Plant Compounds for the Treatment of Diabetes, a Metabolic Disorder: NF-κB as a Therapeutic Target

Author(s): Ravi Sahukari, Jyothi Punabaka, Shanmugam Bhasha, Venkata S. Ganjikunta, Shanmugam K. Ramudu, Sathyavelu R. Kesireddy*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 39 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: The prevalence of diabetes in the world population hás reached 8.8 % and is expected to rise to 10.4% by 2040. Hence, there is an urgent need for the discovery of drugs against therapeutic targets to sojourn its prevalence. Previous studies proved that NF-κB serves as a central agent in the development of diabetic complications.

Objectives: This review intended to list the natural plant compounds that would act as inhibitors of NF-κB signalling in different organs under the diabetic condition with their possible mechanism of action.

Methods: Information on NF-κB, diabetes, natural products, and relation in between them, was gathered from scientific literature databases such as Pubmed, Medline, Google scholar, Science Direct, Springer, Wiley online library.

Results and Conclusion: NF-κB plays a crucial role in the development of diabetic complications because of its link in the expression of genes that are responsible for organs damage such as kidney, brain, eye, liver, heart, muscle, endothelium, adipose tissue and pancreas by inflammation, apoptosis and oxidative stress. Activation of PPAR-α, SIRT3/1, and FXR through many cascades by plant compounds such as terpenoids, iridoids, flavonoids, alkaloids, phenols, tannins, carbohydrates, and phytocannabinoids recovers diabetic complications. These compounds also exhibit the prevention of NF-κB translocation into the nucleus by inhibiting NF-κB activators, such as VEGFR, RAGE and TLR4 receptors, which in turn, prevent the activation of many genes involved in tissue damage. Current knowledge on the treatment of diabetes by targeting NF-κB is limited, so future studies would enlighten accordingly.

Keywords: Diabetes, insulin resistance, hyperglycemia, NF-κB, inflammatory mediators, diabetic complications, natural products.

[1]
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14(2): 111-29.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[2]
Guerriero G, Berni R, Muñoz-Sanchez JA, et al. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes (Basel) 2018; 9(6): 309.
[http://dx.doi.org/10.3390/genes9060309] [PMID: 29925808]
[3]
Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus. Handb Clin Neurol 2014; 126: 211-22.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00015-1] [PMID: 25410224]
[4]
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 2013; 34(31): 2436-43.
[http://dx.doi.org/10.1093/eurheartj/eht149] [PMID: 23641007]
[5]
Patel S, Santani D. Role of NF-κ B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 2009; 61(4): 595-603.
[http://dx.doi.org/10.1016/S1734-1140(09)70111-2] [PMID: 19815941]
[6]
Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res 2011; 90(3): 421-9.
[http://dx.doi.org/10.1093/cvr/cvr024] [PMID: 21266525]
[7]
Sun SC, Chang JH, Jin J. Regulation of nuclear factor-κB in autoimmunity. Trends Immunol 2013; 34(6): 282-9.
[http://dx.doi.org/10.1016/j.it.2013.01.004] [PMID: 23434408]
[8]
Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem 2002; 277(13): 10842-51.
[http://dx.doi.org/10.1074/jbc.M112475200] [PMID: 11801607]
[9]
Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006; 25(51): 6680-4.
[http://dx.doi.org/10.1038/sj.onc.1209954] [PMID: 17072321]
[10]
Imbert V, Rupec RA, Livolsi A, et al. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 1996; 86(5): 787-98.
[http://dx.doi.org/10.1016/S0092-8674(00)80153-1] [PMID: 8797825]
[11]
Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225-60.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.225] [PMID: 9597130]
[12]
Krolewski M, Eggers PW, Warram JH. Magnitude of end-stage renal disease in IDDM: a 35 year follow-up study. Kidney Int 1996; 50(6): 2041-6.
[http://dx.doi.org/10.1038/ki.1996.527] [PMID: 8943488]
[13]
Dekkers CCJ, Wheeler DC, Sjöström CD, Stefansson BV, Cain V, Heerspink HJL. Effects of the sodium-glucose co-transporter 2 inhibitor dapagliflozin in patients with type 2 diabetes and Stages 3b-4 chronic kidney disease. Nephrol Dial Transplant 2018; 33(11): 2005-11.
[http://dx.doi.org/10.1093/ndt/gfx350] [PMID: 29370424]
[14]
Ramana KV, Friedrich B, Srivastava S, Bhatnagar A, Srivastava SK. Activation of nuclear factor-kappaB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase. Diabetes 2004; 53(11): 2910-20.
[http://dx.doi.org/10.2337/diabetes.53.11.2910] [PMID: 15504972]
[15]
Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 2001; 44(11): 1957-72.
[http://dx.doi.org/10.1007/s001250100000] [PMID: 11719827]
[16]
Sugimoto H, Shikata K, Hirata K, et al. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes 1997; 46(12): 2075-81.
[http://dx.doi.org/10.2337/diab.46.12.2075] [PMID: 9392499]
[17]
Hayashida T, Schnaper HW. High ambient glucose enhances sensitivity to TGF-β1 via extracellular signal-regulated kinase and protein kinase Cdelta activities in human mesangial cells. J Am Soc Nephrol 2004; 15(8): 2032-41.
[http://dx.doi.org/10.1097/01.ASN.0000133198.74973.60] [PMID: 15284289]
[18]
Meng XM, Tang PM, Li J, Lan HY. TGF-β/Smad signaling in renal fibrosis. Front Physiol 2015; 6: 82.
[http://dx.doi.org/10.3389/fphys.2015.00082] [PMID: 25852569]
[19]
Trachtman H, Futterweit S, Pine E, Mann J, Valderrama E. Chronic diabetic nephropathy: role of inducible nitric oxide synthase. Pediatr Nephrol 2002; 17(1): 20-9.
[http://dx.doi.org/10.1007/s004670200004] [PMID: 11793130]
[20]
Dellamea BS, Leitão CB, Friedman R, Canani LH. Nitric oxide system and diabetic nephropathy. Diabetol Metab Syndr 2014; 6(1): 17.
[http://dx.doi.org/10.1186/1758-5996-6-17] [PMID: 24520999]
[21]
Ogura Y, Kitada M, Monno I, Kanasaki K, Watanabe A, Koya D. Renal mitochondrial oxidative stress is enhanced by the reduction of Sirt3 activity, in Zucker diabetic fatty rats. Redox Rep 2018; 23(1): 153-9.
[http://dx.doi.org/10.1080/13510002.2018.1487174] [PMID: 29897845]
[22]
Ramprasath T, Murugan PS, Kalaiarasan E, Gomathi P, Rathinavel A, Selvam GS. Genetic association of Glutathione peroxidase-1 (GPx-1) and NAD(P)H:Quinone Oxidoreductase 1(NQO1) variants and their association of CAD in patients with type-2 diabetes. Mol Cell Biochem 2012; 361(1-2): 143-50.
[http://dx.doi.org/10.1007/s11010-011-1098-5] [PMID: 21989715]
[23]
Koya D, Hayashi K, Kitada M, Kashiwagi A, Kikkawa R, Haneda M. Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol 2003; 14(8)(Suppl. 3): S250-3.
[http://dx.doi.org/10.1097/01.ASN.0000077412.07578.44] [PMID: 12874441]
[24]
Wang X, Meng L, Zhao L, et al. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res Clin Pract 2017; 126: 172-81.
[http://dx.doi.org/10.1016/j.diabres.2016.12.005] [PMID: 28258028]
[25]
Pétrilli V, Dostert C, Muruve DA, Tschopp J. The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 2007; 19(6): 615-22.
[http://dx.doi.org/10.1016/j.coi.2007.09.002] [PMID: 17977705]
[26]
Gao P, Meng XF, Su H, et al. Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy. Biochim Biophys Acta 2014; 1843(11): 2448-60.
[http://dx.doi.org/10.1016/j.bbamcr.2014.07.001] [PMID: 25017793]
[27]
Dong Y, Guo T, Traurig M, et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol Genet Metab 2011; 104(4): 661-5.
[http://dx.doi.org/10.1016/j.ymgme.2011.08.001] [PMID: 21871827]
[28]
Gillum MP, Erion DM, Shulman GI. Sirtuin-1 regulation of mammalian metabolism. Trends Mol Med 2011; 17(1): 8-13.
[http://dx.doi.org/10.1016/j.molmed.2010.09.005] [PMID: 20971038]
[29]
Yang S, Zhang J, Wang S, Shi J, Zhao X. Knockdown of Angiopoietin-Like Protein 2 Ameliorates Diabetic Nephropathy by Inhibiting TLR4. Cell Physiol Biochem 2017; 43(2): 685-96.
[http://dx.doi.org/10.1159/000480654] [PMID: 28946139]
[30]
Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 2007; 27(2): 130-43.
[http://dx.doi.org/10.1016/j.semnephrol.2007.01.006] [PMID: 17418682]
[31]
Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 2005; 83(11): 876-86.
[http://dx.doi.org/10.1007/s00109-005-0688-7] [PMID: 16133426]
[32]
Ebihara I, Nakamura T, Shimada N, Koide H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am J Kidney Dis 1998; 32(4): 544-50.
[http://dx.doi.org/10.1016/S0272-6386(98)70015-0] [PMID: 9774113]
[33]
Gui D, Huang J, Guo Y, et al. Astragaloside IV ameliorates renal injury in streptozotocin-induced diabetic rats through inhibiting NF-κB-mediated inflammatory genes expression. Cytokine 2013; 61(3): 970-7.
[http://dx.doi.org/10.1016/j.cyto.2013.01.008] [PMID: 23434274]
[34]
Ma B, Zhu Z, Zhang J, Ren C, Zhang Q. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. J Funct Foods 2020; •••64103702
[http://dx.doi.org/10.1016/j.jff.2019.103702]
[35]
Ahad A, Mujeeb M, Ahsan H, Siddiqui WA. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie 2014; 106: 101-10.
[http://dx.doi.org/10.1016/j.biochi.2014.08.006] [PMID: 25151412]
[36]
Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res 2018; 51(1): 9.
[http://dx.doi.org/10.1186/s40659-018-0157-8] [PMID: 29604956]
[37]
Samra YA, Said HS, Elsherbiny NM, Liou GI, El-Shishtawy MM, Eissa LA. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome. Life Sci 2016; 157: 187-99.
[http://dx.doi.org/10.1016/j.lfs.2016.06.002] [PMID: 27266851]
[38]
Bao L, Li J, Zha D, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. Int Immunopharmacol 2018; 54: 245-53.
[http://dx.doi.org/10.1016/j.intimp.2017.11.021] [PMID: 29161661]
[39]
Ahmed S, Mundhe N, Borgohain M, et al. Diosmin Modulates the NF-kB Signal Transduction Pathways and Downregulation of Various Oxidative Stress Markers in Alloxan-Induced Diabetic Nephropathy. Inflammation 2016; 39(5): 1783-97.
[http://dx.doi.org/10.1007/s10753-016-0413-4] [PMID: 27492452]
[40]
Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 2014; 219: 64-75.
[http://dx.doi.org/10.1016/j.cbi.2014.05.011] [PMID: 24877639]
[41]
Palanisamy N, Kannappan S, Anuradha CV. Genistein modulates NF-κB-associated renal inflammation, fibrosis and podocyte abnormalities in fructose-fed rats. Eur J Pharmacol 2011; 667(1-3): 355-64.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.011] [PMID: 21704028]
[42]
Iskender H, Dokumacioglu E, Sen TM, Ince I, Kanbay Y, Saral S. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomed Pharmacother 2017; 90: 500-8.
[http://dx.doi.org/10.1016/j.biopha.2017.03.102] [PMID: 28395272]
[43]
Yao L, Li J, Li L, et al. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-β1/SMADS/AMPK/NF-κB pathways. BMC Complement Altern Med 2019; 19(1): 14.
[http://dx.doi.org/10.1186/s12906-018-2410-7] [PMID: 30630477]
[44]
Tsai SJ, Huang CS, Mong MC, Kam WY, Huang HY, Yin MC. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. J Agric Food Chem 2012; 60(1): 514-21.
[http://dx.doi.org/10.1021/jf203259h] [PMID: 22117528]
[45]
Luo P, Tan Z, Zhang Z, Li H, Mo Z. Inhibitory effects of salvianolic acid B on the high glucose-induced mesangial proliferation via NF-kappaB-dependent pathway. Biol Pharm Bull 2008; 31(7): 1381-6.
[http://dx.doi.org/10.1248/bpb.31.1381] [PMID: 18591779]
[46]
Selvam R, Muruganantham K, Subramanian S. Studies on the Antidyslipidemic and AntiInflammatory Properties of Swertiamarin, a Major Secoiridoid Glycoside of E. Littorale Leaves Studied in High Fat Diet Fed-Low Dose Streptozotocin Induced Experimental Diabetes in Rats. Int J Innov Res Sci. Eng and Tech 2018; 7: 10122-32.
[47]
Li J, Li N, Yan S, et al. Ursolic acid alleviates inflammation and against diabetesinduced nephropathy through TLR4mediated inflammatory pathway. Mol Med Rep 2018; 18(5): 4675-81.
[http://dx.doi.org/10.3892/mmr.2018.9429] [PMID: 30221655]
[48]
Cameron NE, Cotter MA. Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets 2008; 9(1): 60-7.
[http://dx.doi.org/10.2174/138945008783431718] [PMID: 18220713]
[49]
Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol 2014; •••2014674987
[http://dx.doi.org/10.1155/2014/674987] [PMID: 24883061]
[50]
Benomar Y, Taouis M. Molecular Mechanisms Underlying Obesity-Induced Hypothalamic Inflammation and Insulin Resistance: Pivotal Role of Resistin/TLR4 Pathways. Front Endocrinol (Lausanne) 2019; 10: 140.
[http://dx.doi.org/10.3389/fendo.2019.00140] [PMID: 30906281]
[51]
Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404(6779): 787-90.
[http://dx.doi.org/10.1038/35008121] [PMID: 10783895]
[52]
Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 1999; 6(5): 347-63.
[http://dx.doi.org/10.1006/nbdi.1999.0254] [PMID: 10527803]
[53]
Ganesh Yerra V, Negi G, Sharma SS, Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol 2013; 1: 394-7.
[http://dx.doi.org/10.1016/j.redox.2013.07.005] [PMID: 24024177]
[54]
Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes 2007; 56(12): 2997-3005.
[http://dx.doi.org/10.2337/db07-0740] [PMID: 17720896]
[55]
Luan H, Kan Z, Xu Y, Lv C, Jiang W. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: relation to inflammation response. J Neuroinflammation 2013; 10: 28.
[http://dx.doi.org/10.1186/1742-2094-10-28] [PMID: 23414442]
[56]
Benzler J, Ganjam GK, Pretz D, et al. Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance. Diabetes 2015; 64(6): 2015-27.
[http://dx.doi.org/10.2337/db14-0093] [PMID: 25626735]
[57]
Li R, Zang A, Zhang L, et al. Chrysin ameliorates diabetes-associated cognitive deficits in Wistar rats. Neurol Sci 2014; 35(10): 1527-32.
[http://dx.doi.org/10.1007/s10072-014-1784-7] [PMID: 24737349]
[58]
Wang SB, Jia JP. Oxymatrine attenuates diabetes-associated cognitive deficits in rats. Acta Pharmacol Sin 2014; 35(3): 331-8.
[http://dx.doi.org/10.1038/aps.2013.158] [PMID: 24442148]
[59]
Mittal R, Kumar A, Singh DP, Bishnoi M, Nag TC. Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: targeting Nrf2/HO-1/NF-kB and COX signalling pathway. Inflammopharmacology 2018; 26(3): 755-68.
[http://dx.doi.org/10.1007/s10787-017-0413-5] [PMID: 29094308]
[60]
Kuhad A, Bishnoi M, Tiwari V, Chopra K. Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol Biochem Behav 2009; 92(2): 251-9.
[http://dx.doi.org/10.1016/j.pbb.2008.12.012] [PMID: 19138703]
[61]
Wu L, Fernandez-Loaiza P, Sauma J, Hernandez-Bogantes E, Masis M. Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes 2013; 4(6): 290-4.
[http://dx.doi.org/10.4239/wjd.v4.i6.290] [PMID: 24379919]
[62]
Rübsam A, Parikh S, Fort PE. Role of Inflammation in Diabetic Retinopathy. Int J Mol Sci 2018; 19(4): 942.
[http://dx.doi.org/10.3390/ijms19040942] [PMID: 29565290]
[63]
Flaxman SR, Bourne RRA, Resnikoff S, et al. Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health 2017; 5(12): e1221-34.
[http://dx.doi.org/10.1016/S2214-109X(17)30393-5] [PMID: 29032195]
[64]
Yuuki T, Kanda T, Kimura Y, et al. Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. J Diabetes Complications 2001; 15(5): 257-9.
[http://dx.doi.org/10.1016/S1056-8727(01)00155-6] [PMID: 11522500]
[65]
Mirshahi A, Hoehn R, Lorenz K, Kramann C, Baatz H. Anti-tumor necrosis factor alpha for retinal diseases: current knowledge and future concepts. J Ophthalmic Vis Res 2012; 7(1): 39-44.
[PMID: 22737386]
[66]
Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 2007; 26(3-4): 489-502.
[http://dx.doi.org/10.1007/s10555-007-9094-7] [PMID: 17717633]
[67]
Shanmuganathan S, Angayarkanni N. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascul Pharmacol 2018; 108: 23-35.
[http://dx.doi.org/10.1016/j.vph.2018.04.005] [PMID: 29678603]
[68]
Pradhan D, Dasmohapatra T, Tripathy G. Pharmacognostic Evaluation of Curcumin on Diabetic Retinopathy in Alloxan-induced Diabetes through NF-KB and Brn3a Related Mechanism. Pharmacogn J 2018; 10: 324-32.
[http://dx.doi.org/10.5530/pj.2018.2.56]
[69]
Cabrera MP, Chihuailaf RH. Antioxidants and the integrity of ocular tissues. Vet Med Int 2011; 2011905153
[http://dx.doi.org/10.4061/2011/905153] [PMID: 21789267]
[70]
Wang W, Zhang Y, Jin W, Xing Y, Yang A. Catechin Weakens Diabetic Retinopathy by Inhibiting the Expression of NF-κB Signaling Pathway-Mediated Inflammatory Factors. Ann Clin Lab Sci 2018; 48(5): 594-600.
[PMID: 30373863]
[71]
Liu L, Zuo Z, Lu S, Liu A, Liu X. Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro. Iran J Basic Med Sci 2017; 20(7): 813-21.
[PMID: 28852447]
[72]
Soufi FG, Mohammad-Nejad D, Ahmadieh H. Resveratrol improves diabetic retinopathy possibly through oxidative stress - nuclear factor κB - apoptosis pathway. Pharmacol Rep 2012; 64(6): 1505-14.
[http://dx.doi.org/10.1016/S1734-1140(12)70948-9] [PMID: 23406761]
[73]
Luedde T, Schwabe RF. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8(2): 108-18.
[http://dx.doi.org/10.1038/nrgastro.2010.213] [PMID: 21293511]
[74]
Luo C, Yang H, Tang C, et al. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int Immunopharmacol 2015; 28(1): 744-50.
[http://dx.doi.org/10.1016/j.intimp.2015.07.018] [PMID: 26263168]
[75]
Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 2005; 42(5): 987-1000.
[http://dx.doi.org/10.1002/hep.20920] [PMID: 16250043]
[76]
Farrell GC, van Rooyen D, Gan L, Chitturi S. NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications. Gut Liver 2012; 6(2): 149-71.
[http://dx.doi.org/10.5009/gnl.2012.6.2.149] [PMID: 22570745]
[77]
Chong LW, Hsu YC, Chiu YT, Yang KC, Huang YT. Antifibrotic effects of triptolide on hepatic stellate cells and dimethylnitrosamine-intoxicated rats. Phytother Res 2011; 25(7): 990-9.
[http://dx.doi.org/10.1002/ptr.3381] [PMID: 21213358]
[78]
Han LP, Li CJ, Sun B, et al. Protective Effects of Celastrol on Diabetic Liver Injury via TLR4/MyD88/NF-κB Signaling Pathway in Type 2 Diabetic Rats. J Diabetes Res 2016; •••20162641248
[http://dx.doi.org/10.1155/2016/2641248] [PMID: 27057550]
[79]
Zhang HM, Wang X, Wu ZH, et al. Beneficial effect of farnesoid X receptor activation on metabolism in a diabetic rat model. Mol Med Rep 2016; 13(3): 2135-42.
[http://dx.doi.org/10.3892/mmr.2016.4761] [PMID: 26782298]
[80]
Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 2006; 103(4): 1006-11.
[http://dx.doi.org/10.1073/pnas.0506982103] [PMID: 16410358]
[81]
Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 2008; 48(5): 1632-43.
[http://dx.doi.org/10.1002/hep.22519] [PMID: 18972444]
[82]
Gu M, Zhao P, Huang J, et al. Silymarin Ameliorates Metabolic Dysfunction Associated with Diet-Induced Obesity via Activation of Farnesyl X Receptor. Front Pharmacol 2016; 7: 345.
[http://dx.doi.org/10.3389/fphar.2016.00345] [PMID: 27733832]
[83]
Huang H, Xin H, Liu X, et al. Novel anti-diabetic effect of SCM-198 via inhibiting the hepatic NF-κB pathway in db/db mice. Biosci Rep 2012; 32(2): 185-95.
[http://dx.doi.org/10.1042/BSR20110017] [PMID: 21859425]
[84]
Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F. Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids 2001; 36(Suppl.): S53-63.
[http://dx.doi.org/10.1007/s11745-001-0683-y] [PMID: 11837994]
[85]
Lorenzo O, Picatoste B, Ares-Carrasco S, Ramírez E, Egido J, Tuñón J. Potential role of nuclear factor κB in diabetic cardiomyopathy. Mediators Inflamm 2011; 2011652097
[http://dx.doi.org/10.1155/2011/652097] [PMID: 21772665]
[86]
Westermann D, Van Linthout S, Dhayat S, et al. Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 2007; 56(7): 1834-41.
[http://dx.doi.org/10.2337/db06-1662] [PMID: 17473225]
[87]
Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 2014; 19(1): 49-63.
[http://dx.doi.org/10.1007/s10741-013-9374-y] [PMID: 23404649]
[88]
Pacher P, Szabó C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 2006; 6(2): 136-41.
[http://dx.doi.org/10.1016/j.coph.2006.01.001] [PMID: 16483848]
[89]
Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics 2018; 50(2): 77-97.
[http://dx.doi.org/10.1152/physiolgenomics.00041.2017] [PMID: 29187515]
[90]
Li H, Shi Y, Wang X, et al. Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy. Chem Biol Interact 2019; •••310108754
[http://dx.doi.org/10.1016/j.cbi.2019.108754] [PMID: 31323227]
[91]
Rajesh M, Mukhopadhyay P, Bátkai S, et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol 2007; 293(1): H610-9.
[http://dx.doi.org/10.1152/ajpheart.00236.2007] [PMID: 17384130]
[92]
Li L, Luo W, Qian Y, et al. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine 2019; •••59152774
[http://dx.doi.org/10.1016/j.phymed.2018.11.034] [PMID: 31009852]
[93]
Hou J, Zheng D, Fung G, et al. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Can J Physiol Pharmacol 2016; 94(3): 332-40.
[http://dx.doi.org/10.1139/cjpp-2015-0073] [PMID: 26751764]
[94]
Wen HL, Liang ZS, Zhang R, Yang K. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol 2013; 12: 50.
[http://dx.doi.org/10.1186/1475-2840-12-50] [PMID: 23530831]
[95]
Perry BD, Caldow MK, Brennan-Speranza TC, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 2016; 22: 94-109.
[PMID: 26859514]
[96]
Zhao M, Zhang ZF, Ding Y, Wang JB, Li Y. Astragalus polysaccharide improves palmitate-induced insulin resistance by inhibiting PTP1B and NF-κB in C2C12 myotubes. Molecules 2012; 17(6): 7083-92.
[http://dx.doi.org/10.3390/molecules17067083] [PMID: 22728372]
[97]
Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 2007; 3(6): 853-76.
[PMID: 18200806]
[98]
Xu J, Zou MH. Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation 2009; 120(13): 1266-86.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.835223] [PMID: 19786641]
[99]
Detaille D, Guigas B, Chauvin C, et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005; 54(7): 2179-87.
[http://dx.doi.org/10.2337/diabetes.54.7.2179] [PMID: 15983220]
[100]
Guan G, Han H, Yang Y, Jin Y, Wang X, Liu X. Neferine prevented hyperglycemia-induced endothelial cell apoptosis through suppressing ROS/Akt/NF-κB signal. Endocrine 2014; 47(3): 764-71.
[http://dx.doi.org/10.1007/s12020-014-0186-1] [PMID: 24590293]
[101]
Wang GF, Wu SY, Xu W, et al. Geniposide inhibits high glucose-induced cell adhesion through the NF-kappaB signaling pathway in human umbilical vein endothelial cells. Acta Pharmacol Sin 2010; 31(8): 953-62.
[http://dx.doi.org/10.1038/aps.2010.83] [PMID: 20686520]
[102]
Rocha VZ, Folco EJ. Inflammatory concepts of obesity. Int J Inflamm 2011; •••2011529061
[http://dx.doi.org/10.4061/2011/529061] [PMID: 21837268]
[103]
Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003; 26(8): 2442-50.
[http://dx.doi.org/10.2337/diacare.26.8.2442] [PMID: 12882876]
[104]
Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60(1): 1-12.
[http://dx.doi.org/10.1016/j.cyto.2012.06.018] [PMID: 22766373]
[105]
Tong HV, Luu NK, Son HA, et al. Adiponectin and pro-inflammatory cytokines are modulated in Vietnamese patients with type 2 diabetes mellitus. J Diabetes Investig 2017; 8(3): 295-305.
[http://dx.doi.org/10.1111/jdi.12579] [PMID: 27684566]
[106]
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5(12): 953-64.
[http://dx.doi.org/10.1038/nri1733] [PMID: 16322748]
[107]
Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11(2): 191-8.
[http://dx.doi.org/10.1038/nm1185] [PMID: 15685170]
[108]
Han MS, Jung DY, Morel C, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 2013; 339(6116): 218-22.
[http://dx.doi.org/10.1126/science.1227568] [PMID: 23223452]
[109]
Gandham SK, Chintha VR, Wudayagiri R. In silico evaluation of Benzo (f) chromen-3-one as a potential inhibitor of NF-κB: A key regulatory molecule in inflammation mediated pathogenesis of diabetes, Alzheimer’s, and cancer. J Appl Pharm Sci 2018; 8: 157-64.
[http://dx.doi.org/10.7324/JAPS.2018.81218]
[110]
Zhou J, Xu G, Ma S, et al. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways. Biochem Biophys Res Commun 2015; 467(4): 853-8.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.054] [PMID: 26474703]
[111]
Jay MA, Ren J. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr Diabetes Rev 2007; 3(1): 33-9.
[http://dx.doi.org/10.2174/157339907779802067] [PMID: 18220654]
[112]
Omi T, Brenig B, Spilar Kramer S, Iwamoto S, Stranzinger G, Neuenschwander S. Identification and characterization of novel peroxisome proliferator-activated receptor-gamma (PPAR-gamma) transcriptional variants in pig and human. J Anim Breed Genet 2005; 122(Suppl. 1): 45-53.
[http://dx.doi.org/10.1111/j.1439-0388.2005.00508.x] [PMID: 16130456]
[113]
Leiherer A, Mündlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul Pharmacol 2013; 58(1-2): 3-20.
[http://dx.doi.org/10.1016/j.vph.2012.09.002] [PMID: 22982056]
[114]
Kanter JE, Kramer F, Barnhart S, et al. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci USA 2012; 109(12): E715-24.
[http://dx.doi.org/10.1073/pnas.1111600109] [PMID: 22308341]
[115]
Takimoto T, Kanbayashi Y, Toyoda T, et al. 4β-Hydroxywithanolide E isolated from Physalis pruinosa calyx decreases inflammatory responses by inhibiting the NF-κB signaling in diabetic mouse adipose tissue. Int J Obes 2014; 38(11): 1432-9.
[http://dx.doi.org/10.1038/ijo.2014.33] [PMID: 24566854]
[116]
García-Díaz JA, Navarrete-Vázquez G, García-Jiménez S, et al. Antidiabetic, antihyperlipidemic and anti-inflammatory effects of tilianin in streptozotocin-nicotinamide diabetic rats. Biomed Pharmacother 2016; 83: 667-75.
[http://dx.doi.org/10.1016/j.biopha.2016.07.023] [PMID: 27470567]
[117]
Cnop M, Vidal J, Hull RL, et al. Progressive loss of beta-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes. Diabetes Care 2007; 30(3): 677-82.
[http://dx.doi.org/10.2337/dc06-1834] [PMID: 17327340]
[118]
Butler AE, Janson J, Soeller WC, Butler PC. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 2003; 52(9): 2304-14.
[http://dx.doi.org/10.2337/diabetes.52.9.2304] [PMID: 12941770]
[119]
Liadis N, Murakami K, Eweida M, et al. Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol Cell Biol 2005; 25(9): 3620-9.
[http://dx.doi.org/10.1128/MCB.25.9.3620-3629.2005] [PMID: 15831467]
[120]
Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int 2015; 15: 55.
[http://dx.doi.org/10.1186/s12935-015-0204-2] [PMID: 26074734]
[121]
Baldwin AC, Green CD, Olson LK, Moxley MA, Corbett JA. A role for aberrant protein palmitoylation in FFA-induced ER stress and β-cell death. Am J Physiol Endocrinol Metab 2012; 302(11): E1390-8.
[http://dx.doi.org/10.1152/ajpendo.00519.2011] [PMID: 22436701]
[122]
Imai Y, Dobrian AD, Weaver JR, et al. Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab 2013; 15(Suppl. 3): 117-29.
[http://dx.doi.org/10.1111/dom.12161] [PMID: 24003928]
[123]
Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005; 54(Suppl. 2): S97-S107.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S97] [PMID: 16306347]
[124]
Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 2009; 5(4): 219-26.
[http://dx.doi.org/10.1038/nrendo.2009.21] [PMID: 19352320]
[125]
Corbett JA, McDaniel ML. Does nitric oxide mediate autoimmune destruction of beta-cells? Possible therapeutic interventions in IDDM. Diabetes 1992; 41(8): 897-903.
[http://dx.doi.org/10.2337/diab.41.8.897] [PMID: 1378415]
[126]
Lee JH, Song MY, Song EK, et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes 2009; 58(2): 344-51.
[http://dx.doi.org/10.2337/db07-1795] [PMID: 19008341]
[127]
Song C, Ji Y, Zou G, Wan C. Tetrandrine down-regulates expression of miRNA-155 to inhibit signal-induced NF-κB activation in a rat model of diabetes mellitus. Int J Clin Exp Med 2015; 8(3): 4024-30. [P]
[128]
Wang Y, Zhu Y, Gao L, et al. Formononetin attenuates IL-1β-induced apoptosis and NF-κB activation in INS-1 cells. Molecules 2012; 17(9): 10052-64.
[http://dx.doi.org/10.3390/molecules170910052] [PMID: 22922276]
[129]
Yousefi H, Alihemmati A, Karimi P, Alipour MR, Habibi P, Ahmadiasl N. Effect of genistein on expression of pancreatic SIRT1, inflammatory cytokines and histological changes in ovariectomized diabetic rat. Iran J Basic Med Sci 2017; 20(4): 423-9.
[PMID: 28804612]
[130]
Zhong S, Ge J, Yu JY. Icariin prevents cytokine-induced β-cell death by inhibiting NF-κB signaling. Exp Ther Med 2018; 16(3): 2756-62.
[http://dx.doi.org/10.3892/etm.2018.6502] [PMID: 30210617]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 39
Year: 2020
Published on: 10 November, 2020
Page: [4955 - 4969]
Pages: 15
DOI: 10.2174/1381612826666200730221035
Price: $65

Article Metrics

PDF: 22
HTML: 4
EPUB: 2
PRC: 2