Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Role of Deposition Pressure on Properties of Phosphorus Doped Hydrogenated Nano-Crystalline Silicon (nc-Si:H) Thin Films Prepared by the Cat-CVD Method

Author(s): Bharat Gabhale, Ashish Waghmare, Subhash Pandharkar, Ajinkya Bhorde, Shruthi Nair, Priti Vairale, Vidya Doiphode, Pratibha Shinde, Ashvini Punde, Yogesh Hase, Nilesh Patil, Mohit Prasad and Sandesh Jadkar*

Volume 14, Issue 1, 2021

Published on: 30 July, 2020

Page: [46 - 57] Pages: 12

DOI: 10.2174/2405520413999200730154255

Price: $65

Abstract

Objective: Phosphorus doped hydrogenated nano-crystalline silicon (nc-Si:H) thin films were synthesized by catalytic chemical vapor deposition (Cat-CVD) method.

Methods: The effect of deposition pressure on opto-electronic and structural properties was studied using various analysis techniques such as low angle XRD analysis, FTIR spectroscopy, Raman spectroscopy, UV-Visible spectroscopy, dark conductivity, etc.

Results: From low angle XRD and Raman spectroscopy analysis, it is observed that an increase in deposition pressure causes Si:H films to transform and transit from amorphous to the crystalline phase. At optimized deposition pressure (300 mTorr), phosphorous doped nc- Si:H films having a crystallite size of ∼29 nm and crystalline volume fraction of ∼58% along with high deposition rate (∼29.7 Å/s) have been obtained. The band gap was found to be ∼1.98 eV and hydrogen content was as low as (∼1.72 at. %) for these films.

Conclusion: The deposited films can be useful as an n-type layer for Si:H based p-i-n, tandem and c-Si hetero-junction solar cells.

Keywords: Cat-CVD, Phosphorus doped nc-SI:H, Electrical properties, XRD, Raman Spectroscopy.

Graphical Abstract
[1]
Rahman M. Status of selective emitters for p-type c-si solar cells. Optics Photon J 2012; 2: 129-34.
[http://dx.doi.org/10.4236/opj.2012.22018]
[2]
Sharma P, Gupta N. Nanomaterials and their applications. Singapore: Springer 2018; pp. 209-33.
[http://dx.doi.org/10.1007/978-981-10-6214-8_8]
[3]
Lin Z, Zhang Y, Zhang W, et al. ENHanced electroluminescence efficiency in Si-nanostructure-based silicon-nitride light-emitting diodes via H2 plasma treatment. IEEE Photonics J 2018.
[http://dx.doi.org/10.1109/JPHOT.2018.2818194]
[4]
Sahli F, Werner J, Kamino B, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater 2018; 17: 820-6.
[5]
Martuza M, Ghanbarzadeh S, Lee C, Con C, Karim K. Nanocrystalline silicon lateral MSM photodetector for infrared sensing applications. IEEE Trans Electron Devices 2018; 65: 584-90.
[http://dx.doi.org/10.1109/TED.2017.2782769]
[6]
Rodriguez P, Vijselaar W, Huskens J, et al. Designing a hybrid thin‐film/wafer silicon triple photovoltaic junction for solar water splitting. Prog Photovolt 2019; 27: 245-54.
[7]
Lee C, Sazonov A, Nathan A. High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma eNHanced chemical vapor deposition. Appl Phys Lett 2005; 86: 222106-1-.
[8]
Jana M, Das D, Barua A. Role of hydrogen in controlling the growth of μc-Si:H films from argon diluted SiH4 plasma. J Appl Phys 2002; 91: 5442-8.
[9]
Zhou H, Wei D, Xu S, et al. Dilution effect of Ar/H2 on the microstructures and photovoltaic properties of nc-Si:H deposited in low frequency inductively coupled plasma. J Appl Phys 2011; 110: 023517-1-.
[10]
Ishihara S, He D, Nakata M, Shimizu I. Preparation of high-quality microcrystalline silicon from fluorinated precursors by a layer-by-layer technique. Jpn J Appl Phys 1993; 32: 1539-45.
[http://dx.doi.org/10.1143/JJAP.32.1539]
[11]
Shim J, Kim J, Cho N. effect of hydrogen gas conditions on the structural, optical, and electronic features of nc-Si:H thin films. Trans Electr Electron 2019; 20: 85-91.
[12]
Whibi S, Derbali L, Tristant P, et al. Optimized nc-Si:H thin films with eNHanced optoelectronic properties prepared by micro-waves PECVD used as an effective silicon surface passivation layer. J Mater Sci Mater El 2019; 30: 2351-9.
[13]
Sharma P, Tripathi N, Gupta N. Nanocrystalline silicon thin film prepared by e-beam evaporation for display application. J Mater Sci Mater El 2017; 28: 3891-6.
[14]
Bu Y, Flewitt A, Miline W. Nanocrystalline silicon thin films fabricated at 80°C by using electron cyclotron resonance chemical vapor deposition. Plasma Sci Technol 2010; 12: 608-13.
[15]
Zeudmi S, Kebab A, Bouhekka A, et al. Optical, structural evolution and surface morphology studies of hydrogenated silicon films synthesized by rf-magnetron sputtering: Effects of pressure and radio frequency power at low temperature. Optik 2018; 168: 65-76.
[16]
Kherodia A, Kheraj V. Effects of hydrogen-dilution on opto-structural properties of hot-wire CVD grown a-Si:H/nc-Si:H multilayer for photovoltaics. Silicon 2018; 10: 1475-85.
[17]
Karmouch R. Silicon nanocrystals. From synthesis to applications. Int J Engine Res 2016; 7: 1498-526. [J].
[18]
Tripathi R, Panwar O, Rawal I, Singh B, Yadav B. Study on nanocrystalline silicon thin films grown by the filtered cathodic vacuum arc technique using boron doped solid silicon for fast photo detectors. J Taiwan Inst Chem E 2018; 86: 185-91.
[19]
Pevtsov B, Feoktistov N. Nanocrystalline silicon films obtained by plasma eNHanced chemical vapor deposition under time-modulated-microwave-power discharge conditions. Tech Phys Lett 2002; 28: 305-7.
[http://dx.doi.org/10.1134/1.1476999]
[20]
He Y, Yin C, Cheng G, Wang L, Liu X, Hu G. The structure and properties of nanosize crystalline silicon films. J Appl Phys 1994; 75: 797-803.
[21]
Major S, Kumar S, Bhatnagar M, Chopra K. Effect of hydrogen plasma treatment on transparent conducting oxides. Appl Phys Lett 1996; 49: 394-6.
[22]
Schropp R, Rath J, Li H. Growth mechanism of nanocrystalline silicon at the phase transition and its application in thin film solar cells. J Cryst Growth 2009; 760-4.
[23]
Gogoi P, Jha H, Agarwal P. High band gap nanocrystallite embedded amorphous silicon prepared by hotwire chemical vapour deposition. Thin Solid Films 2010; 518: 6818-28.
[http://dx.doi.org/10.1016/j.tsf.2010.06.040]
[24]
Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. J Phys E Sci Instrum 1983; 16: 1214-22.
[25]
Kasap S, Capper P. Springer Handbook of Electronic and Photonic Materials. 1st ed. USA: Springer 2006.
[26]
Ette P, Bhargav P, Ahmed N, Chandra B, Ramesha A. Nanocrystalline silicon embedded highly conducting phosphorus doped silicon thin film as high power lithium ion battery anode. Electrochimica Acta 2020; 330: 135318.
[http://dx.doi.org/10.1016/j.electacta.2019.135318]
[27]
Cullity B, Stock S. Elements of X-ray Diffraction. 3rd ed. New York: Princeton Hall 2001.
[28]
Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963; 11: 431-41.https://www.jstor.org/stable/2098941
[29]
Raha D, Das D. Hydrogen induced promotion of nanocrystallization from He-diluted SiH4 plasma. J Phys D Appl Phys 2008; 41: 85303.
[30]
Acciarri M, Binetti S, Bollani M, et al. Nanocrystalline silicon film grown by LEPECVD for photovoltaic applications. Sol Energ Mat Sol Cells 2005; 87: 11-24.
[http://dx.doi.org/10.1016/j.solmat.2004.09.012]
[31]
Parramon J, Gracin D, Modereanu M, Gajovic A. Optical spectroscopy study of nc-Si-based p-in solar cells Sol Energ Mat Sol Cells 2009; 1768-72.
[32]
Li Z, Li W, Jiang Y, Cai H, Gong Y, He J. Raman characterization of the structural evolution in amorphous and partially nanocrystalline hydrogenated silicon thin films prepared by PECVD. J Raman Spectroscopy 2011; 42: 415-21.
[33]
Agbo S, Sutta P. Preferred crystal orientation in thin-film nanocrystalline silicon determined by Raman spectroscopy. Dig J Nanomater Biostruct 2013; 8: 1461-7.
[34]
Gullanar M, Zhang Y, Chen H, et al. Effect of phosphorus doping on the structural properties in nc-Si:H thin films. J Cryst Growth 2003; 256: 254-60.
[35]
Qin Y, Yan H, Li F, Qiao L, Liu Q, He D. The optoelectronic properties of silicon films deposited by inductively coupled plasma CVD. Appl Surf Sci 2010; 257: 817-22.
[http://dx.doi.org/10.1016/j.apsusc.2010.07.071]
[36]
Jones A, Ahmed W, Hassan I, et al. The impact of inert gases on the structure, properties and growth of nanocrystalline diamond. J Phy Condens Matter 2003; 15: S2969-75.
[37]
Shanks H, Fang C, Cardona M, Demond F, Kalbitzer S. Infrared spectrum and structure of hydrogenated amorphous silicon. Phys Status Solidi B 1980; 100: 43-56.
[http://dx.doi.org/10.1002/pssb.2221000103]
[38]
Langford A, Fleet M, Nelson B, Lanford W, Maley N. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys Rev B 1992; 45: 13367-77.
[http://dx.doi.org/10.1103/PhysRevB.45.13367]
[39]
Itoh T, Yananoto K, Harada H, et al. Role of hydrogen in hydrogenated microcrystalline silicon. Sol Energ Mat Sol Cells 2001; 66: 239-4.
[http://dx.doi.org/10.1016/S0927-0248(00)00179-3]
[40]
Tauc J, Menth A. States in the gap. J Non-Cryst Solids 1972; 8-10: 569-85.
[41]
Ding J, Feng Y, Wang S, Yuan N. Effects of phosphorus-doping on the microstructures, optical and electric properties in n-type Si:H thin films. Key Engineering Materials 2011; 483: 711-5.
[42]
Kumar S, Dixit P, Rauthan C, Parashar A, Gope J. Effect of power on the growth of nanocrystalline silicon films. J Phys Condens Matter 2008; 20: 335215.
[43]
Furukawa S, Miyasato T. Quantum size effects on the optical band gap of microcrystalline Si H. Phys Rev B 1998; 38: 5726-9.
[44]
Bhattacharya K, Das D. Nanocrystalline silicon films prepared from silane plasma in RF-PECVD, using helium dilution without hydrogen: Structural and optical characterization. Nanotechnology 2007; 18: 415704.
[45]
Janssen R, Janotta A, Dimova-Malinovska D, Stutzmann M. Optical and electrical properties of doped amorphous silicon suboxides. Phys Rev B 1999; 60: 13561-72.
[http://dx.doi.org/10.1103/PhysRevB.60.13561]
[46]
Gogoi P, Jha H, Agarwal P. Variation of microstructure and transport properties with filament temperature of HWCVD prepared silicon thin films. Thin Solid Films 2011; 519: 4506-10.
[http://dx.doi.org/10.1016/j.tsf.2011.01.316]
[47]
Vasiliev I, Ogut S, Chelikowsky J. Ab initio absorption spectra and optical gaps in nanocrystalline silicon. Phys Rev Lett 2001; 86: 1813-6.
[48]
Sun C, Chen T, Tay B, et al. An extended ‘quantum confinement’ theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. J Phys D Appl Phys 2001; 34: 3470-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy