H, Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia 2014; 62(1): 1-16.
[http://dx.doi.org/10.1002/glia.22585] [PMID: 24272702]
[88]
Tomasoni S, Longaretti L, Rota C, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 2013; 22(5): 772-80.
[http://dx.doi.org/10.1089/scd.2012.0266] [PMID: 23082760]
[89]
Tetta C, Ghigo E, Silengo L, Deregibus MC, Camussi G. Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine 2013; 44(1): 11-9.
[http://dx.doi.org/10.1007/s12020-012-9839-0] [PMID: 23203002]
[90]
van den Boorn JG, Schlee M, Coch C, Hartmann G. SiRNA delivery with exosome nanoparticles. Nat Biotechnol 2011; 29(4): 325-6.
[http://dx.doi.org/10.1038/nbt.1830] [PMID: 21478846]
[91]
Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R. Emerging role of neuronal exosomes in the central nervous system. Front Physiol 2012; 3: 145.
[http://dx.doi.org/10.3389/fphys.2012.00145] [PMID: 22654762]
[92]
Mathiyalagan P, Sahoo S. Exosomes-based gene therapy for microRNA delivery. In: Cardiac gene therapy. New York, NY: Humana Press 2017; pp. 139-52.
[93]
El Andaloussi S, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013; 65(3): 391-7.
[http://dx.doi.org/10.1016/j.addr.2012.08.008] [PMID: 22921840]
[94]
Belting M, Wittrup A. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 2008; 183(7): 1187-91.
[http://dx.doi.org/10.1083/jcb.200810038] [PMID: 19103810]
[95]
Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2013; 2 e126
[http://dx.doi.org/10.1038/mtna.2013.60] [PMID: 24084846]
[96]
Chen X, Liang H, Zhang J, Zen K, Zhang CY. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 2012; 3(1): 28-37.
[http://dx.doi.org/10.1007/s13238-012-2003-z] [PMID: 22314808]
[97]
Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 2014; 130(11): S60-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007917]
[98]
Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci USA 2017; 114(43): E9066-75.
[http://dx.doi.org/10.1073/pnas.1704862114] [PMID: 29073103]
[99]
Zhou Y, Zhou G, Tian C, et al. Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip Rev RNA 2016; 7(6): 758-71.
[http://dx.doi.org/10.1002/wrna.1363] [PMID: 27196002]
[100]
Jiang L, Vader P, Schiffelers RM. Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Ther 2017; 24(3): 157-66.
[http://dx.doi.org/10.1038/gt.2017.8] [PMID: 28140387]
[101]
Lässer C. Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert opinion on biological therapy 2012; 12(1): S189-97.
[http://dx.doi.org/10.1517/14712598.2012.680018]
[102]
Wood MJ, O’Loughlin AJ, Samira L. Exosomes and the blood-brain barrier: implications for neurological diseases. Ther Deliv 2011; 2(9): 1095-9.
[http://dx.doi.org/10.4155/tde.11.83] [PMID: 22833906]
[103]
Mittelbrunn M, Sánchez-Madrid F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 2012; 13(5): 328-35.
[http://dx.doi.org/10.1038/nrm3335] [PMID: 22510790]
[104]
Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 2010; 78(9): 838-48.
[http://dx.doi.org/10.1038/ki.2010.278] [PMID: 20703216]
[105]
Meckes DG Jr. Exosomal communication goes viral. J Virol 2015; 89(10): 5200-3.
[http://dx.doi.org/10.1128/JVI.02470-14] [PMID: 25740980]
[106]
Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci USA 2010; 107(47): 20370-5.
[http://dx.doi.org/10.1073/pnas.1014194107] [PMID: 21059916]
[107]
Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 2012; 44(1): 11-5.
[http://dx.doi.org/10.1016/j.biocel.2011.10.005] [PMID: 22024155]
[108]
Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip Rev RNA 2012; 3(2): 286-93.
[http://dx.doi.org/10.1002/wrna.115] [PMID: 22012863]
[109]
Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 2013; 32(22): 2747-55.
[http://dx.doi.org/10.1038/onc.2012.295] [PMID: 22797057]
[110]
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell 2016; 164(6): 1226-32.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
[111]
Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[112]
Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 2013; 352(1): 33-47.
[http://dx.doi.org/10.1007/s00441-012-1428-2] [PMID: 22610588]
[113]
Lopez-Verrilli MA, Court FA. Exosomes: mediators of communication in eukaryotes. Biol Res 2013; 46(1): 5-11.
[http://dx.doi.org/10.4067/S0716-97602013000100001] [PMID: 23760408]
[114]
Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 2013; 11(7) e1001604
[http://dx.doi.org/10.1371/journal.pbio.1001604] [PMID: 23874151]
[115]
Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012; 22(3): 125-32.
[http://dx.doi.org/10.1016/j.tcb.2011.12.001] [PMID: 22260888]
[116]
Zhang HG, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 2014; 184(1): 28-41.
[http://dx.doi.org/10.1016/j.ajpath.2013.09.027] [PMID: 24269592]
[117]
Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 2014; 1841(1): 108-20.
[http://dx.doi.org/10.1016/j.bbalip.2013.10.004] [PMID: 24140720]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 3
Year: 2020
Published on: 30 July, 2020
Page: [195 - 206]
Pages: 12
DOI: 10.2174/1566523220999200731011702
Price: $65

Article Metrics

PDF: 30
HTML: 3