In Silico Anticancer Evaluation, Molecular Docking and Pharmacophore Modeling of Flavonoids against Various Cancer Targets

Author(s): Jainey Puthenveettil James*, Pankaj Kumar*, Abhishek Kumar, Katte Ishwar Bhat, Chakrakodi Shashidhara Shastry

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 12 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Designing and development of molecules for cancer treatment useful and with no side effects are a big challenge for the researchers in the field of drug discovery. The use of phytochemicals for chemoprevention is gaining more advantages, and intake of flavonoids has proved to reduce the occurrence of various cancers.

Objectives: The present study was focused on selecting eight flavonoids and study them by in silico methods to analyse the interactions, affinity and pharmacophoric features that participate in the interactions between the flavonoid and the active sites of different cancer targets.

Methods: The cancer targets were downloaded from the protein data bank, and flavonoids from PubChem and were docked by Glide XP molecular docking method to find the molecular interactions. The binding energy was calculated by Prime MM-GBSA application and ADMET analysis by Qikprop of Schrodinger. The anticancer potential of flavonoids screening was based on an online tool, Pass predictor. Phase module was used to find the common pharmacophore features that participate in essential interactions between the flavonoid and the active site.

Results: In this study, myricetin has proved to be the best flavonoid for the treatment of breast and lung cancer with docking score of -11.50 kcal/mol and -10.56 kcal/mol respectively, whereas, quercetin has proved to be the best for prostate and colorectal cancer with docking score of -14.18 kcal/mol and -12.94 kcal/mol, respectively. The responsible forces for the interaction of these flavonoids are hydrogen bond, hydrophobic interactions, polar and pi-pi stackings. The PASS tool predicted the anticancer potential for the flavonoids, in particular, myricetin had responded highly active for most cancer cells. The hypothesis AADRR_1 has the highest survival score, which indicates the best alignment of the active ligands and represents the best pharmacophore model for anticancer activity.

Conclusion: This work has screened eight flavonoids against various cancer targets and shown the binding interactions between them, stating that myricetin is the suitable lead candidate for breast and lung cancer; whereas, quercetin is the best lead for prostate and colorectal cancer. And these data are about the results obtained from PASS predictor. Moreover, the pharmacophore model has generated for the flavonoids, which correlate activities with the spatial arrangement of various chemical features. Therefore, this investigation strongly suggests that these flavonoids can be used as leads as anticancer agents.

Keywords: Cancer targets, flavonoids, molecular docking, ADMET property, PASS tool prediction, pharmacophore modeling.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 2010, 127(12), 2893-2917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[3]
Horn, L.; Pao, W.; Johnson, D.H. Neoplasms of the lung. Harrisons principles of internal medicine, 18th ed.; Longo, D.L.; Kasper, D.L.; Jamson, J.L.; Fauci, A.S.; Hauser, S.L.; Loscalzo, J., Eds.; MacGraw-Hill: New York, NY, , 2012.
[4]
Benson, J.R.; Jatoi, I. The global breast cancer burden. Future Oncol., 2012, 8(6), 697-702.
[http://dx.doi.org/10.2217/fon.12.61] [PMID: 22764767]
[5]
Thomas, C.; Gustafsson, J.A. The different roles of ER subtypes in cancer biology and therapy. Nat. Rev. Cancer, 2011, 11(8), 597-608.
[http://dx.doi.org/10.1038/nrc3093] [PMID: 21779010]
[6]
Salih, A.K.; Fentiman, I.S. Breast cancer prevention: Present and future. Cancer Treat. Rev., 2001, 27(5), 261-273.
[http://dx.doi.org/10.1053/ctrv.2001.0235] [PMID: 11871862]
[7]
Ohsaki, Y.; Tanno, S.; Fujita, Y.; Toyoshima, E.; Fujiuchi, S.; Nishigaki, Y.; Ishida, S.; Nagase, A.; Miyokawa, N.; Hirata, S.; Kikuchi, K. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol. Rep., 2000, 7(3), 603-607.
[http://dx.doi.org/10.3892/or.7.3.603] [PMID: 10767376]
[8]
Reddy, P.S.; Lokhande, K.B.; Nagar, S.; Reddy, V.D.; Murthy, P.S.; Swamy, K.V. Molecular modeling, docking, dynamics and simulation of gefitinib and its derivatives with EGFR in non-small cell lung cancer. Curr. Comput. Aided Drug Des., 2018, 14(3), 246-252.
[http://dx.doi.org/10.2174/1573409914666180228111433] [PMID: 29493460]
[9]
Singh, M.; Jha, R.; Melamed, J.; Shapiro, E.; Hayward, S.W.; Lee, P. Stromal androgen receptor in prostate development and cancer. Am. J. Pathol., 2014, 184(10), 2598-2607.
[http://dx.doi.org/10.1016/j.ajpath.2014.06.022] [PMID: 25088980]
[10]
Abdel-Magid, A.F. Potential use of inhibitors of Tankyrases and PARP-1 as treatment for cancer and other diseases. ACS Med. Chem. Lett., 2016, 7(3), 209-210.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00017] [PMID: 26985304]
[11]
Singla, R.; Jaitak, V. Multitargeted molecular docking study of natural-derived alkaloids on breast cancer pathway components. Curr. Comput. Aided Drug Des., 2017, 13(4), 294-302.
[http://dx.doi.org/10.2174/1573409913666170406144642] [PMID: 28382865]
[12]
Nema, R.; Khare, S.; Jain, P.; Pradhan, A.; Gupta, A.; Singh, D. Natural products potential and scope for modern cancer research. Am. J. Plant Sci., 2013, 4, 1270-1277.
[http://dx.doi.org/10.4236/ajps.2013.46157]
[13]
Kulkarni, B.D.; Sultana, S.; Bora, M.; Dutta, I.; Paarakh, P.M.; Basappa, V.A. In vitro cytotoxicity studies of Zn (Zinc) nanoparticles synthesised from Abutilon indicum L. against human cervical cancer (HeLa) cell lines. Pharmacogn. J., 2016, 8, 127-131.
[http://dx.doi.org/10.5530/pj.2016.2.5]
[14]
Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem., 2005, 280(7), 5636-5645.
[http://dx.doi.org/10.1074/jbc.M408177200] [PMID: 15533929]
[15]
Chen, D.; Daniel, K.G.; Chen, M.S.; Kuhn, D.J.; Landis-Piwowar, K.R.; Dou, Q.P. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol., 2005, 69(10), 1421-1432.
[http://dx.doi.org/10.1016/j.bcp.2005.02.022] [PMID: 15857606]
[16]
Plaumann, B.; Fritsche, M.; Rimpler, H.; Brandner, G.; Hess, R.D. Flavonoids activate wild-type p53. Oncogene, 1996, 13(8), 1605-1614.
[PMID: 8895505]
[17]
Lounnas, V.; Ritschel, T.; Kelder, J.; McGuire, R.; Bywater, R.P.; Foloppe, N. Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput. Struct. Biotechnol. J., 2013, 5e201302011
[http://dx.doi.org/10.5936/csbj.201302011] [PMID: 24688704]
[18]
Khurana, N.; Ishar, M.P.S.; Gajbhiye, A.; Goel, R.K. PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur. J. Pharmacol., 2011, 662(1-3), 22-30.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.048] [PMID: 21554868]
[19]
Karki, R.G.; Kulkarni, V.M. A feature based pharmacophore for Candida albicans MyristoylCoA: protein N-myristoyltransferase inhibitors. Eur. J. Med. Chem., 2001, 36(2), 147-163.
[http://dx.doi.org/10.1016/S0223-5234(00)01202-2] [PMID: 11311746]
[20]
Burnett, J.C.; Wang, C.; Nuss, J.E.; Nguyen, T.L.; Hermone, A.R.; Schmidt, J.J.; Gussio, R.; Wipf, P.; Bavari, S. Pharmacophore-guided lead optimization: The rational design of a non-zinc coordinating, sub-micromolar inhibitor of the botulinum neurotoxin serotype a metalloprotease. Bioorg. Med. Chem. Lett., 2009, 19(19), 5811-5813.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.111] [PMID: 19703771]
[21]
Schrödinger release 2019-1 2019.
[22]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[23]
Czyż, J.; Madeja, Z.; Irmer, U.; Korohoda, W.; Hülser, D.F. Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. Int. J. Cancer, 2005, 114(1), 12-18.
[http://dx.doi.org/10.1002/ijc.20620] [PMID: 15523693]
[24]
Salib, J.Y.; Daniel, E.N.; Hifnawy, M.S.; Azzam, S.M.; Shaheed, I.B.; Abdel-Latif, S.M. Polyphenolic compounds from flowers of Hibiscus rosa-sinensis Linn. and their inhibitory effect on alkaline phosphatase enzyme activity in vitro. Z. Naturforsch. C, 2011, 66, 453-459.
[25]
Tian, T.; Li, J.; Li, B.; Wang, Y.; Li, M.; Ma, D.; Wang, X. Genistein exhibits anti-cancer effects via down-regulating FoxM1 in H446 small-cell lung cancer cells. Tumour Biol., 2014, 35(5), 4137-4145.
[http://dx.doi.org/10.1007/s13277-013-1542-0] [PMID: 24379139]
[26]
Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol., 2012, 83(1), 6-15.
[http://dx.doi.org/10.1016/j.bcp.2011.08.010] [PMID: 21856292]
[27]
Ren, M.X.; Deng, X.H.; Ai, F.; Yuan, G.Y.; Song, H.Y. Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro. Exp. Ther. Med., 2015, 10(2), 579-583.
[http://dx.doi.org/10.3892/etm.2015.2536] [PMID: 26622357]
[28]
Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L. -A phytochemical and pharmacological review. Food Chem., 2014, 165, 424-443.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.002] [PMID: 25038696]
[29]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[30]
Lee, H.J.; Wang, C.J.; Kuo, H.C.; Chou, F.P.; Jean, L.F.; Tseng, T.H. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol. Appl. Pharmacol., 2005, 203(2), 124-131.
[http://dx.doi.org/10.1016/j.taap.2004.08.004] [PMID: 15710173]
[31]
Selvendiran, K.; Koga, H.; Ueno, T.; Yoshida, T.; Maeyama, M.; Torimura, T.; Yano, H.; Kojiro, M.; Sata, M. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res., 2006, 66(9), 4826-4834.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4062] [PMID: 16651438]
[32]
Wu, Y.; Qu, W.; Geng, D.; Liang, J.Y.; Luo, Y.L. Phenols and flavonoids from the aerial part of Euphorbia hirta. Chin. J. Nat. Med., 2012, 10(1), 40-42.
[http://dx.doi.org/10.1016/S1875-5364(12)60009-0] [PMID: 23302529]
[33]
Lall, R.K.; Adhami, V.M.; Mukhtar, H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol. Nutr. Food Res., 2016, 60(6), 1396-1405.
[http://dx.doi.org/10.1002/mnfr.201600025] [PMID: 27059089]
[34]
Zang, W.; Wang, T.; Wang, Y.; Li, M.; Xuan, X.; Ma, Y.; Du, Y.; Liu, K.; Dong, Z.; Zhao, G. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Tumour Biol., 2014, 35(12), 12583-12592.
[http://dx.doi.org/10.1007/s13277-014-2579-4] [PMID: 25192723]
[35]
Phillips, P.A.; Sangwan, V.; Borja-Cacho, D.; Dudeja, V.; Vickers, S.M.; Saluja, A.K. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett., 2011, 308(2), 181-188.
[http://dx.doi.org/10.1016/j.canlet.2011.05.002] [PMID: 21676539]
[36]
Tejas, H.G.; Umang, H.J.; Payal, N.B.; Tusharbindu, R.D.; Pravin, R.T. A panoramic view on pharmacognostic, pharmacological, nutritional therapeutic and prophylactic values of moringaoleifera lam. Inter. Res. J. Pharm., 2012, 3, 1-7.
[37]
Kanno, S.; Tomizawa, A.; Hiura, T.; Osanai, Y.; Shouji, A.; Ujibe, M.; Ohtake, T.; Kimura, K.; Ishikawa, M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol. Pharm. Bull., 2005, 28(3), 527-530.
[http://dx.doi.org/10.1248/bpb.28.527] [PMID: 15744083]
[38]
Schrödinger release 2019-1; Ligprep, Schrödinger, LLC: New York, NY, 2019.
[39]
Dykstra, K.D.; Guo, L.; Birzin, E.T.; Chan, W.; Yang, Y.T.; Hayes, E.C.; DaSilva, C.A.; Pai, L.Y.; Mosley, R.T.; Kraker, B.; Fitzgerald, P.M.; DiNinno, F.; Rohrer, S.P.; Schaeffer, J.M.; Hammond, M.L. Estrogen receptor ligands. Part 16: 2-Aryl indoles as highly subtype selective ligands for ERalpha. Bioorg. Med. Chem. Lett., 2007, 17(8), 2322-2328.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.054] [PMID: 17289385]
[40]
[41]
Matias, P.M.; Donner, P.; Coelho, R.; Thomaz, M.; Peixoto, C.; Macedo, S.; Otto, N.; Joschko, S.; Scholz, P.; Wegg, A.; Bäsler, S.; Schäfer, M.; Egner, U.; Carrondo, M.A. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J. Biol. Chem., 2000, 275(34), 26164-26171.
[http://dx.doi.org/10.1074/jbc.M004571200] [PMID: 10840043]
[42]
Karlberg, T.; Markova, N.; Johansson, I.; Hammarström, M.; Schütz, P.; Weigelt, J.; Schüler, H. Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J. Med. Chem., 2010, 53(14), 5352-5355.
[http://dx.doi.org/10.1021/jm100249w] [PMID: 20565110]
[43]
Kawatkar, S.; Wang, H.; Czerminski, R.; Joseph-McCarthy, D. Virtual fragment screening: An exploration of various docking and scoring protocols for fragments using Glide. J. Comput. Aided Mol. Des., 2009, 23(8), 527-539.
[http://dx.doi.org/10.1007/s10822-009-9281-4] [PMID: 19495993]
[44]
Schrödinger release 2019-1; Prime, Schrödinger, LLC: New York, NY, 2019.
[45]
Debnath, B.; Ganguly, S. synthesis, biological evaluation, in silico docking and virtual adme studies of novel isatinanalogs as promising antimicrobial. Agents Anti-Infective Agents, 2015, 13, 139.
[46]
Darvas, F.; Keseru, G.; Papp, A.; Dormán, G.; Urge, L.; Krajcsi, P. In silico and ex silico ADME approaches for drug discovery. Curr. Top. Med. Chem., 2002, 2(12), 1287-1304.
[http://dx.doi.org/10.2174/1568026023392841] [PMID: 12470281]
[47]
Schrödinger release 2019-1; QikProp, Schrödinger, LLC: New York, NY, 2019.
[48]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[49]
Fernandes, T.B.; Segretti, M.C.F.; Polli, M.C.; Parise-Filho, R. Analysis of the applicability and use of Lipinski’s rule for central nervous system drugs. Lett. Drug Des. Discov., 2016, 13, 999.
[http://dx.doi.org/10.2174/1570180813666160622092839]
[50]
Masood, M.M.; Irfan, M.; Alam, S.; Hasan, P.; Queen, A.; Shahid, S. synthesis, antimicrobial evaluation and in silico studies of novel 2,4- disubstituted-1,3-thiazole derivatives. Lett. Drug Des. Discov., 2019, 16, 160.
[http://dx.doi.org/10.2174/1570180815666180502120042]
[51]
Puglia, C.; Filosa, R.; Peduto, A.; de Caprariis, P.; Boatto, G.; Nieddu, M.; Santagati, N.A.; Bonina, F. Synthesis, physicochemical properties and in vitro permeation studies of new ketorolac ester derivatives. Curr. Drug Deliv., 2007, 4(3), 205-210.
[http://dx.doi.org/10.2174/156720107781023893] [PMID: 17627494]
[52]
Khan, T.; Lawrence, A.J.; Azad, I.; Raza, S.; Joshi, S.; Khan, A.R. Computational drug designing and prediction of important parameters using in silico methods- A review. Curr. Comput. Aided Drug Des., 2019, 15(5), 384-397.
[http://dx.doi.org/10.2174/1573399815666190326120006] [PMID: 30914032]
[53]
Mittal, M.; Goel, R.K.; Bhargava, G.; Mahajan, M.P. PASS-assisted exploration of antidepressant activity of 1,3,4-trisubstituted-β-lactam derivatives. Bioorg. Med. Chem. Lett., 2008, 18(20), 5347-5349.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.064] [PMID: 18835165]
[54]
Goel, R.K.; Singh, D.; Lagunin, A.; Poroikov, V. PASS-assisted exploration of new therapeutic potential of natural products. Med. Chem. Res., 2011, 20, 1509-1514.
[http://dx.doi.org/10.1007/s00044-010-9398-y]
[55]
Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol. Inform., 2011, 30(2-3), 241-250.
[http://dx.doi.org/10.1002/minf.201000151] [PMID: 27466777]
[56]
Poroikov, V.V.; Filimonov, D.A.; Borodina, Y.V.; Lagunin, A.A.; Kos, A. Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds. J. Chem. Inf. Comput. Sci., 2000, 40(6), 1349-1355.
[http://dx.doi.org/10.1021/ci000383k] [PMID: 11128093]
[57]
Poroikov, V.V.; Filimonov, D.A.; Ihlenfeldt, W.D.; Gloriozova, T.A.; Lagunin, A.A.; Borodina, Y.V.; Stepanchikova, A.V.; Nicklaus, M.C. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J. Chem. Inf. Comput. Sci., 2003, 43(1), 228-236.
[http://dx.doi.org/10.1021/ci020048r] [PMID: 12546557]
[58]
Shah, U.A.; Deokar, H.S.; Kadam, S.S.; Kulkarni, V.M. Pharmacophore generation and atom-based 3D-QSAR of novel 2-(4-methylsulfonylphenyl)pyrimidines as COX-2 inhibitors. Mol. Divers., 2010, 14(3), 559-568.
[http://dx.doi.org/10.1007/s11030-009-9183-3] [PMID: 19669924]
[59]
Van Drie, J.H. Strategies for the determination of pharmacophoric 3D database queries. J. Comput. Aided Mol. Des., 1997, 11(1), 39-52.
[http://dx.doi.org/10.1023/A:1008019326401] [PMID: 9139111]
[60]
Singh, N.; Nolan, T.L.; McCurdy, C.R. Chemical function-based pharmacophore development for novel, selective kappa opioid receptor agonists. J. Mol. Graph. Model., 2008, 27(2), 131-139.
[http://dx.doi.org/10.1016/j.jmgm.2008.03.007] [PMID: 18456526]
[61]
Taha, M.O.; Al-Bakri, A.G.; Zalloum, W.A. Discovery of potent inhibitors of pseudomonal quorum sensing via pharmacophore modeling and in silico screening. Bioorg. Med. Chem. Lett., 2006, 16(22), 5902-5906.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.069] [PMID: 16945524]
[62]
Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci. Biotechnol. Biochem., 1999, 63(5), 896-899.
[http://dx.doi.org/10.1271/bbb.63.896] [PMID: 10380632]
[63]
Pouget, C.; Lauthier, F.; Simon, A.; Fagnere, C.; Basly, J.P.; Delage, C.; Chulia, A.J. Flavonoids: Structural requirements for antiproliferative activity on breast cancer cells. Bioorg. Med. Chem. Lett., 2001, 11(24), 3095-3097.
[http://dx.doi.org/10.1016/S0960-894X(01)00617-5] [PMID: 11720850]
[64]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[65]
Zhou, Z.; Felts, A.K.; Friesner, R.A.; Levy, R.M. Comparative performance of several flexible docking programs and scoring functions: Enrichment studies for a diverse set of pharmaceutically relevant targets. J. Chem. Inf. Model., 2007, 47(4), 1599-1608.
[http://dx.doi.org/10.1021/ci7000346] [PMID: 17585856]
[66]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[67]
Ong, K.C.; Khoo, H.E. Biological effects of myricetin. Gen. Pharmacol., 1997, 29(2), 121-126.
[http://dx.doi.org/10.1016/S0306-3623(96)00421-1] [PMID: 9251891]
[68]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[69]
Jiao, D.; Zhang, X.D. Myricetin suppresses p21-activated kinase 1 in human breast cancer MCF-7 cells through downstream signaling of the β-catenin pathway. Oncol. Rep., 2016, 36(1), 342-348.
[http://dx.doi.org/10.3892/or.2016.4777] [PMID: 27122002]
[70]
Shih, Y.W.; Wu, P.F.; Lee, Y.C.; Shi, M.D.; Chiang, T.A. Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: Possible mediation by blocking the ERK signaling pathway. J. Agric. Food Chem., 2009, 57(9), 3490-3499.
[http://dx.doi.org/10.1021/jf900124r] [PMID: 19326946]
[71]
Zhang, S.; Wang, L.; Liu, H.; Zhao, G.; Ming, L. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn. Pathol., 2014, 9(1), 68.
[http://dx.doi.org/10.1186/1746-1596-9-68]
[72]
Ci, Y.; Zhang, Y.; Liu, Y.; Lu, S.; Cao, J.; Li, H.; Zhang, J.; Huang, Z.; Zhu, X.; Gao, J.; Han, M. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytother. Res., 2018, 32(7), 1373-1381.
[http://dx.doi.org/10.1002/ptr.6071] [PMID: 29532526]
[73]
Suganya, J.; Radha, M.; Naorem, D.L.; Nishandhini, M. In silico docking studies of selected flavonoids--natural healing agents against breast cancer. Asian Pac. J. Cancer Prev., 2014, 15(19), 8155-8159.
[http://dx.doi.org/10.7314/APJCP.2014.15.19.8155] [PMID: 25338999]
[74]
Singh, P.; Bast, F. Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Invest. New Drugs, 2015, 33(3), 575-593.
[http://dx.doi.org/10.1007/s10637-015-0240-8] [PMID: 25895100]
[75]
Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[76]
Ward, A.B.; Mir, H.; Kapur, N.; Gales, D.N.; Carriere, P.P.; Singh, S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J. Surg. Oncol., 2018, 16(1), 108.
[http://dx.doi.org/10.1186/s12957-018-1400-z] [PMID: 29898731]
[77]
Zhang, X.A.; Zhang, S.; Yin, Q.; Zhang, J. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn. Mag., 2015, 11(42), 404-409.
[http://dx.doi.org/10.4103/0973-1296.153096] [PMID: 25829782]
[78]
Singh, A.N.; Baruah, M.M.; Sharma, N. Structure Based docking studies towards exploring potential anti-androgen activity of selected phytochemicals against prostate cancer. Sci. Rep., 2017, 7(1), 1955.
[http://dx.doi.org/10.1038/s41598-017-02023-5] [PMID: 28512306]
[79]
Xavier, C.P.; Lima, C.F.; Preto, A.; Seruca, R.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett., 2009, 281(2), 162-170.
[http://dx.doi.org/10.1016/j.canlet.2009.02.041] [PMID: 19344998]
[80]
Jordan, V.C. Fourteenth Gaddum Memorial Lecture. A current view of tamoxifen for the treatment and prevention of breast cancer. Br. J. Pharmacol., 1993, 110(2), 507-517.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13840.x] [PMID: 8242225]
[81]
Radin, D.P.; Patel, P. Delineating the molecular mechanisms of tamoxifen’s oncolytic actions in estrogen receptor-negative cancers. Eur. J. Pharmacol., 2016, 781, 173-180.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.017] [PMID: 27083550]
[82]
Giaccone, G. The role of gefitinib in lung cancer treatment. Clin. Cancer Res., 2004, 10(12 Pt 2), 4233s-4237s.
[http://dx.doi.org/10.1158/1078-0432.CCR-040005] [PMID: 15217964]
[83]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[84]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[85]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 12
Year: 2020
Published on: 30 July, 2020
Page: [1485 - 1501]
Pages: 17
DOI: 10.2174/1570180817999200730164222
Price: $65

Article Metrics

PDF: 23
HTML: 2
PRC: 1