Differential Modulation of Autophagy Contributes to the Protective Effects of Resveratrol and Co-Enzyme Q10 in Photoaged Mice

Author(s): Dalia K. Mostafa*, Shaimaa I. Omar, Amany A. Abdellatif, Osama A. Sorour, Omnia A. Nayel, Marwa R. Abod Al Obaidi

Journal Name: Current Molecular Pharmacology

Volume 14 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: In photoaging, the accumulation of ultraviolet (UV)-induced oxidative damage leads to the characteristic hallmarks of aging. Here arises the importance of autophagy as a cellular degradation process that cleans the cells of defective or aged organelles and macromolecules, thus maintaining cellular homeostasis. In spite of this, the exact impact of autophagy in photoaging is still elusive.

Objective: To evaluate the protective effects of resveratrol and/or co-enzyme-Q10 against the UVA-induced alterations and to explore the role of autophagy in their proposed benefits.

Methods: Sixty female mice were randomly divided into normal control, untreated UVA-exposed, resveratrol (50mg/kg), co-enzyme-Q10 (100mg/kg), and resveratrol/co-enzyme-Q10-treated UVA-- exposed groups. Clinical signs of photoaging were evaluated using a modified grading score and the pinch test. Skin malondialdehyde and reduced glutathione were assessed as markers of oxidative stress. Tissues were examined for histopathological signs of photodamage, and autophagic changes were determined by immunohistochemical detection of LC3 and P62 in the different cells of the skin.

Results: UVA-exposure increased the oxidative stress with subsequent epidermal and dermal injury. This was associated with the stimulation of autophagy in the keratinocytes and inhibition of autophagic flux in the fibroblasts and infiltrating macrophages. Both drugs corrected the impaired pinch test, macro–and microscopic changes, and exhibited distinct staining patterns with anti-LC3 and P62 in the different cell types denoting autophagic modulation.

Conclusion: Changes in autophagic flux are strongly implicated in photoaging associated skin damage and the differential modulation of autophagy by resveratrol and, to a lesser extent by Co-enzyme- Q10, is partially involved in their therapeutic benefits.

Keywords: Keratinocytes, fibroblasts, ultraviolet radiation, LC3, P62, oxidative stress.

[1]
Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and extrinsic factors in skin ageing: a review. Int. J. Cosmet. Sci., 2008, 30(2), 87-95.
[http://dx.doi.org/10.1111/j.1468-2494.2007.00415.x] [PMID: 18377617]
[2]
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 1956, 11(3), 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[3]
Birch-Machin, M.A.; Russell, E.V.; Latimer, J.A. Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress. Br. J. Dermatol., 2013, 169(Suppl. 2), 9-14.
[http://dx.doi.org/10.1111/bjd.12207] [PMID: 23786615]
[4]
D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci., 2013, 14(6), 12222-12248.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[5]
Sample, A.; He, Y.Y. Autophagy in UV damage response. Photochem. Photobiol., 2017, 93(4), 943-955.
[http://dx.doi.org/10.1111/php.12691] [PMID: 27935061]
[6]
Reggiori, F.; Klionsky, D.J. Autophagy in the eukaryotic cell. Eukaryot. Cell, 2002, 1(1), 11-21.
[http://dx.doi.org/10.1128/EC.01.1.11-21.2002] [PMID: 12455967]
[7]
Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ., 2015, 22(3), 377-388.
[http://dx.doi.org/10.1038/cdd.2014.150] [PMID: 25257172]
[8]
Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S.J.; Gibson, S.B. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ., 2008, 15(1), 171-182.
[http://dx.doi.org/10.1038/sj.cdd.4402233] [PMID: 17917680]
[9]
Dodson, M.; Redmann, M.; Rajasekaran, N.S.; Darley-Usmar, V.; Zhang, J. Correction: KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem. J., 2015, 471(3), 431-455.
[http://dx.doi.org/10.1042/BJ4710431] [PMID: 26475451]
[10]
Draelos, Z.D. What is anti-aging? J. Cosmet. Dermatol., 2007, 6(2), 73-74.
[http://dx.doi.org/10.1111/j.1473-2165.2007.00309.x] [PMID: 17524121]
[11]
Baxter, R.A. Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol., 2008, 7(1), 2-7.
[http://dx.doi.org/10.1111/j.1473-2165.2008.00354.x] [PMID: 18254804]
[12]
Morselli, E.; Maiuri, M.C.; Markaki, M.; Megalou, E.; Pasparaki, A.; Palikaras, K.; Criollo, A.; Galluzzi, L.; Malik, S.A.; Vitale, I.; Michaud, M.; Madeo, F.; Tavernarakis, N.; Kroemer, G. The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy, 2010, 6(1), 186-188.
[http://dx.doi.org/10.4161/auto.6.1.10817] [PMID: 20023410]
[13]
Kawamukai, M. Biosynthesis of coenzyme Q in eukaryotes. Biosci. Biotechnol. Biochem., 2016, 80(1), 23-33.
[http://dx.doi.org/10.1080/09168451.2015.1065172] [PMID: 26183239]
[14]
Kubota, S.; Kurihara, T.; Ebinuma, M.; Kubota, M.; Yuki, K.; Sasaki, M.; Noda, K.; Ozawa, Y.; Oike, Y.; Ishida, S.; Tsubota, K. Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation. Am. J. Pathol., 2010, 177(4), 1725-1731.
[http://dx.doi.org/10.2353/ajpath.2010.100098] [PMID: 20709795]
[15]
Ashida, Y.; Yamanishi, H.; Terada, T.; Oota, N.; Sekine, K.; Watabe, K. CoQ10 supplementation elevates the epidermal CoQ10 level in adult hairless mice. Biofactors, 2005, 25(1-4), 175-178.
[http://dx.doi.org/10.1002/biof.5520250120] [PMID: 16873943]
[16]
Kong, S.Z.; Shi, X.G.; Feng, X.X.; Li, W.J.; Liu, W.H.; Chen, Z.W.; Xie, J.H.; Lai, X.P.; Zhang, S.X.; Zhang, X.J.; Su, Z.R. Inhibitory effect of hydroxysafflor yellow a on mouse skin photoaging induced by ultraviolet irradiation. Rejuvenation Res., 2013, 16(5), 404-413.
[http://dx.doi.org/10.1089/rej.2013.1433] [PMID: 23822553]
[17]
Lin, R.F.; Feng, X.X.; Li, C.W.; Zhang, X.J.; Yu, X.T.; Zhou, J.Y.; Zhang, X.; Xie, Y.L.; Su, Z.R.; Zhan, J.Y. Prevention of UV radiation-induced cutaneous photoaging in mice by topical administration of patchouli oil. J. Ethnopharmacol., 2014, 154(2), 408-418.
[http://dx.doi.org/10.1016/j.jep.2014.04.020] [PMID: 24747030]
[18]
Bryce, G.F. Bogdan, N.J. The effect of UVA irradiation on the mechanical properties of the skin of hairless mice. J. Invest. Dermatol., 1991, 96, 584-588.
[19]
Schläfli, A.M.; Berezowska, S.; Adams, O.; Langer, R.; Tschan, M.P. Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry. Eur. J. Histochem., 2015, 59(2), 2481.
[http://dx.doi.org/10.4081/ejh.2015.2481] [PMID: 26150155]
[20]
Trojahn, C.; Dobos, G.; Lichterfeld, A.; Blume-Peytavi, U.; Kottner, J. Characterizing facial skin ageing in humans: disentangling extrinsic from intrinsic biological phenomena. BioMed Res. Int., 2015, 2015318586
[http://dx.doi.org/10.1155/2015/318586] [PMID: 25767806]
[21]
Farmer, E.E.; Davoine, C. Reactive electrophile species. Curr. Opin. Plant Biol., 2007, 10(4), 380-386.
[http://dx.doi.org/10.1016/j.pbi.2007.04.019] [PMID: 17646124]
[22]
Katiyar, S.K.; Afaq, F.; Perez, A.; Mukhtar, H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis, 2001, 22(2), 287-294.
[http://dx.doi.org/10.1093/carcin/22.2.287] [PMID: 11181450]
[23]
Perde-Schrepler, M.; Chereches, G.; Brie, I.; Tatomir, C.; Postescu, I.D.; Soran, L.; Filip, A. Grape seed extract as photochemopreventive agent against UVB-induced skin cancer. J. Photochem. Photobiol. B, 2013, 118, 16-21.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.10.008] [PMID: 23178081]
[24]
Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. Methods Mol. Biol., 2008, 445, 77-88.
[http://dx.doi.org/10.1007/978-1-59745-157-4_4] [PMID: 18425443]
[25]
Schläfli, A.M.; Adams, O.; Galván, J.A.; Gugger, M.; Savic, S.; Bubendorf, L.; Schmid, R.A.; Becker, K.F.; Tschan, M.P.; Langer, R.; Berezowska, S. Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in early-stage non-small cell lung cancer. Oncotarget, 2016, 7(26), 39544-39555.
[http://dx.doi.org/10.18632/oncotarget.9647] [PMID: 27250032]
[26]
Schmitz, K.J.; Ademi, C.; Bertram, S.; Schmid, K.W.; Baba, H.A. Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J. Surg. Oncol., 2016, 14(1), 189.
[http://dx.doi.org/10.1186/s12957-016-0946-x] [PMID: 27444698]
[27]
Zhao, Y.; Zhang, C.F.; Rossiter, H.; Eckhart, L.; König, U.; Karner, S.; Mildner, M.; Bochkov, V.N.; Tschachler, E.; Gruber, F. Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. J. Invest. Dermatol., 2013, 133(6), 1629-1637.
[http://dx.doi.org/10.1038/jid.2013.26] [PMID: 23340736]
[28]
Huang, Y.; Li, Y.; Qu, Y.; Zheng, Y.; Ouyang, M.; Zhang, Y.; Lai, W.; Xu, Q. UVA-induced photoaging inhibits autophagic degradation by impairing lysosomal function in dermal fibroblasts. Biochem. Biophys. Res. Commun., 2019, 518(4), 611-618.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.103] [PMID: 31445710]
[29]
Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol., 2013, 1(1), 45-49.
[http://dx.doi.org/10.1016/j.redox.2012.10.001] [PMID: 24024136]
[30]
Zhang, Z.; Liu, Z.; Chen, J.; Yi, J.; Cheng, J.; Dun, W.; Wei, H. Resveratrol induces autophagic apoptosis via the lysosomal cathepsin D pathway in human drug-resistant K562/ADM leukemia cells. Exp. Ther. Med., 2018, 15(3), 3012-3019.
[http://dx.doi.org/10.3892/etm.2018.5742] [PMID: 29456707]
[31]
Vitale, N.; Kisslinger, A.; Paladino, S.; Procaccini, C.; Matarese, G.; Pierantoni, G.M.; Mancini, F.P.; Tramontano, D. Resveratrol couples apoptosis with autophagy in UVB-irradiated HaCaT cells. PLoS One, 2013, 8(11), e80728.
[http://dx.doi.org/10.1371/journal.pone.0080728] [PMID: 24260465]
[32]
Zhu, H.; Itoh, K.; Yamamoto, M.; Zweier, J.L.; Li, Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett., 2005, 579(14), 3029-3036.
[http://dx.doi.org/10.1016/j.febslet.2005.04.058] [PMID: 15896789]
[33]
Cheng, L.; Jin, Z.; Zhao, R.; Ren, K.; Deng, C.; Yu, S. Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int. J. Clin. Exp. Med., 2015, 8(7), 10420-10428.
[PMID: 26379832]
[34]
Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem., 2009, 284(20), 13291-13295.
[http://dx.doi.org/10.1074/jbc.R900010200] [PMID: 19182219]
[35]
Back, J.H.; Zhu, Y.; Calabro, A.; Queenan, C.; Kim, A.S.; Arbesman, J.; Kim, A.L. Resveratrol-mediated downregulation of Rictor attenuates autophagic process and suppresses UV-induced skin carcinogenesis. Photochem. Photobiol., 2012, 88(5), 1165-1172.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01097.x] [PMID: 22272775]
[36]
Trautinger, F. Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clin. Exp. Dermatol., 2001, 26(7), 573-577.
[http://dx.doi.org/10.1046/j.1365-2230.2001.00893.x] [PMID: 11696060]
[37]
Turunen, M.; Olsson, J.; Dallner, G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta, 2004, 1660(1-2), 171-199.
[http://dx.doi.org/10.1016/j.bbamem.2003.11.012] [PMID: 14757233]
[38]
Choi, B.S.; Song, H.S.; Kim, H.R.; Park, T.W.; Kim, T.D.; Cho, B.J.; Kim, C.J.; Sim, S.S. Effect of coenzyme Q10 on cutaneous healing in skin-incised mice. Arch. Pharm. Res., 2009, 32(6), 907-913.
[http://dx.doi.org/10.1007/s12272-009-1613-3] [PMID: 19557369]
[39]
Ristow, M.; Zarse, K.; Oberbach, A.; Klöting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Blüher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8665-8670.
[http://dx.doi.org/10.1073/pnas.0903485106] [PMID: 19433800]
[40]
Flora, S.J. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev., 2009, 2(4), 191-206.
[http://dx.doi.org/10.4161/oxim.2.4.9112] [PMID: 20716905]
[41]
Muta-Takada, K.; Terada, T.; Yamanishi, H.; Ashida, Y.; Inomata, S.; Nishiyama, T.; Amano, S. Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells. Biofactors, 2009, 35(5), 435-441.
[http://dx.doi.org/10.1002/biof.56] [PMID: 19753652]
[42]
Pandel, R.; Poljšak, B.; Godic, A.; Dahmane, R. Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol., 2013, 2013930164
[http://dx.doi.org/10.1155/2013/930164] [PMID: 24159392]
[43]
Zhang, M.; Dang, L.; Guo, F.; Wang, X.; Zhao, W.; Zhao, R. Coenzyme Q(10) enhances dermal elastin expression, inhibits IL-1α production and melanin synthesis in vitro. Int. J. Cosmet. Sci., 2012, 34(3), 273-279.
[http://dx.doi.org/10.1111/j.1468-2494.2012.00713.x] [PMID: 22339577]
[44]
Wojciechowicz, K.; Gledhill, K.; Ambler, C.A.; Manning, C.B.; Jahoda, C.A. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLoS One, 2013, 8(3)e59811
[http://dx.doi.org/10.1371/journal.pone.0059811] [PMID: 23555789]
[45]
Naldaiz-Gastesi, N.; Goicoechea, M.; Alonso-Martín, S.; Aiastui, A.; López-Mayorga, M.; García-Belda, P.; Lacalle, J.; San José, C.; Araúzo-Bravo, M.J.; Trouilh, L.; Anton-Leberre, V.; Herrero, D.; Matheu, A.; Bernad, A.; García-Verdugo, J.M.; Carvajal, J.J.; Relaix, F.; Lopez de Munain, A.; García-Parra, P.; Izeta, A. Identification and Characterization of the Dermal Panniculus Carnosus Muscle Stem Cells. Stem Cell Reports, 2016, 7(3), 411-424.
[http://dx.doi.org/10.1016/j.stemcr.2016.08.002] [PMID: 27594590]
[46]
Lenaz, G.; Fato, R.; Castelluccio, C.; Genova, M.L.; Bovina, C.; Estornell, E.; Valls, V.; Pallotti, F.; Parenti Castelli, G. The function of coenzyme Q in mitochondria. Clin. Investig., 1993, 71(Suppl. 8), S66-S70.
[http://dx.doi.org/10.1007/BF00226843] [PMID: 8241708]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 3
Year: 2021
Published on: 30 July, 2020
Page: [458 - 468]
Pages: 11
DOI: 10.2174/1874467213666200730114547
Price: $65

Article Metrics

PDF: 159
HTML: 1