Recent Advances in Treatment of Lung Cancer: Nanoparticle-based Drug and siRNA Delivery Systems

Author(s): Ayse Gencer, Ceren Duraloglu, Sena Ozbay, Turkmen T. Ciftci, Samiye Yabanoglu-Ciftci, Betul Arica*

Journal Name: Current Drug Delivery

Volume 18 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Lung cancer is the second most diagnosed cancer in both men and women worldwide. Considering the high mortality rate of lung cancer and inadequacy of conventional treatment methods such as surgical resection, chemotherapy and radiotherapy; new treatment strategies are an emerging area of interest. Nanoparticle-based drug and small interfering RNA delivery systems such as lipid, polymeric, inorganic, micellar and dendrimer nanoparticles are designed to enhance the bioavailability, stability and retention of anti-cancer drugs in the targeted regions of the lung. These nanoparticle-based delivery systems increase the active ingredient half-life and targeting efficiency while reducing the required dose of the drug. Hence, they have many advantages such as higher therapeutic efficacy and reducedside effects and adverse events. Combinations of active ingredients, anti-cancer agents and small interfering RNA can be formulated into nanoparticle-based delivery systems that can be administered by various routes including inhalation and intravenous. In this review, the development of lipidic and polymeric nanoparticle-based drug and small interfering RNA delivery systems used in the treatment of lung cancer is discussed.

Keywords: Lung cancer, drug delivery, gene delivery, nanotechnology, siRNA, lipid and polymer-based nanocarriers.

[1]
Organization, W.H. Global health observatory; World Health Organization: Geneva, 2018, pp. 1-100.
[2]
Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y.W.; Buchanan, P. Lung cancer: biology and treatment options. Biochim. Biophys. Acta, 2015, 1856(2), 189-210.
[PMID: 26297204]
[3]
Ramalingam, S.S.; Owonikoko, T.K.; Khuri, F.R. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J. Clin., 2011, 61(2), 91-112.
[http://dx.doi.org/10.3322/caac.20102] [PMID: 21303969]
[4]
Oh, Y.K.; Park, T.G. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev., 2009, 61(10), 850-862.
[http://dx.doi.org/10.1016/j.addr.2009.04.018] [PMID: 19422869]
[5]
Yano, T.; Okamoto, T.; Fukuyama, S.; Maehara, Y. Therapeutic strategy for postoperative recurrence in patients with non-small cell lung cancer. World J. Clin. Oncol., 2014, 5(5), 1048-1054.
[http://dx.doi.org/10.5306/wjco.v5.i5.1048] [PMID: 25493240]
[6]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[7]
Hussain, S. Nanomedicine for treatment of lung cancer. Adv. Exp. Med. Biol., 2016, 890, 137-147.
[http://dx.doi.org/10.1007/978-3-319-24932-2_8] [PMID: 26703803]
[8]
Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals (Basel), 2013, 6(11), 1361-1380.
[http://dx.doi.org/10.3390/ph6111361] [PMID: 24287462]
[9]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[10]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63, 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[11]
Mahmoodi Chalbatani, G.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rad, M.R.; Marmari, V. Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach. Int. J. Nanomedicine, 2019, 14, 3111-3128.
[http://dx.doi.org/10.2147/IJN.S200253] [PMID: 31118626]
[12]
Landesman-Milo, D.; Ramishetti, S.; Peer, D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev., 2015, 34(2), 291-301.
[http://dx.doi.org/10.1007/s10555-015-9554-4] [PMID: 25948376]
[13]
Kim, Y.D.; Park, T.E.; Singh, B.; Maharjan, S.; Choi, Y.J.; Choung, P.H.; Arote, R.B.; Cho, C.S. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine (Lond.), 2015, 10(7), 1165-1188.
[http://dx.doi.org/10.2217/nnm.14.214] [PMID: 25929572]
[14]
Sonke, J.J.; Belderbos, J. Adaptive radiotherapy for lung cancer. Semin. Radiat. Oncol., 2010, 20(2), 94-106.
[http://dx.doi.org/10.1016/j.semradonc.2009.11.003] [PMID: 20219547]
[15]
Puri, A.; Loomis, K.; Smith, B.; Lee, J.H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[16]
Madni, A.; Batool, A.; Noreen, S.; Maqbool, I.; Rehman, F.; Kashif, P.M.; Tahir, N.; Raza, A. Novel nanoparticulate systems for lung cancer therapy: An updated review. J. Drug Target., 2017, 25(6), 499-512.
[http://dx.doi.org/10.1080/1061186X.2017.1289540] [PMID: 28151021]
[17]
Babu, A.; Templeton, A. K.; Munshi, A.; Ramesh, R. Nanoparticle-based drug delivery for therapy of lung cancer: Progress and challenges. J. Nanomat., 2013.e863951
[18]
Tharkar, P.; Madani, A.U.; Lasham, A.; Shelling, A.N.; Al-Kassas, R. Nanoparticulate carriers: An emerging tool for breast cancer therapy. J. Drug Target., 2015, 23(2), 97-108.
[http://dx.doi.org/10.3109/1061186X.2014.958844] [PMID: 25230853]
[19]
Pillai, G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm. Pharm. Sci., 2014, 1(2), 13.
[20]
Li, R.; Wu, W.; Liu, Q.; Wu, P.; Xie, L.; Zhu, Z.; Yang, M.; Qian, X.; Ding, Y.; Yu, L.; Jiang, X.; Guan, W.; Liu, B. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One, 2013, 8(7)e69643
[http://dx.doi.org/10.1371/journal.pone.0069643] [PMID: 23936062]
[21]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[22]
Lee, H.Y.; Mohammed, K.A.; Nasreen, N. Nanoparticle-based targeted gene therapy for lung cancer. Am. J. Cancer Res., 2016, 6(5), 1118-1134.
[PMID: 27294004]
[23]
Amarzguioui, M.; Peng, Q.; Wiiger, M.T.; Vasovic, V.; Babaie, E.; Holen, T.; Nesland, J.M.; Prydz, H. Ex vivo and in vivo delivery of anti-tissue factor short interfering RNA inhibits mouse pulmonary metastasis of B16 melanoma cells. Clin. Cancer Res., 2006, 12(13), 4055-4061.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2482] [PMID: 16818705]
[24]
Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[25]
Lombardo, D.; Kiselev, M.A.; M.T., Caccamo Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019.e3702518
[http://dx.doi.org/10.1155/2019/3702518]
[26]
Zhou, J.; Zhao, W.Y.; Ma, X.; Ju, R.J.; Li, X.Y.; Li, N.; Sun, M.G.; Shi, J.F.; Zhang, C.X.; Lu, W.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials, 2013, 34(14), 3626-3638.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.078] [PMID: 23422592]
[27]
Biswas, S.; Deshpande, P.P.; Perche, F.; Dodwadkar, N.S.; Sane, S.D.; Torchilin, V.P. Octa-arginine-modified pegylated liposomal doxorubicin: an effective treatment strategy for non-small cell lung cancer. Cancer Lett., 2013, 335(1), 191-200.
[http://dx.doi.org/10.1016/j.canlet.2013.02.020] [PMID: 23419527]
[28]
Chang, D.K.; Li, P.C.; Lu, R.M.; Jane, W.N.; Wu, H.C. Peptide-mediated liposomal doxorubicin enhances drug delivery efficiency and therapeutic efficacy in animal models. PLoS One, 2013, 8(12)e83239
[http://dx.doi.org/10.1371/journal.pone.0083239] [PMID: 24386166]
[29]
Cheng, L.; Huang, F.Z.; Cheng, L.F.; Zhu, Y.Q.; Hu, Q.; Li, L.; Wei, L.; Chen, D.W. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int. J. Nanomed, 2014, 9(1), 921-935.
[http://dx.doi.org/10.2147/IJN.S53310] [PMID: 24611009]
[30]
Chi, L.; Na, M.H.; Jung, H.K.; Vadevoo, S.M.P.; Kim, C.W.; Padmanaban, G.; Park, T.I.; Park, J.Y.; Hwang, I.; Park, K.U.; Liang, F.; Lu, M.; Park, J.; Kim, I.S.; Lee, B.H. Enhanced delivery of liposomes to lung tumor through targeting interleukin-4 receptor on both tumor cells and tumor endothelial cells. J. Control. Release, 2015, 209, 327-336.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.260] [PMID: 25979323]
[31]
Deeken, J.F.; Slack, R.; Weiss, G.J.; Ramanathan, R.K.; Pishvaian, M.J.; Hwang, J.; Lewandowski, K.; Subramaniam, D.; He, A.R.; Cotarla, I.; Rahman, A.; Marshall, J.L. A phase I study of liposomal-Encapsulated Docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother. Pharmacol., 2013, 71(3), 627-633.
[http://dx.doi.org/10.1007/s00280-012-2048-y] [PMID: 23274395]
[32]
Dou, Y.N.; Dunne, M.; Huang, H.; Mckee, T.; Chang, M.C.; Jaffray, D.A.; Allen, C. Thermosensitive liposomal cisplatin in combination with local hyperthermia results in tumor growth delay and changes in tumor microenvironment in xenograft models of lung carcinoma. J. Drug Target., 2016, 24(9), 865-877.
[http://dx.doi.org/10.1080/1061186X.2016.1191079] [PMID: 27310112]
[33]
Gao, Y.; Xiang, M.J.; Zhang, J. Lung cancer-targeting treatment of iRGD-LP-DOX/Rg3 through integrin receptor-medicated endocytosis. Int. J. Clin. Exp. Med., 2016, 9(9), 17859-17867.
[34]
Ji, X.; Gao, Y.; Chen, L.; Zhang, Z.; Deng, Y.; Li, Y. Nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel for reversal of multidrug resistance. Int. J. Pharm., 2012, 422(1-2), 390-397.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.003] [PMID: 22001531]
[35]
Jiang, L.; Li, L.; He, X.; Yi, Q.; He, B.; Cao, J.; Pan, W.; Gu, Z. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials, 2015, 52(1), 126-139.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.004] [PMID: 25818419]
[36]
Jung, J.; Jeong, S.Y.; Park, S.S.; Shin, S.H.; Ju, E.J.; Choi, J.; Park, J.; Lee, J.H.; Kim, I.; Suh, Y.A.; Hwang, J.J.; Kuroda, S.; Lee, J.S.; Song, S.Y.; Choi, E.K. A cisplatin incorporated liposome that targets the epidermal growth factor receptor enhances radiotherapeutic efficacy without nephrotoxicity. Int. J. Oncol., 2015, 46(3), 1268-1274.
[http://dx.doi.org/10.3892/ijo.2014.2806] [PMID: 25544240]
[37]
Kibria, G.; Hatakeyama, H.; Sato, Y.; Harashima, H. Anti-tumor effect via passive anti-angiogenesis of PEGylated liposomes encapsulating doxorubicin in drug resistant tumors. Int. J. Pharm., 2016, 509(1-2), 178-187.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.047] [PMID: 27234700]
[38]
Li, X.T.; He, M.L.; Zhou, Z.Y.; Jiang, Y.; Cheng, L. The antitumor activity of PNA modified vinblastine cationic liposomes on Lewis lung tumor cells: in vitro and in vivo evaluation. Int. J. Pharm., 2015, 487(1-2), 223-233.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.035] [PMID: 25895716]
[39]
Li, X.T.; Zhou, Z.Y.; Jiang, Y.; He, M.L.; Jia, L.Q.; Zhao, L.; Cheng, L.; Jia, T.Z. PEGylated VRB plus quinacrine cationic liposomes for treating non-small cell lung cancer. J. Drug Target., 2015, 23(3), 232-243.
[http://dx.doi.org/10.3109/1061186X.2014.979829] [PMID: 25417934]
[40]
Lu, J.; Yoshimura, K.; Goto, K.; Lee, C.; Hamura, K.; Kwon, O.; Tamanoi, F. Nanoformulation of geranylgeranyltransferase-I inhibitors for cancer therapy: liposomal encapsulation and pH-dependent delivery to cancer cells. PLoS One, 2015, 10(9)e0137595
[http://dx.doi.org/10.1371/journal.pone.0137595] [PMID: 26352258]
[41]
Matsuzaki, T.; Takagi, A.; Furuta, T.; Ueno, S.; Kurita, A.; Nohara, G.; Kodaira, H.; Sawada, S.; Hashimoto, S. Antitumor activity of IHL-305, a novel pegylated liposome containing irinotecan, in human xenograft models. Oncol. Rep., 2012, 27(1), 189-197.
[PMID: 21935577]
[42]
Patel, K.; Doddapaneni, R.; Sekar, V.; Chowdhury, N.; Singh, M. Combination approach of YSA peptide anchored docetaxel stealth liposomes with oral antifibrotic agent for the treatment of lung cancer. Mol. Pharm., 2016, 13(6), 2049-2058.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00187] [PMID: 27070720]
[43]
Qian, Z.; Wang, X.; Song, Z.; Zhang, H.; Zhou, S.; Zhao, J.; Wang, H. A phase I trial to evaluate the multiple-dose safety and antitumor activity of ursolic acid liposomes in subjects with advanced solid tumors. BioMed Res. Int., 2015.e809714
[http://dx.doi.org/10.1155/2015/809714]
[44]
Rahman, S.; Cao, S.; Steadman, K. J.; Wei, M.; Parekh, H. S. Native and β-cyclodextrin-enclosed curcumin: entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer., 2012, 19(7), 346-353.
[http://dx.doi.org/10.3109/10717544.2012.721143]
[45]
Ren, G.; Liu, D.; Guo, W.; Wang, M.; Wu, C.; Guo, M.; Ai, X.; Wang, Y.; He, Z. Docetaxel prodrug liposomes for tumor therapy: characterization, in vitro and in vivo evaluation. Drug Deliv., 2016, 23(4), 1272-1281.
[http://dx.doi.org/10.3109/10717544.2016.1165312] [PMID: 26965023]
[46]
Shi, H.S.; Gao, X.; Li, D.; Zhang, Q.W.; Wang, Y.S.; Zheng, Y.; Cai, L.L.; Zhong, R.M.; Rui, A.; Li, Z.Y.; Zheng, H.; Chen, X.C.; Chen, L.J. A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation. Int. J. Nanomed, 2012, 7, 2601-2611.
[PMID: 22679371]
[47]
Wang, L.; Zhang, J.; Cai, L.; Wen, J.; Shi, H.; Li, D.; Guo, F.; Wang, Y. Liposomal curcumin inhibits Lewis lung cancer growth primarily through inhibition of angiogenesis. Oncol. Lett., 2012, 4(1), 107-112.
[http://dx.doi.org/10.3892/ol.2012.686] [PMID: 22807957]
[48]
Wang, R.H.; Cao, H.M.; Tian, Z.J.; Jin, B.; Wang, Q.; Ma, H.; Wu, J. [Retracted] Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer. Oncol. Rep., 2017, 38(5), 3285.
[http://dx.doi.org/10.3892/or.2017.6006] [PMID: 29048634]
[49]
Yang, Y.T.; Shi, Y.; Jay, M.; Di Pasqua, A.J. Enhanced toxicity of cisplatin with chemosensitizer phenethyl isothiocyanate toward non-small cell lung cancer cells when delivered in liposomal nanoparticles. Chem. Res. Toxicol., 2014, 27(6), 946-948.
[http://dx.doi.org/10.1021/tx5001128] [PMID: 24836554]
[50]
Zhou, X.; Yung, B.; Huang, Y.; Li, H.; Hu, X.; Xiang, G.; Lee, R.J.J.A. Novel liposomal gefitinib (L-GEF) formulations. Anticancer Res., 2012, 32(7), 2919-2923.
[51]
Wong, B.C.K.; Zhang, H.; Qin, L.; Chen, H.; Fang, C.; Lu, A.; Yang, Z. Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro. Drug Des. Devel. Ther., 2014, 8, 993-1001.
[PMID: 25092965]
[52]
Shah, V.M.; Nguyen, D.X.; Alfatease, A.; Bracha, S.; Alani, A.W. Characterization of pegylated and non-pegylated liposomal formulation for the delivery of hypoxia activated vinblastine-N-oxide for the treatment of solid tumors. J. Control. Release, 2017, 253, 37-45.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.022] [PMID: 28302582]
[53]
Tagami, T.; Ando, Y.; Ozeki, T. Fabrication of liposomal doxorubicin exhibiting ultrasensitivity against phospholipase A2 for efficient pulmonary drug delivery to lung cancers. Int. J. Pharm., 2017, 517(1-2), 35-41.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.039] [PMID: 27865984]
[54]
Ibrahim, S.; Tagami, T.; Kishi, T.; Ozeki, T. Curcumin marinosomes as promising nano-drug delivery system for lung cancer. Int. J. Pharm., 2018, 540(1-2), 40-49.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.051] [PMID: 29408473]
[55]
Tian, Y.; Zhang, H.; Qin, Y.; Li, D.; Liu, Y.; Wang, H.; Gan, L. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev. Ind. Pharm., 2018, 44(12), 2071-2082.
[http://dx.doi.org/10.1080/03639045.2018.1512613] [PMID: 30112929]
[56]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2012, 64(Suppl.), 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[57]
Mathur, V.; Satrawala, Y.; Rajput, M.; Kumar, P.; Shrivastava, P.; Vishvkarma, A. Solid lipid nanoparticles in cancer therapy. Int. J. Drug Deliv., 2010, 2(3), 192-199.
[58]
Wang, P.; Zhang, L.; Peng, H.; Li, Y.; Xiong, J.; Xu, Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater. Sci. Eng. C, 2013, 33(8), 4802-4808.
[http://dx.doi.org/10.1016/j.msec.2013.07.047] [PMID: 24094190]
[59]
Pooja, D.; Kulhari, H.; Kuncha, M.; Rachamalla, S.S.; Adams, D.J.; Bansal, V.; Sistla, R. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol. Pharm., 2016, 13(11), 3903-3912.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00691] [PMID: 27696858]
[60]
Wang, C.; Zheng, Y.; Sand Oval, M.A.; Valdes, S.A.; Chen, Z.; Lansakara-P, D.S.; Du, M.; Shi, Y.; Cui, Z. Oral 4-(N)-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models. Oncotarget, 2017, 8(52), 89876-89886.
[http://dx.doi.org/10.18632/oncotarget.21264] [PMID: 29163795]
[61]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine (Lond.), 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[62]
Wang, Y.; Zhang, H.; Hao, J.; Li, B.; Li, M.; Xiuwen, W. Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv., 2016, 23(4), 1398-1403.
[PMID: 26079530]
[63]
Liang, Y.; Tian, B.; Zhang, J.; Li, K.; Wang, L.; Han, J.; Wu, Z. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer. Int. J. Nanomed, 2017, 12, 1699-1715.
[http://dx.doi.org/10.2147/IJN.S121262] [PMID: 28280336]
[64]
Liang, Z.; Yang, N.; Jiang, Y.; Hou, C.; Zheng, J.; Shi, J.; Zhang, R.; Li, D.; Liu, Y.; Zuo, P. Targeting docetaxel-PLA nanoparticles simultaneously inhibit tumor growth and liver metastases of small cell lung cancer. Int. J. Pharm., 2015, 494(1), 337-345.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.042] [PMID: 26299762]
[65]
Mosafer, J.; Abnous, K.; Tafaghodi, M.; Mokhtarzadeh, A.; Ramezani, M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur. J. Pharm. Biopharm., 2017, 113, 60-74.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.009] [PMID: 28012991]
[66]
Gupta, U.; Sharma, S.; Khan, I.; Gothwal, A.; Sharma, A.K.; Singh, Y.; Chourasia, M.K.; Kumar, V. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan. Int. J. Biol. Macromol., 2017, 98, 810-819.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.030] [PMID: 28189791]
[67]
Cabeza, L.; Ortiz, R.; Prados, J.; Delgado, Á.V.; Martín-Villena, M.J.; Clares, B.; Perazzoli, G.; Entrena, J.M.; Melguizo, C.; Arias, J.L. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: an in vitro and in vivo study. Eur. J. Pharm. Sci., 2017, 102, 24-34.
[http://dx.doi.org/10.1016/j.ejps.2017.02.026] [PMID: 28219748]
[68]
Yabanoglu-Ciftci, S.; Baysal, I.; Erikci, A.; Arıca, B.; Ucar, G. Transforming growth factor-β3 (TGF-β3) loaded PLGA-b-PEG nanoparticles: efficacy in preventing cardiac fibrosis induced by TGF-β1. J. Drug Deliv. Sci. Technol., 2018, 48, 223-234.
[http://dx.doi.org/10.1016/j.jddst.2018.09.021]
[69]
Baysal, I.; Ucar, G.; Gultekinoglu, M.; Ulubayram, K.; Yabanoglu-Ciftci, S. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J. Neural Transm. (Vienna), 2017, 124(1), 33-45.
[http://dx.doi.org/10.1007/s00702-016-1527-4] [PMID: 26911385]
[70]
Koutsiouki, K.; Angelopoulou, A.; Ioannou, E.; Voulgari, E.; Sergides, A.; Magoulas, G.E.; Bakandritsos, A.; Avgoustakis, K. TAT peptide-conjugated magnetic PLA-PEG nanocapsules for the targeted delivery of paclitaxel: in vitro and cell studies. AAPS PharmSciTech, 2017, 18(3), 769-781.
[http://dx.doi.org/10.1208/s12249-016-0560-9] [PMID: 27301873]
[71]
Wu, J.; Deng, C.; Meng, F.; Zhang, J.; Sun, H.; Zhong, Z. Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. J. Control. Release, 2017, 259, 76-82.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.024] [PMID: 28027947]
[72]
Jiang, J.; Liu, Y.; Wu, C.; Qiu, Y.; Xu, X.; Lv, H.; Bai, A.; Liu, X. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells. Drug Dev. Ind. Pharm., 2017, 43(8), 1304-1313.
[http://dx.doi.org/10.1080/03639045.2017.1318895] [PMID: 28402175]
[73]
Xu, H.; Hou, Z.; Zhang, H.; Kong, H.; Li, X.; Wang, H.; Xie, W. An efficient Trojan delivery of tetrandrine by poly(N-vinylpyrrolidone)-block-poly(ε-caprolactone) (PVP-b-PCL) nano-particles shows enhanced apoptotic induction of lung cancer cells and inhibition of its migration and invasion. Int. J. Nanomed, 2014, 9, 231-242.
[PMID: 24403829]
[74]
Ni, X.L.; Chen, L.X.; Zhang, H.; Yang, B.; Xu, S.; Wu, M.; Liu, J.; Yang, L.L.; Chen, Y.; Fu, S.Z.; Wu, J.B. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Deliv., 2017, 24(1), 1501-1512.
[http://dx.doi.org/10.1080/10717544.2017.1384862] [PMID: 28961023]
[75]
Ledet, G.; Mandal, T.K. nanomedicine: emerging therapeutics for the 21st century. US Pharm., 2012, 37(3), 7-11.
[76]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[77]
Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release, 2012, 159(1), 14-26.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.031] [PMID: 22154931]
[78]
Moses, M.A.; Brem, H.; Langer, R. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell, 2003, 4(5), 337-341.
[http://dx.doi.org/10.1016/S1535-6108(03)00276-9] [PMID: 14667500]
[79]
Pawar, R.; Shikanov, A.; Vaisman, B.; Domb, A.J. Intravenous and regional paclitaxel formulations. Curr. Med. Chem., 2004, 11(4), 397-402.
[http://dx.doi.org/10.2174/0929867043455981] [PMID: 14965220]
[80]
Wauthoz, N.; Deleuze, P.; Hecq, J.; Roland, I.; Saussez, S.; Adanja, I.; Debeir, O.; Decaestecker, C.; Mathieu, V.; Kiss, R.; Amighi, K. In vivo assessment of temozolomide local delivery for lung cancer inhalation therapy. Eur. J. Pharm. Sci., 2010, 39(5), 402-411.
[http://dx.doi.org/10.1016/j.ejps.2010.01.010] [PMID: 20109545]
[81]
Fulzele, S.V.; Chatterjee, A.; Shaik, M.S.; Jackson, T.; Singh, M. Inhalation delivery and anti-tumor activity of celecoxib in human orthotopic non-small cell lung cancer xenograft model. Pharm. Res., 2006, 23(9), 2094-2106.
[http://dx.doi.org/10.1007/s11095-006-9074-6] [PMID: 16902813]
[82]
Shaik, M.S.; Haynes, A.; McSween, J.; Ikediobi, O.; Kanikkannan, N.; Singh, M. Inhalation delivery of anticancer agents via HFA-based metered dose inhaler using methotrexate as a model drug. J. Aerosol Med., 2002, 15(3), 261-270.
[http://dx.doi.org/10.1089/089426802760292609] [PMID: 12396414]
[83]
Ruge, C.A.; Kirch, J.; Lehr, C.M. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respir. Med., 2013, 1(5), 402-413.
[http://dx.doi.org/10.1016/S2213-2600(13)70072-9] [PMID: 24429205]
[84]
Nokhodchi, A.; Martin, G.P. Pulmonary drug delivery: Advances and challenges; John Wiley & Sons, 2015, p. 384.
[http://dx.doi.org/10.1002/9781118799536]
[85]
Hickey, A.J.; da Rocha, S.R. Pharmaceutical inhalation aerosol technology; Taylor and Francis Group CRC Press, 2019, p. 746.
[http://dx.doi.org/10.1201/9780429055201]
[86]
Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release, 2015, 219, 500-518.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[87]
Rosière, R.; Van Woensel, M.; Mathieu, V.; Langer, I.; Mathivet, T.; Vermeersch, M.; Amighi, K.; Wauthoz, N. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int. J. Pharm., 2016, 501(1-2), 148-159.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.073] [PMID: 26850313]
[88]
Gandhi, M.; Pandya, T.; Gandhi, R.; Patel, S.; Mashru, R.; Misra, A.; Tandel, H. Inhalable liposomal dry powder of gemcitabine-HCl: formulation, in vitro characterization and in vivo studies. Int. J. Pharm., 2015, 496(2), 886-895.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.020] [PMID: 26453787]
[89]
Videira, M.; Almeida, A.J.; Fabra, A. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine (Lond.), 2012, 8(7), 1208-1215.
[http://dx.doi.org/10.1016/j.nano.2011.12.007] [PMID: 22206945]
[90]
Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.R.; Goyal, A.K. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design. Drug Deliv., 2016, 23(6), 1912-1925.
[PMID: 25544602]
[91]
Roa, W.H.; Azarmi, S.; Al-Hallak, M.H.D.K.; Finlay, W.H.; Magliocco, A.M.; Löbenberg, R. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J. Control. Release, 2011, 150(1), 49-55.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.035] [PMID: 21059378]
[92]
Tomoda, K.; Ohkoshi, T.; Hirota, K.; Sonavane, G.S.; Nakajima, T.; Terada, H.; Komuro, M.; Kitazato, K.; Makino, K. Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf. B Biointerfaces, 2009, 71(2), 177-182.
[http://dx.doi.org/10.1016/j.colsurfb.2009.02.001] [PMID: 19264458]
[93]
El-Sherbiny, I.M.; Smyth, H.D. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int. J. Pharm., 2010, 395(1-2), 132-141.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.032] [PMID: 20580794]
[94]
Kim, I.; Byeon, H.J.; Kim, T.H.; Lee, E.S.; Oh, K.T.; Shin, B.S.; Lee, K.C.; Youn, Y.S. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained- release inhalation system for the treatment of metastatic lung cancer. Biomaterials, 2012, 33(22), 5574-5583.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.018] [PMID: 22579235]
[95]
Said-Elbahr, R.; Nasr, M.; Alhnan, M.A.; Taha, I.; Sammour, O. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur. J. Pharm. Biopharm., 2016, 103, 1-12.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.025] [PMID: 27020529]
[96]
Elzhry Elyafi, A.K.; Standen, G.; Meikle, S.T.; Lewis, A.L.; Salvage, J.P. Development of MPC-DPA polymeric nanoparticle systems for inhalation drug delivery applications. Eur. J. Pharm. Sci., 2017, 106, 362-380.
[http://dx.doi.org/10.1016/j.ejps.2017.06.023] [PMID: 28629803]
[97]
Bakhtiary, Z.; Barar, J.; Aghanejad, A.; Saei, A.A.; Nemati, E.; Ezzati Nazhad Dolatabadi, J.; Omidi, Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev. Ind. Pharm., 2017, 43(8), 1244-1253.
[http://dx.doi.org/10.1080/03639045.2017.1310223] [PMID: 28323493]
[98]
Brandenberger, C.; Rothen-Rutishauser, B.; Mühlfeld, C.; Schmid, O.; Ferron, G.A.; Maier, K.L.; Gehr, P.; Lenz, A.G. Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol. Appl. Pharmacol., 2010, 242(1), 56-65.
[http://dx.doi.org/10.1016/j.taap.2009.09.014] [PMID: 19796648]
[99]
Silva, A.S.; Sousa, A.M.; Cabral, R.P.; Silva, M.C.; Costa, C.; Miguel, S.P.; Bonifácio, V.D.B.; Casimiro, T.; Correia, I.J.; Aguiar-Ricardo, A. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. Int. J. Pharm., 2017, 519(1-2), 240-249.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.032] [PMID: 28111281]
[100]
Abd Elwakil, M.M.; Mabrouk, M.T.; Helmy, M.W.; Abdelfattah, E.A.; Khiste, S.K.; Elkhodairy, K.A.; Elzoghby, A.O. Inhalable lactoferrin-chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine (Lond.), 2018, 13(16), 2015-2035.
[http://dx.doi.org/10.2217/nnm-2018-0039] [PMID: 30191764]
[101]
Elgohary, M.M.; Helmy, M.W.; Abdelfattah, E.A.; Ragab, D.M.; Mortada, S.M.; Fang, J.Y.; Elzoghby, A.O. Targeting sialic acid residues on lung cancer cells by inhalable boronic acid-decorated albumin nanocomposites for combined chemo/herbal therapy. J. Control. Release, 2018, 285, 230-243.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.014] [PMID: 30009892]
[102]
Toloza, E.M.; Morse, M.A.; Lyerly, H.K. Gene therapy for lung cancer. J. Cell. Biochem., 2006, 99(1), 1-22.
[http://dx.doi.org/10.1002/jcb.20851] [PMID: 16767697]
[103]
Rashnonejad, A.B. D.; F, Ö. Gen tedavisinin temel ilkeleri ve son gelişmeler. Ege Tıp Dergisi, 2014, 53, 231-240.
[http://dx.doi.org/10.19161/etd.344096]
[104]
Swisher, S.G.; Roth, J.A. Gene therapy in lung cancer. Curr. Oncol. Rep., 2000, 2(1), 64-70.
[http://dx.doi.org/10.1007/s11912-000-0012-1] [PMID: 11122826]
[105]
Aagaard, L.; Rossi, J.J. RNAi therapeutics: principles, prospects and challenges. Adv. Drug Deliv. Rev., 2007, 59(2-3), 75-86.
[http://dx.doi.org/10.1016/j.addr.2007.03.005] [PMID: 17449137]
[106]
Kakar, S.S.; Malik, M.T. Suppression of lung cancer with siRNA targeting PTTG. Int. J. Oncol., 2006, 29(2), 387-395.
[http://dx.doi.org/10.3892/ijo.29.2.387] [PMID: 16820881]
[107]
Xue, J.; Yang, J.; Luo, M.; Cho, W.C.; Liu, X. MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin. Drug Discov., 2017, 12(2), 141-157.
[http://dx.doi.org/10.1080/17460441.2017.1263298] [PMID: 27866431]
[108]
Nayerossadat, N.; Maedeh, T.; Ali, P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1, 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[109]
Vorhies, J.S.; Nemunaitis, J.J. Nucleic acid aptamers for targeting of shRNA-based cancer therapeutics. Biologics, 2007, 1(4), 367-376.
[PMID: 19707307]
[110]
Mansoori, B.; Sandoghchian Shotorbani, S.; Baradaran, B. RNA interference and its role in cancer therapy. Adv. Pharm. Bull., 2014, 4(4), 313-321.
[PMID: 25436185]
[111]
Rao, D.D.; Wang, Z.; Senzer, N.; Nemunaitis, J. RNA interference and personalized cancer therapy. Discov. Med., 2013, 15(81), 101-110.
[PMID: 23449112]
[112]
Devi, G.R. siRNA-based approaches in cancer therapy. Cancer Gene Ther., 2006, 13(9), 819-829.
[http://dx.doi.org/10.1038/sj.cgt.7700931] [PMID: 16424918]
[113]
Yang, N. An overview of viral and nonviral delivery systems for microRNA. Int. J. Pharm. Investig., 2015, 5(4), 179-181.
[http://dx.doi.org/10.4103/2230-973X.167646] [PMID: 26682187]
[114]
Ober, C.A.; Gupta, R.B. Nanoparticle technology for drug delivery. Ideas Concyteg, 2011, 6(72), 714-726.
[115]
Vago, R.; Collico, V.; Zuppone, S.; Prosperi, D.; Colombo, M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol. Res., 2016, 111, 619-641.
[http://dx.doi.org/10.1016/j.phrs.2016.07.007] [PMID: 27436147]
[116]
Shen, S.; Mao, C.Q.; Yang, X.Z.; Du, X.J.; Liu, Y.; Zhu, Y.H.; Wang, J. Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma. Mol. Pharm., 2014, 11(8), 2612-2622.
[http://dx.doi.org/10.1021/mp400714z] [PMID: 24521262]
[117]
Alshaer, W.; Hillaireau, H.; Vergnaud, J.; Ismail, S.; Fattal, E. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjug. Chem., 2015, 26(7), 1307-1313.
[http://dx.doi.org/10.1021/bc5004313] [PMID: 25343502]
[118]
Han, Y.; Zhang, P.; Chen, Y.; Sun, J.; Kong, F. Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung cancer therapy. Int. J. Mol. Med., 2014, 34(1), 191-196.
[http://dx.doi.org/10.3892/ijmm.2014.1770] [PMID: 24804644]
[119]
Shao, Z.; Shao, J.; Tan, B.; Guan, S.; Liu, Z.; Zhao, Z.; He, F.; Zhao, J. Targeted lung cancer therapy: Preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int. J. Nanomed, 2015, 10, 1223-1233.
[http://dx.doi.org/10.2147/IJN.S77837] [PMID: 25709444]
[120]
Wang, H.; Zhao, X.; Guo, C.; Ren, D.; Zhao, Y.; Xiao, W.; Jiao, W. Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. PLoS One, 2015, 10(9)e0139136
[http://dx.doi.org/10.1371/journal.pone.0139136] [PMID: 26406332]
[121]
Tangsangasaksri, M.; Takemoto, H.; Naito, M.; Maeda, Y.; Sueyoshi, D.; Kim, H.J.; Miura, Y.; Ahn, J.; Azuma, R.; Nishiyama, N.; Miyata, K.; Kataoka, K. siRNA-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules, 2016, 17(1), 246-255.
[http://dx.doi.org/10.1021/acs.biomac.5b01334] [PMID: 26616636]
[122]
Huschka, R.; Barhoumi, A.; Liu, Q.; Roth, J.A.; Ji, L.; Halas, N.J. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano, 2012, 6(9), 7681-7691.
[http://dx.doi.org/10.1021/nn301135w] [PMID: 22862291]
[123]
Zhang, C.; Tang, N.; Liu, X.; Liang, W.; Xu, W.; Torchilin, V.P. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J. Control. Release, 2006, 112(2), 229-239.
[http://dx.doi.org/10.1016/j.jconrel.2006.01.022] [PMID: 16545478]
[124]
Zhang, M.; Wang, Q.; Wan, K.W.; Ahmed, W.; Phoenix, D.A.; Zhang, Z.; Elrayess, M.A.; Elhissi, A.; Sun, X. Liposome mediated-CYP1A1 gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment strategy of lung cancer. Int. J. Pharm., 2019, 566, 185-193.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.078] [PMID: 31051230]
[125]
Muralidharan, R.; Babu, A.; Amreddy, N.; Srivastava, A.; Chen, A.; Zhao, Y.D.; Kompella, U.B.; Munshi, A.; Ramesh, R. Tumor-targeted nanoparticle delivery of HuR siRNA inhibits lung tumor growth in vitro and in vivo by disrupting the oncogenic activity of the RNA-binding protein HuR. Mol. Cancer Ther., 2017, 16(8), 1470-1486.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0134] [PMID: 28572169]
[126]
Zheng, S.; Wang, X.; Weng, Y.H.; Jin, X.; Ji, J.L.; Guo, L.; Hu, B.; Liu, N.; Cheng, Q.; Zhang, J.; Bai, H.; Yang, T.; Xia, X.H.; Zhang, H.Y.; Gao, S.; Huang, Y. siRNA knockdown of RRM2 effectively suppressed pancreatic tumor growth alone or synergistically with doxorubicin. Mol. Ther. Nucleic Acids, 2018, 12, 805-816.
[http://dx.doi.org/10.1016/j.omtn.2018.08.003] [PMID: 30153565]
[127]
Weng, Y.; Xiao, H.; Zhang, J.; Liang, X.J.; Huang, Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol. Adv., 2019, 37(5), 801-825.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.012] [PMID: 31034960]
[128]
Titze-de-Almeida, S.S.; Brandao, P.R.P.; Faber, I.; Titze-de-Almeida, R. Leading RNA interference therapeutics part 1: silencing hereditary transthyretin amyloidosis, with a focus on patisiran. Mol. Diagn. Ther., 2020, 24(1), 49-59.
[PMID: 31701435]
[129]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[130]
Zamora-Avila, D.E.; Zapata-Benavides, P.; Franco-Molina, M.A.; Saavedra-Alonso, S.; Trejo-Avila, L.M.; Reséndez-Pérez, D.; Méndez-Vázquez, J.L.; Isaias-Badillo, J.; Rodríguez-Padilla, C. WT1 gene silencing by aerosol delivery of PEI-RNAi complexes inhibits B16-F10 lung metastases growth. Cancer Gene Ther., 2009, 16(12), 892-899.
[http://dx.doi.org/10.1038/cgt.2009.35] [PMID: 19461674]
[131]
Kamlah, F.; Eul, B.G.; Li, S.; Lang, N.; Marsh, L.M.; Seeger, W.; Grimminger, F.; Rose, F.; Hänze, J. Intravenous injection of siRNA directed against hypoxia-inducible factors prolongs survival in a Lewis lung carcinoma cancer model. Cancer Gene Ther., 2009, 16(3), 195-205.
[http://dx.doi.org/10.1038/cgt.2008.71] [PMID: 18818708]
[132]
Bonnet, M.E.; Gossart, J.B.; Benoit, E.; Messmer, M.; Zounib, O.; Moreau, V.; Behr, J.P.; Lenne-Samuel, N.; Kedinger, V.; Meulle, A.; Erbacher, P.; Bolcato-Bellemin, A.L. Systemic delivery of sticky siRNAs targeting the cell cycle for lung tumor metastasis inhibition. J. Control. Release, 2013, 170(2), 183-190.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.015] [PMID: 23727288]
[133]
Chatterjee, A.; Chattopadhyay, D.; Chakrabarti, G. miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One, 2014, 9(4)e95716
[http://dx.doi.org/10.1371/journal.pone.0095716] [PMID: 24755562]
[134]
Wang, J.; Pan, X.L.; Ding, L.J.; Liu, D.Y.; Da-Peng, Lei Jin, T. Aberrant expression of Beclin-1 and LC3 correlates with poor prognosis of human hypopharyngeal squamous cell carcinoma. PLoS One, 2013, 8(7)e69038
[http://dx.doi.org/10.1371/journal.pone.0069038] [PMID: 23935917]
[135]
Lo, Y.L.; Sung, K.H.; Chiu, C.C.; Wang, L.F. Chemically conjugating polyethylenimine with chondroitin sulfate to promote CD44-mediated endocytosis for gene delivery. Mol. Pharm., 2013, 10(2), 664-676.
[http://dx.doi.org/10.1021/mp300432s] [PMID: 23281918]
[136]
Liu, W.; Lo, Y.L.; Hsu, C.; Wu, Y.T.; Liao, Z.X.; Wu, W.J.; Chen, Y.J.; Kao, C.; Chiu, C.C.; Wang, L.F. CS-PEI/Beclin-siRNA downregulate multidrug resistance proteins and increase paclitaxel therapeutic efficacy against NSCLC. Mol. Ther. Nucleic Acids, 2019, 17, 477-490.
[http://dx.doi.org/10.1016/j.omtn.2019.06.017] [PMID: 31336235]
[137]
Xu, C-X.; Jere, D.; Jin, H.; Chang, S-H.; Chung, Y-S.; Shin, J-Y.; Kim, J-E.; Park, S-J.; Lee, Y-H.; Chae, C-H.; Lee, K.H.; Beck, G.R., Jr; Cho, C.S.; Cho, M.H. Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am. J. Respir. Crit. Care Med., 2008, 178(1), 60-73.
[http://dx.doi.org/10.1164/rccm.200707-1022OC] [PMID: 18310482]
[138]
Okuda, T.; Kito, D.; Oiwa, A.; Fukushima, M.; Hira, D.; Okamoto, H. Gene silencing in a mouse lung metastasis model by an inhalable dry small interfering RNA powder prepared using the supercritical carbon dioxide technique. Biol. Pharm. Bull., 2013, 36(7), 1183-1191.
[http://dx.doi.org/10.1248/bpb.b13-00167] [PMID: 23811567]
[139]
Yu, H.; Zou, Y.; Jiang, L.; Yin, Q.; He, X.; Chen, L.; Zhang, Z.; Gu, W.; Li, Y. Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles. Biomaterials, 2013, 34(11), 2738-2747.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.042] [PMID: 23352573]
[140]
Mao, C.Q.; Xiong, M.H.; Liu, Y.; Shen, S.; Du, X.J.; Yang, X.Z.; Dou, S.; Zhang, P.Z.; Wang, J. Synthetic lethal therapy for KRAS mutant non-small-cell lung carcinoma with nanoparticle-mediated CDK4 siRNA delivery. Mol. Ther., 2014, 22(5), 964-973.
[http://dx.doi.org/10.1038/mt.2014.18] [PMID: 24496383]
[141]
Conti, D.S.; Brewer, D.; Grashik, J.; Avasarala, S.; da Rocha, S.R. Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol. Pharm., 2014, 11(6), 1808-1822.
[http://dx.doi.org/10.1021/mp4006358] [PMID: 24811243]
[142]
Zhang, Z.; Yang, X.; Zhang, Y.; Zeng, B.; Wang, S.; Zhu, T.; Roden, R.B.S.; Chen, Y.; Yang, R. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res., 2006, 12(16), 4933-4939.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2831] [PMID: 16914582]
[143]
Wang, C.; Ding, C.; Kong, M.; Dong, A.; Qian, J.; Jiang, D.; Shen, Z. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo. Biochem. Biophys. Res. Commun., 2011, 410(3), 537-542.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.019] [PMID: 21683689]
[144]
Conde, J.; Tian, F.; Hernández, Y.; Bao, C.; Cui, D.; Janssen, K-P.; Ibarra, M.R.; Baptista, P.V.; Stoeger, T.; de la Fuente, J.M. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials, 2013, 34(31), 7744-7753.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.041] [PMID: 23850099]
[145]
Sandra, F.; Khaliq, N.U.; Sunna, A.; Care, A. Developing protein-based nanoparticles as versatile delivery systems for cancer therapy and imaging. Nanomaterials (Basel), 2019, 9(9)E1329
[http://dx.doi.org/10.3390/nano9091329] [PMID: 31527483]
[146]
Lee, E.J.; Lee, S.J.; Kang, Y.S.; Ryu, J.H.; Kwon, K.C.; Jo, E.; Yhee, J.Y.; Kwon, I.C.; Kim, K.; Lee, J. Engineered proteinticles for targeted delivery of siRNA to cancer cells. Adv. Funct. Mater., 2015, 25(8), 1279-1286.
[http://dx.doi.org/10.1002/adfm.201403680]
[147]
Choi, K.M.; Kim, K.; Kwon, I.C.; Kim, I.S.; Ahn, H.J. Systemic delivery of siRNA by chimeric capsid protein: tumor targeting and RNAi activity in vivo. Mol. Pharm., 2013, 10(1), 18-25.
[http://dx.doi.org/10.1021/mp300211a] [PMID: 22663765]
[148]
Cormode, D.P.; Naha, P.C.; Fayad, Z.A. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol. Imaging, 2014, 9(1), 37-52.
[http://dx.doi.org/10.1002/cmmi.1551] [PMID: 24470293]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 2
Year: 2021
Published on: 30 July, 2020
Page: [103 - 120]
Pages: 18
DOI: 10.2174/1567201817999200730211718
Price: $65

Article Metrics

PDF: 31
HTML: 1