Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets

Author(s): Roja Sahu, Shakti P. Pattanayak*

Journal Name: Current Gene Therapy

Volume 20 , Issue 4 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.

Keywords: Breast cancer, Brk/PTK6, mTOR, gene therapy, siRNA, miRNA.

[2]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[3]
Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 2014; 138(2): 241-56.
[http://dx.doi.org/10.5858/arpa.2013-0953-SA] [PMID: 24099077]
[4]
Fry EA, Taneja P, Inoue K. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu. Int J Cancer 2017; 140(3): 495-503.
[http://dx.doi.org/10.1002/ijc.30399] [PMID: 27553713]
[5]
Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16(7): 1647-55.
[http://dx.doi.org/10.1093/emboj/16.7.1647] [PMID: 9130710]
[6]
Roskoski R Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 2014; 79: 34-74.
[http://dx.doi.org/10.1016/j.phrs.2013.11.002] [PMID: 24269963]
[7]
Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19(13): 3159-67.
[http://dx.doi.org/10.1093/emboj/19.13.3159] [PMID: 10880430]
[8]
Wang SC, Lien HC, Xia W, et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 2004; 6(3): 251-61.
[http://dx.doi.org/10.1016/j.ccr.2004.07.012] [PMID: 15380516]
[9]
Cordo Russo RI, Béguelin W, Díaz Flaqué MC, et al. Targeting ErbB-2 nuclear localization and function inhibits breast cancer growth and overcomes trastuzumab resistance. Oncogene 2015; 34(26): 3413-28.
[http://dx.doi.org/10.1038/onc.2014.272] [PMID: 25174405]
[10]
Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. The EGF Receptor Fam 284(1): 54-65.
[http://dx.doi.org/10.1016/S0014-4827(02)00101-5] [PMID: 12648465]
[11]
Wilks ST. Potential of overcoming resistance to HER2-targeted therapies through the PI3K/Akt/mTOR pathway. Breast 2015; 24(5): 548-55.
[http://dx.doi.org/10.1016/j.breast.2015.06.002] [PMID: 26187798]
[12]
Xu K, Liu P, Wei W. mTOR signaling in tumorigenesis. Biochim Biophys Acta 2014; 1846(2): 638-54.
[PMID: 25450580]
[13]
Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26(3): 203-34.
[http://dx.doi.org/10.1101/gad.183434.111] [PMID: 22302935]
[14]
Biswas DK, Iglehart JD. Linkage between EGFR family receptors and nuclear factor kappaB (NF-kappaB) signaling in breast cancer. J Cell Physiol 2006; 209(3): 645-52.
[http://dx.doi.org/10.1002/jcp.20785] [PMID: 17001676]
[15]
Wang W, Nag SA, Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 2015; 22(2): 264-89.
[http://dx.doi.org/10.2174/0929867321666141106124315] [PMID: 25386819]
[16]
Ai M, Qiu S, Lu Y, Fan Z. HER2 regulates Brk/PTK6 stability via upregulating calpastatin, an inhibitor of calpain. Cell Signal 2013; 25(9): 1754-61.
[http://dx.doi.org/10.1016/j.cellsig.2013.05.010] [PMID: 23707532]
[17]
Curigliano G, Goldhirsch A. The triple-negative subtype: new ideas for the poorest prognosis breast cancer. J Natl Cancer Inst Monogr 2011; 2011(43): 108-10.
[http://dx.doi.org/10.1093/jncimonographs/lgr038] [PMID: 22043054]
[18]
Penault-Llorca F, Viale G. Pathological and molecular diagnosis of triple-negative breast cancer: a clinical perspective. Ann Oncol 2012; 23(Suppl. 6): 19-22.
[http://dx.doi.org/10.1093/annonc/mds190] [PMID: 23012297]
[19]
Chacón RD, Costanzo MV. Triple-negative breast cancer. Breast Cancer Res 2010; 12(Suppl. 2): S3.
[http://dx.doi.org/10.1186/bcr2574] [PMID: 21050424]
[20]
Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 2010; 220(2): 263-80.
[PMID: 19927298]
[21]
Smid M, Wang Y, Zhang Y, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res 2008; 68(9): 3108-14.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5644] [PMID: 18451135]
[22]
Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121(7): 2750-67.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[23]
Burstein MD, Tsimelzon A, Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 2015; 21(7): 1688-98.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0432] [PMID: 25208879]
[24]
Stirzaker C, Zotenko E, Song JZ, et al. Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat Commun 2015; 6: 5899.
[http://dx.doi.org/10.1038/ncomms6899] [PMID: 25641231]
[25]
Shao F, Sun H, Deng CX. Potential therapeutic targets of triple-negative breast cancer based on its intrinsic subtype. Oncotarget 2017; 8(42): 73329-44.
[http://dx.doi.org/10.18632/oncotarget.20274] [PMID: 29069872]
[26]
Balko JM, Cook RS, Vaught DB, et al. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med 2012; 18(7): 1052-9.
[http://dx.doi.org/10.1038/nm.2795] [PMID: 22683778]
[27]
Pratilas CA, Taylor BS, Ye Q, et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 2009; 106(11): 4519-24.
[http://dx.doi.org/10.1073/pnas.0900780106] [PMID: 19251651]
[28]
Ward KR, Zhang KX, Somasiri AM, Roskelley CD, Schrader JW. Expression of activated M-Ras in a murine mammary epithelial cell line induces epithelial-mesenchymal transition and tumorigenesis. Oncogene 2004; 23(6): 1187-96.
[http://dx.doi.org/10.1038/sj.onc.1207226] [PMID: 14961075]
[29]
Craig DW, O’Shaughnessy JA, Kiefer JA, et al. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther 2013; 12(1): 104-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0781] [PMID: 23171949]
[30]
Montero JC, Esparís-Ogando A, Re-Louhau MF, et al. Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer. Oncogene 2014; 33(2): 148-56.
[http://dx.doi.org/10.1038/onc.2012.572] [PMID: 23246963]
[31]
Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 2015; 172(17): 4228-37.
[http://dx.doi.org/10.1111/bph.13211] [PMID: 26040571]
[32]
Yang L, Wu X, Wang Y, et al. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 2011; 30(43): 4437-46.
[http://dx.doi.org/10.1038/onc.2011.145] [PMID: 21532620]
[33]
Säfholm A, Tuomela J, Rosenkvist J, Dejmek J, Härkönen P, Andersson T. The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res 2008; 14(20): 6556-63.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0711] [PMID: 18927296]
[34]
Xu J, Prosperi JR, Choudhury N, Olopade OI, Goss KH. β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS One 2015; 10(2): e0117097.
[http://dx.doi.org/10.1371/journal.pone.0117097] [PMID: 25658419]
[35]
Johnson JP, Kumar P, Koulnis M, Patel M, Simin K. Crucial and novel cancer drivers in a mouse model of triple-negative breast cancer. Cancer Genomics Proteomics 2014; 11(3): 115-26.
[PMID: 24969692]
[36]
Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004; 6(6): R605-15.
[http://dx.doi.org/10.1186/bcr920] [PMID: 15535842]
[37]
Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 2005; 277(2): 443-56.
[http://dx.doi.org/10.1016/j.ydbio.2004.07.044] [PMID: 15617686]
[38]
Reipas KM, Law JH, Couto N, et al. Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1). Oncotarget 2013; 4(2): 329-45.
[http://dx.doi.org/10.18632/oncotarget.834] [PMID: 23593654]
[39]
Lewis MT, Veltmaat JM. Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 2004; 9(2): 165-81.
[http://dx.doi.org/10.1023/B:JOMG.0000037160.24731.35] [PMID: 15300011]
[40]
Werb Z, Sympson CJ, Alexander CM, et al. Extracellular matrix remodeling and the regulation of epithelial-stromal interactions during differentiation and involution. Kidney Int Suppl 1996; 54: S68-74.
[PMID: 8731199]
[41]
Tao Y, Mao J, Zhang Q, Li L. Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer. Oncol Lett 2011; 2(5): 995-1001.
[PMID: 22866163]
[42]
McCabe N, Turner NC, Lord CJ, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 2006; 66(16): 8109-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0140] [PMID: 16912188]
[43]
Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917-21.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[44]
Balko JM, Giltnane JM, Wang K, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov 2014; 4(2): 232-45.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0286] [PMID: 24356096]
[45]
Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98(19): 10869-74.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[46]
Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 2005; 23(29): 7350-60.
[http://dx.doi.org/10.1200/JCO.2005.03.3845] [PMID: 16145060]
[47]
Zhang MH, Man HT, Zhao XD, Dong N, Ma SL. Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review). Biomed Rep 2014; 2(1): 41-52.
[http://dx.doi.org/10.3892/br.2013.187] [PMID: 24649067]
[48]
Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol 2011; 5(1): 5-23.
[http://dx.doi.org/10.1016/j.molonc.2010.11.003] [PMID: 21147047]
[49]
Tran B, Bedard PL. Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res 2011; 13(6): 221.
[http://dx.doi.org/10.1186/bcr2904] [PMID: 22217398]
[50]
Suter R, Marcum JA. The molecular genetics of breast cancer and targeted therapy. Biologics 2007; 1(3): 241-58.
[PMID: 19707334]
[51]
Macdonald F, Ford C, Casson A. Molecular biology of cancer. 2nd ed. London: Taylor & Francis 2004.
[http://dx.doi.org/10.4324/9780203503447]
[52]
Schulz W. Molecular biology of human cancers: an advanced student’s textbook. Springer Science & Business Media 2005.
[53]
Weinberg RA. One renegade cell: how cancer begins. Basic Books 2008.
[54]
Jamerson MH, Johnson MD, Dickson RB. Of mice and Myc: c-Myc and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2004; 9(1): 27-37.
[http://dx.doi.org/10.1023/B:JOMG.0000023586.69263.0b] [PMID: 15082916]
[55]
Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol 2006; 16(4): 253-64.
[http://dx.doi.org/10.1016/j.semcancer.2006.07.014] [PMID: 16904903]
[56]
Liao DJ, Dickson RB. c-Myc in breast cancer. Endocr Relat Cancer 2000; 7(3): 143-64.
[http://dx.doi.org/10.1677/erc.0.0070143] [PMID: 11021963]
[57]
Giehl K. Oncogenic Ras in tumour progression and metastasis. Biol Chem 2005; 386(3): 193-205.
[http://dx.doi.org/10.1515/BC.2005.025] [PMID: 15843165]
[58]
Eckert LB, Repasky GA, Ulkü AS, et al. Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res 2004; 64(13): 4585-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0396] [PMID: 15231670]
[59]
Tyson JJ, Csikasz-Nagy A, Novak B. The dynamics of cell cycle regulation. BioEssays 2002; 24(12): 1095-109.
[http://dx.doi.org/10.1002/bies.10191] [PMID: 12447975]
[60]
Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997; 13: 261-91.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.261] [PMID: 9442875]
[61]
Soos TJ, Park M, Kiyokawa H, Koff A. Regulation of the cell cycle by CDK inhibitors. In: Cell cycle control Results and Problems in Cell Differentiation. Berlin, Heidelberg: Springer 1998; pp. 111-31.
[http://dx.doi.org/10.1007/978-3-540-69686-5_5]
[62]
Sandal T. Molecular aspects of the mammalian cell cycle and cancer. Oncologist 2002; 7(1): 73-81.
[http://dx.doi.org/10.1634/theoncologist.7-1-73] [PMID: 11854549]
[63]
Sherr CJ. Cancer cell cycles. Science 1996; 274(5293): 1672-7.
[http://dx.doi.org/10.1126/science.274.5293.1672] [PMID: 8939849]
[64]
Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 2000; 60(14): 3689-95.
[PMID: 10919634]
[65]
Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13(12): 1501-12.
[http://dx.doi.org/10.1101/gad.13.12.1501] [PMID: 10385618]
[66]
Caldon CE, Daly RJ, Sutherland RL, Musgrove EA. Cell cycle control in breast cancer cells. J Cell Biochem 2006; 97(2): 261-74.
[http://dx.doi.org/10.1002/jcb.20690] [PMID: 16267837]
[67]
Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 2004; 145(12): 5439-47.
[http://dx.doi.org/10.1210/en.2004-0959] [PMID: 15331580]
[68]
Arnold A, Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 2005; 23(18): 4215-24.
[http://dx.doi.org/10.1200/JCO.2005.05.064] [PMID: 15961768]
[69]
Hunt KK, Keyomarsi K. Cyclin E as a prognostic and predictive marker in breast cancer. Semin Cancer Biol 2005; 15(4): 319-26.
[http://dx.doi.org/10.1016/j.semcancer.2005.04.007] [PMID: 16043362]
[70]
Berglund P, Landberg G. Cyclin e overexpression reduces infiltrative growth in breast cancer: yet another link between proliferation control and tumor invasion. Cell Cycle 2006; 5(6): 606-9.
[http://dx.doi.org/10.4161/cc.5.6.2569] [PMID: 16582601]
[71]
Motoyama N, Naka K. DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev 2004; 14(1): 11-6.
[http://dx.doi.org/10.1016/j.gde.2003.12.003] [PMID: 15108799]
[72]
Chau BN, Pan CW, Wang JY. Separation of anti-proliferation and anti-apoptotic functions of retinoblastoma protein through targeted mutations of its A/B domain. PLoS One 2006; 1(1): e82.
[http://dx.doi.org/10.1371/journal.pone.0000082] [PMID: 17183714]
[73]
Zheng L, Lee WH. The retinoblastoma gene: a prototypic and multifunctional tumor suppressor. Exp Cell Res 2001; 264(1): 2-18.
[http://dx.doi.org/10.1006/excr.2000.5129] [PMID: 11237519]
[74]
Morris EJ, Dyson NJ. Retinoblastoma protein partners. Adv Cancer Res 2001; 82: 1-54.
[http://dx.doi.org/10.1016/S0065-230X(01)82001-7] [PMID: 11447760]
[75]
Bosco EE, Wang Y, Xu H, et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest 2007; 117(1): 218-28.
[http://dx.doi.org/10.1172/JCI28803] [PMID: 17160137]
[76]
Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6(12): 909-23.
[http://dx.doi.org/10.1038/nrc2012] [PMID: 17128209]
[77]
Braithwaite AW, Royds JA, Jackson P. The p53 story: layers of complexity. Carcinogenesis 2005; 26(7): 1161-9.
[http://dx.doi.org/10.1093/carcin/bgi091] [PMID: 15817608]
[78]
Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358(6381): 15-6.
[http://dx.doi.org/10.1038/358015a0] [PMID: 1614522]
[79]
Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast Cancer Res 2002; 4(2): 70-6.
[http://dx.doi.org/10.1186/bcr426] [PMID: 11879567]
[80]
Lacroix M, Toillon RA, Leclercq G. p53 and breast cancer, an update. Endocr Relat Cancer 2006; 13(2): 293-325.
[http://dx.doi.org/10.1677/erc.1.01172] [PMID: 16728565]
[81]
Weng LP, Smith WM, Dahia PL, et al. PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res 1999; 59(22): 5808-14.
[PMID: 10582703]
[82]
Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275(5308): 1943-7.
[http://dx.doi.org/10.1126/science.275.5308.1943] [PMID: 9072974]
[83]
Kim RH, Mak TW. Tumours and tremors: how PTEN regulation underlies both. Br J Cancer 2006; 94(5): 620-4.
[http://dx.doi.org/10.1038/sj.bjc.6602994] [PMID: 16495927]
[84]
Waite KA, Eng C. Protean PTEN: form and function. Am J Hum Genet 2002; 70(4): 829-44.
[http://dx.doi.org/10.1086/340026] [PMID: 11875759]
[85]
Bianco R, Ciardiello F, Tortora G. Chemosensitization by antisense oligonucleotides targeting MDM2. Curr Cancer Drug Targets 2005; 5(1): 51-6.
[http://dx.doi.org/10.2174/1568009053332681] [PMID: 15720189]
[86]
Baker SJ. PTEN enters the nuclear age. Cell 2007; 128(1): 25-8.
[http://dx.doi.org/10.1016/j.cell.2006.12.023] [PMID: 17218252]
[87]
Petrocelli T, Slingerland JM. PTEN deficiency: a role in mammary carcinogenesis. Breast Cancer Res 2001; 3(6): 356-60.
[http://dx.doi.org/10.1186/bcr322] [PMID: 11737885]
[88]
Bose S, Chandran S, Mirocha JM, Bose N. The Akt pathway in human breast cancer: a tissue-array-based analysis. Mod Pathol 2006; 19(2): 238-45.
[http://dx.doi.org/10.1038/modpathol.3800525] [PMID: 16341149]
[89]
Kaji EH, Leiden JM. Gene and stem cell therapies. JAMA 2001; 285(5): 545-50.
[http://dx.doi.org/10.1001/jama.285.5.545] [PMID: 11176856]
[90]
Takahashi S, Ito Y, Hatake K, Sugimoto Y. Gene therapy for breast cancer. --Review of clinical gene therapy trials for breast cancer and MDR1 gene therapy trial in Cancer Institute Hospital. Breast Cancer 2006; 13(1): 8-15.
[http://dx.doi.org/10.2325/jbcs.13.8] [PMID: 16518057]
[91]
Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist 2004; 9(4): 361-77.
[http://dx.doi.org/10.1634/theoncologist.9-4-361] [PMID: 15266090]
[92]
Coles C, Condie A, Chetty U, Steel CM, Evans HJ, Prosser J. p53 mutations in breast cancer. Cancer Res 1992; 52(19): 5291-8.
[PMID: 1394133]
[93]
Ueno NT, Bartholomeusz C, Herrmann JL, et al. E1A-mediated paclitaxel sensitization in HER-2/neu-overexpressing ovarian cancer SKOV3.ip1 through apoptosis involving the caspase-3 pathway. Clin Cancer Res 2000; 6(1): 250-9.
[PMID: 10656456]
[94]
Hortobagyi GN, Ueno NT, Xia W, et al. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 2001; 19(14): 3422-33.
[http://dx.doi.org/10.1200/JCO.2001.19.14.3422] [PMID: 11454891]
[95]
Yoo GH, Hung MC, Lopez-Berestein G, et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res 2001; 7(5): 1237-45.
[PMID: 11350889]
[96]
Arteaga CL, Holt JT. Tissue-targeted antisense c-fos retroviral vector inhibits established breast cancer xenografts in nude mice. Cancer Res 1996; 56(5): 1098-103.
[PMID: 8640767]
[97]
Holt JT, Arteaga CB, Robertson D, Moses HL. Gene therapy for the treatment of metastatic breast cancer by in vivo transduction with breast-targeted retroviral vector expressing antisense c-fos RNA. Hum Gene Ther 1996; 7(11): 1367-80.
[http://dx.doi.org/10.1089/hum.1996.7.11-1367] [PMID: 8818724]
[98]
Mhashilkar AM, Schrock RD, Hindi M, et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med 2001; 7(4): 271-82.
[http://dx.doi.org/10.1007/BF03401847] [PMID: 11471572]
[99]
Fisher B, Brown A, Wolmark N, et al. Evaluation of the worth of corynebacterium parvum in conjunction with chemotherapy as adjuvant treatment for primary breast cancer. Eight-year results from the National Surgical Adjuvant Breast and Bowel Project B-10. Cancer 1990; 66(2): 220-7.
[http://dx.doi.org/10.1002/1097-0142(19900715)66:2<220:AID-CNCR2820660205>3.0.CO;2-6] [PMID: 2196108]
[100]
Sivanandham M, Kim E, Wallack M. Immunology, serum markers, and immunotherapy of mammary tumors.In: W Donegan and J Spratt (eds), Cancer of the Breast. 5th ed;. St Louis: Sanders 2002.
[101]
Stewart AK, Lassam NJ, Graham FL, et al. A Phase I Study of Adenovirus Mediated Gene Transfer of Interleukin 2 cDNA into Metastatic Breast Cancer or Melanoma. The Toronto Hospital, Toronto, Ontario, Canada. Hum Gene Ther 1997; 8(11): 1403-14.
[http://dx.doi.org/10.1089/hum.1997.8.11-1403] [PMID: 9295135]
[102]
Stewart AK, Lassam NJ, Quirt IC, et al. Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene Ther 1999; 6(3): 350-63.
[http://dx.doi.org/10.1038/sj.gt.3300833] [PMID: 10435085]
[103]
Kang WK, Park C, Yoon HL, et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 2001; 12(6): 671-84.
[http://dx.doi.org/10.1089/104303401300057388] [PMID: 11426466]
[104]
Rosenberg SA, Anderson WF, Asher AL, et al. Immunization of cancer patients using autologous cancer cells modified by insertion of the gene for tumor necrosis factor. Hum Gene Ther 1992; 3(1): 57-73.
[http://dx.doi.org/10.1089/hum.1992.3.1-57] [PMID: 1562641]
[105]
Scholl S, Squiban P, Bizouarne N, et al. Metastatic breast tumour regression following treatment by a gene-modified vaccinia virus expressing MUC1 and IL-2. J Biomed Biotechnol 2003; 2003(3): 194-201.
[http://dx.doi.org/10.1155/S111072430320704X] [PMID: 12975534]
[106]
Pandha HS, Martin LA, Rigg A, et al. Genetic prodrug activation therapy for breast cancer: A phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol 1999; 17(7): 2180-9.
[http://dx.doi.org/10.1200/JCO.1999.17.7.2180] [PMID: 10561274]
[107]
Braybrooke JP, Slade A, Deplanque G, et al. Phase I study of MetXia-P450 gene therapy and oral cyclophosphamide for patients with advanced breast cancer or melanoma. Clin Cancer Res 2005; 11(4): 1512-20.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0155] [PMID: 15746054]
[108]
Lee ST, Strunk KM, Spritz RA. A survey of protein tyrosine kinase mRNAs expressed in normal human melanocytes. Oncogene 1993; 8(12): 3403-10.
[PMID: 8247543]
[109]
Mitchell PJ, Barker KT, Martindale JE, et al. Cloning and characterisation of cDNAs encoding a novel non-receptor tyrosine kinase, brk, expressed in human breast tumours. Oncogene 1994; 9(8): 2383-90.
[PMID: 8036022]
[110]
Qiu H, Miller WT. Role of the Brk SH3 domain in substrate recognition. Oncogene 2004; 23(12): 2216-23.
[http://dx.doi.org/10.1038/sj.onc.1207339] [PMID: 14676834]
[111]
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta 2015; 1856(1): 39-54.
[PMID: 25999240]
[112]
Harvey AJ, Crompton MR. The Brk protein tyrosine kinase as a therapeutic target in cancer: opportunities and challenges. Anticancer Drugs 2004; 15(2): 107-11.
[http://dx.doi.org/10.1097/00001813-200402000-00002] [PMID: 15075665]
[113]
Ostrander JH, Daniel AR, Lofgren K, Kleer CG, Lange CA. Breast tumor kinase (protein tyrosine kinase 6) regulates heregulin-induced activation of ERK5 and p38 MAP kinases in breast cancer cells. Cancer Res 2007; 67(9): 4199-209.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3409] [PMID: 17483331]
[114]
Easty DJ, Mitchell PJ, Patel K, Flørenes VA, Spritz RA, Bennett DC. Loss of expression of receptor tyrosine kinase family genes PTK7 and SEK in metastatic melanoma. Int J Cancer 1997; 71(6): 1061-5.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970611)71:6<1061:AID-IJC24>3.0.CO;2-F] [PMID: 9185712]
[115]
Llor X, Serfas MS, Bie W, et al. BRK/Sik expression in the gastrointestinal tract and in colon tumors. Clin Cancer Res 1999; 5(7): 1767-77.
[PMID: 10430081]
[116]
Ostrander JH, Daniel AR, Lange CA. Brk/PTK6 signaling in normal and cancer cell models. Curr Opin Pharmacol 2010; 10(6): 662-9.
[http://dx.doi.org/10.1016/j.coph.2010.08.007] [PMID: 20832360]
[117]
Yuan Y, Ang HL, Lai X, et al. BRK” ing” down all we know about ptk6 in breast cancer. Preprints 2018; 2018: 080044.
[http://dx.doi.org/10.20944/preprints201808.0044.v1]]
[118]
Harvey AJ, Crompton MR. Use of RNA interference to validate Brk as a novel therapeutic target in breast cancer: Brk promotes breast carcinoma cell proliferation. Oncogene 2003; 22(32): 5006-10.
[http://dx.doi.org/10.1038/sj.onc.1206577] [PMID: 12902983]
[119]
Derry JJ, Prins GS, Ray V, Tyner AL. Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene 2003; 22(27): 4212-20.
[http://dx.doi.org/10.1038/sj.onc.1206465] [PMID: 12833144]
[120]
Xiang B, Chatti K, Qiu H, et al. Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proc Natl Acad Sci USA 2008; 105(34): 12463-8.
[http://dx.doi.org/10.1073/pnas.0805009105] [PMID: 18719096]
[121]
Keysar SB, Le PN, Anderson RT, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer. Cancer Res 2013; 73(11): 3381-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4047] [PMID: 23576557]
[122]
Chen HY, Shen CH, Tsai YT, Lin FC, Huang YP, Chen RH. Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin. Mol Cell Biol 2004; 24(24): 10558-72.
[http://dx.doi.org/10.1128/MCB.24.24.10558-10572.2004] [PMID: 15572663]
[123]
Lukong KE, Richard S. Breast tumor kinase BRK requires kinesin-2 subunit KAP3A in modulation of cell migration. Cell Signal 2008; 20(2): 432-42.
[http://dx.doi.org/10.1016/j.cellsig.2007.11.003] [PMID: 18077133]
[124]
Castro NE, Lange CA. Breast tumor kinase and extracellular signal-regulated kinase 5 mediate Met receptor signaling to cell migration in breast cancer cells. Breast Cancer Res 2010; 12(4): R60.
[http://dx.doi.org/10.1186/bcr2622] [PMID: 20687930]
[125]
Harvey AJ, Pennington CJ, Porter S, et al. Brk protects breast cancer cells from autophagic cell death induced by loss of anchorage. Am J Pathol 2009; 175(3): 1226-34.
[http://dx.doi.org/10.2353/ajpath.2009.080811] [PMID: 19661439]
[126]
Ai M, Liang K, Lu Y, Qiu S, Fan Z. Brk/PTK6 cooperates with HER2 and Src in regulating breast cancer cell survival and epithelial-to-mesenchymal transition. Cancer Biol Ther 2013; 14(3): 237-45.
[http://dx.doi.org/10.4161/cbt.23295] [PMID: 23291984]
[127]
Chakraborty G, Jain S, Kundu GC. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 2008; 68(1): 152-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2126] [PMID: 18172307]
[128]
Chan E, Nimnual AS. Deregulation of the cell cycle by breast tumor kinase (Brk). Int J Cancer 2010; 127(11): 2723-31.
[http://dx.doi.org/10.1002/ijc.25263] [PMID: 20162673]
[129]
Irie HY, Shrestha Y, Selfors LM, et al. PTK6 regulates IGF-1-induced anchorage-independent survival. PLoS One 2010; 5(7): e11729.
[http://dx.doi.org/10.1371/journal.pone.0011729] [PMID: 20668531]
[130]
Hussain HA, Harvey AJ. Evolution of breast cancer therapeutics: Breast tumour kinase’s role in breast cancer and hope for breast tumour kinase targeted therapy. World J Clin Oncol 2014; 5(3): 299-310.
[http://dx.doi.org/10.5306/wjco.v5.i3.299] [PMID: 25114846]
[131]
Kamalati T, Jolin HE, Mitchell PJ, et al. Brk, a breast tumor-derived non-receptor protein-tyrosine kinase, sensitizes mammary epithelial cells to epidermal growth factor. J Biol Chem 1996; 271(48): 30956-63.
[http://dx.doi.org/10.1074/jbc.271.48.30956] [PMID: 8940083]
[132]
Born M, Quintanilla-Fend L, Braselmann H, et al. Simultaneous over-expression of the Her2/neu and PTK6 tyrosine kinases in archival invasive ductal breast carcinomas. J Pathol 2005; 205(5): 592-6.
[http://dx.doi.org/10.1002/path.1720] [PMID: 15685689]
[133]
Zhang P, Ostrander JH, Faivre EJ, Olsen A, Fitzsimmons D, Lange CA. Regulated association of protein kinase B/Akt with breast tumor kinase. J Biol Chem 2005; 280(3): 1982-91.
[http://dx.doi.org/10.1074/jbc.M412038200] [PMID: 15539407]
[134]
Qiu H, Zappacosta F, Su W, Annan RS, Miller WT. Interaction between Brk kinase and insulin receptor substrate-4. Oncogene 2005; 24(36): 5656-64.
[http://dx.doi.org/10.1038/sj.onc.1208721] [PMID: 15870689]
[135]
Liu L, Gao Y, Qiu H, Miller WT, Poli V, Reich NC. Identification of STAT3 as a specific substrate of breast tumor kinase. Oncogene 2006; 25(35): 4904-12.
[http://dx.doi.org/10.1038/sj.onc.1209501] [PMID: 16568091]
[136]
Weaver AM, Silva CM. Signal transducer and activator of transcription 5b: a new target of breast tumor kinase/protein tyrosine kinase 6. Breast Cancer Res 2007; 9(6): R79.
[http://dx.doi.org/10.1186/bcr1794] [PMID: 17997837]
[137]
Shen CH, Chen HY, Lin MS, et al. Breast tumor kinase phosphorylates p190RhoGAP to regulate rho and ras and promote breast carcinoma growth, migration, and invasion. Cancer Res 2008; 68(19): 7779-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0997] [PMID: 18829532]
[138]
Gentzler RD, Altman JK, Platanias LC. An overview of the mTOR pathway as a target in cancer therapy. Expert Opin Ther Targets 2012; 16(5): 481-9.
[http://dx.doi.org/10.1517/14728222.2012.677439] [PMID: 22494490]
[139]
Liu J, Li HQ, Zhou FX, Yu JW, Sun L, Han ZH. Targeting the mTOR pathway in breast cancer. Tumour Biol 2017; 39(6): 1010428317710825.
[http://dx.doi.org/10.1177/1010428317710825] [PMID: 28639903]
[140]
Unni N, Arteaga CL. Is dual mTORC1 and mTORC2 therapeutic blockade clinically feasible in cancer? JAMA Oncol 2019; 5(11): 1564-5.
[http://dx.doi.org/10.1001/jamaoncol.2019.2525] [PMID: 31465107]
[141]
Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci 2020; 10(1): 31.
[http://dx.doi.org/10.1186/s13578-020-00396-1] [PMID: 32175074]
[142]
Zhou H, Huang S. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci 2011; 12(1): 30-42.
[http://dx.doi.org/10.2174/138920311795659407] [PMID: 21190521]
[143]
Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 2011; 4: 51.
[http://dx.doi.org/10.3389/fnmol.2011.00051] [PMID: 22144946]
[144]
Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci 2012; 13(2): 1886-918.
[http://dx.doi.org/10.3390/ijms13021886] [PMID: 22408430]
[145]
Miller TW, Hennessy BT, González-Angulo AM, et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest 2010; 120(7): 2406-13.
[http://dx.doi.org/10.1172/JCI41680] [PMID: 20530877]
[146]
Margariti N, Fox SB, Bottini A, Generali D. Overcoming breast cancer drug resistance with mTOR inhibitors. Could it be a myth or a real possibility in the short-term future? Breast Cancer Res Treat 2011; 128(3): 599-606.
[http://dx.doi.org/10.1007/s10549-010-0986-9] [PMID: 20945086]
[147]
Brady SW, Zhang J, Tsai MH, Yu D. PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition. Cancer Biol Ther 2015; 16(3): 402-11.
[http://dx.doi.org/10.1080/15384047.2014.1002693] [PMID: 25692408]
[148]
de Melo Gagliato D, Jardim DL, Marchesi MS, Hortobagyi GN. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget 2016; 7(39): 64431-46.
[http://dx.doi.org/10.18632/oncotarget.7043] [PMID: 26824988]
[149]
Salmena L. PTEN: History of a tumor suppressor. Methods Mol Biol 2016; 1388: 3-11.
[http://dx.doi.org/10.1007/978-1-4939-3299-3_1] [PMID: 27033066]
[150]
Ochnik AM, Baxter RC. Combination therapy approaches to target insulin-like growth factor receptor signaling in breast cancer. Endocr Relat Cancer 2016; 23(11): R513-36.
[http://dx.doi.org/10.1530/ERC-16-0218] [PMID: 27733416]
[151]
Liu J, Li D, Luo H, Zhu X. Circular RNAs: The star molecules in cancer. Mol Aspects Med 2019; 70: 141-52.
[http://dx.doi.org/10.1016/j.mam.2019.10.006] [PMID: 31676107]
[152]
Ricoult SJ, Yecies JL, Ben-Sahra I, Manning BD. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene 2016; 35(10): 1250-60.
[http://dx.doi.org/10.1038/onc.2015.179] [PMID: 26028026]
[153]
Bottai G, Truffi M, Corsi F, Santarpia L. Progress in nonviral gene therapy for breast cancer and what comes next? Expert Opin Biol Ther 2017; 17(5): 595-611.
[http://dx.doi.org/10.1080/14712598.2017.1305351] [PMID: 28330383]
[154]
Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014; 66: 110-6.
[http://dx.doi.org/10.1016/j.addr.2013.12.008] [PMID: 24384374]
[155]
Takeshita F, Ochiya T. Therapeutic potential of RNA interference against cancer. Cancer Sci 2006; 97(8): 689-96.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00234.x] [PMID: 16863503]
[156]
Maduri S. Applicability of RNA interference in cancer therapy: Current status. Int J Cancer 2015; 52(1): 11-21.
[http://dx.doi.org/10.4103/0019-509X.175598] [PMID: 26837960]
[157]
Xu CF, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm 2015; 10(1): 1-12.
[http://dx.doi.org/10.1016/j.ajps.2014.08.011]
[158]
Kamaruzman NI, Aziz NA, Poh CL, Chowdhury EH. Oncogenic signaling in tumorigenesis and applications of siRNA nanotherapeutics in breast cancer. Cancers (Basel) 2019; 11(5): 1-19.
[http://dx.doi.org/10.3390/cancers11050632] [PMID: 31064156]
[159]
Chowdhury EH. Strategies for tumor-directed delivery of siRNA. Expert Opin Drug Deliv 2011; 8(3): 389-401.
[http://dx.doi.org/10.1517/17425247.2011.554817] [PMID: 21314230]
[160]
Ahmadzada T, Reid G, McKenzie DR. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 2018; 10(1): 69-86.
[http://dx.doi.org/10.1007/s12551-017-0392-1] [PMID: 29327101]
[161]
Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example Drug Delivery Handbook of Experimental Pharmacology. Berlin, Heidelberg: Springer 2010; pp. 3-53.
[162]
Huang C, Zhang Y, Yuan H, Gao H, Zhang S. Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett 2013; 13(9): 4546-50.
[http://dx.doi.org/10.1021/nl402628n] [PMID: 23972158]
[163]
Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel) 2017; 7(4): 2-17.
[http://dx.doi.org/10.3390/nano7040077] [PMID: 28379201]
[164]
Gujrati M, Vaidya AM, Mack M, Snyder D, Malamas A, Lu ZR. Targeted dual ph-sensitive lipid ECO/siRNA self-assembly nanoparticles facilitate in vivo cytosolic sieIF4E delivery and overcome paclitaxel resistance in breast cancer therapy. Adv Healthc Mater 2016; 5(22): 2882-95.
[http://dx.doi.org/10.1002/adhm.201600677] [PMID: 27723260]
[165]
Hayward SL, Francis DM, Kholmatov P, Kidambi S. Targeted delivery of MicroRNA125a-5p by engineered lipid nanoparticles for the treatment of HER2 positive metastatic breast cancer. J Biomed Nanotechnol 2016; 12(3): 554-68.
[http://dx.doi.org/10.1166/jbn.2016.2194] [PMID: 27280253]
[166]
Zhou Z, Kennell C, Lee JY, Leung YK, Tarapore P. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine (Lond) 2017; 13(2): 403-10.
[http://dx.doi.org/10.1016/j.nano.2016.07.016] [PMID: 27520723]
[167]
Parvani JG, Gujrati MD, Mack MA, Schiemann WP, Lu ZR. Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res 2015; 75(11): 2316-25.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3485] [PMID: 25858145]
[168]
Yu MZ, Pang WH, Yang T, et al. Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer. Eur J Pharm Sci 2016; 92: 39-48.
[http://dx.doi.org/10.1016/j.ejps.2016.06.020] [PMID: 27355138]
[169]
Palanca-Wessels MC, Booth GC, Convertine AJ, et al. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget 2016; 7(8): 9561-75.
[http://dx.doi.org/10.18632/oncotarget.7076] [PMID: 26840082]
[170]
Dong D, Gao W, Liu Y, Qi XR. Therapeutic potential of targeted multifunctional nanocomplex co-delivery of siRNA and low-dose doxorubicin in breast cancer. Cancer Lett 2015; 359(2): 178-86.
[http://dx.doi.org/10.1016/j.canlet.2015.01.011] [PMID: 25592040]
[171]
Seitz S, Rick FG, Schally AV, et al. Combination of GHRH antagonists and docetaxel shows experimental effectiveness for the treatment of triple-negative breast cancers. Oncol Rep 2013; 30(1): 413-8.
[http://dx.doi.org/10.3892/or.2013.2435] [PMID: 23624870]
[172]
Qian J, Xu M, Suo A, et al. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Acta Biomater 2015; 15: 102-16.
[http://dx.doi.org/10.1016/j.actbio.2014.12.018] [PMID: 25545322]
[173]
Blanchard Z, Paul BT, Craft B, ElShamy WM. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res 2015; 17(1): 5.
[http://dx.doi.org/10.1186/s13058-014-0512-9] [PMID: 25583261]
[174]
Tangudu NK, Verma VK, Clemons TD, et al. RNA interference using c-myc-conjugated nanoparticles suppresses breast and colorectal cancer models. Mol Cancer Ther 2015; 14(5): 1259-69.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0970] [PMID: 25695957]
[175]
Ding Y, Su S, Zhang R, et al. Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials 2017; 113: 243-52.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.053] [PMID: 27829203]
[176]
Arami S, Mahdavi M, Rashidi MR, Fathi M, Hejazi MS, Samadi N. Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer. Biologicals 2016; 44(6): 487-96.
[http://dx.doi.org/10.1016/j.biologicals.2016.09.005] [PMID: 27712979]
[177]
Zhou H, Wei J, Dai Q, et al. CaCO3/CaIP6 composite nanoparticles effectively deliver AKT1 small interfering RNA to inhibit human breast cancer growth. Int J Nanomedicine 2015; 10: 4255-66.
[PMID: 26170662]
[178]
Rajput S, Puvvada N, Kumar BN, et al. Overcoming Akt induced therapeutic resistance in breast cancer through siRNA and thymoquinone encapsulated multilamellar gold niosomes. Mol Pharm 2015; 12(12): 4214-25.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00692] [PMID: 26505213]
[179]
Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 2005; 65(3): 967-71.
[PMID: 15705897]
[180]
Chien PY, Wang J, Carbonaro D, et al. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther 2005; 12(3): 321-8.
[http://dx.doi.org/10.1038/sj.cgt.7700793] [PMID: 15578064]
[181]
Meng H, Mai WX, Zhang H, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013; 7(2): 994-1005.
[http://dx.doi.org/10.1021/nn3044066] [PMID: 23289892]
[182]
Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 2012; 20(3): 513-24.
[http://dx.doi.org/10.1038/mt.2011.294] [PMID: 22252451]
[183]
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[PMID: 26286636]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2020
Published on: 30 July, 2020
Page: [237 - 258]
Pages: 22
DOI: 10.2174/1566523220999200731002408
Price: $65

Article Metrics

PDF: 36
HTML: 2