Smart Organic Materials with Acidochromic Properties

Author(s): Tanisha Sachdeva, Shalu Gupta, Marilyn Daisy Milton*

Journal Name: Current Organic Chemistry

Volume 24 , Issue 17 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Smart materials displaying changes in color and optical properties in response to acid stimuli are known as acidochromic materials. The recent progress and emerging trends in the field of smart organic materials with acidochromic properties, reported in the last seven years, are presented herein. The molecular design of acidochromic organic materials, the origin of the chromic and fluorochromic response to acid stimuli, and related mechanisms are also discussed. Materials and systems covered in the review are divided according to the presence of basic moiety undergoing reversible protonation/ deprotonation, such as pyridine, quinoline, quinoxaline, azole, amine derivatives, etc., in the molecules. Many donor-acceptor molecules displaying acidochromic behavior are cited. Alterations in visual color change and optical properties supporting acidochromism are discussed for each example. Mechanistic studies based on the theoretical calculations, single crystal X-ray diffraction analysis, and powder pattern diffraction analysis are also discussed here. The application of these acidochromic molecules as acid-base switches, sensor films, self-erasable and rewritable media, data security inks, data encryption, molecular logic gates, etc., are also reported. Thus, this review article aims at giving an insight into the design, characterization, mechanism, and applications of organic acidochromic materials, which will guide the researchers in designing and fine-tuning new acidochromic materials for desired applications.

Keywords: Acidochromism, donor-acceptor molecules, fluorescent sensors, intramolecular charge transfer (ICT), multi-stimuli responsive molecules, N-heterocyclic compounds, re-writable media, solid-state sensor.

[1]
Dini, D. Electrochemiluminescence from organic emitters. Chem. Mater., 2005, 17, 1933-1945.
[http://dx.doi.org/10.1021/cm049567v]
[2]
Kanibolotsky, A.L.; Perepichka, I.F.; Skabara, P.J. Star-shaped pi-conjugated oligomers and their applications in organic electronics and photonics. Chem. Soc. Rev., 2010, 39(7), 2695-2728.
[http://dx.doi.org/10.1039/b918154g] [PMID: 20520881]
[3]
Bansal, A.K.; Hou, S.; Kulyk, O.; Bowman, E.M.; Samuel, I.D.W. Wearable organic optoelectronic sensors for medicine. Adv. Mater., 2015, 27(46), 7638-7644.
[http://dx.doi.org/10.1002/adma.201403560] [PMID: 25488890]
[4]
Ball, M.; Zhong, Y.; Fowler, B.; Zhang, B.; Li, P.; Etkin, G.; Paley, D.W.; Decatur, J.; Dalsania, A.K.; Li, H.; Xiao, S.; Ng, F.; Steigerwald, M.L.; Nuckolls, C. Macrocyclization in the design of organic n-type electronic materials. J. Am. Chem. Soc., 2016, 138(39), 12861-12867.
[http://dx.doi.org/10.1021/jacs.6b05474] [PMID: 27666433]
[5]
Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, T. Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv. Mater., 2016, 28(6), 1073-1095.
[http://dx.doi.org/10.1002/adma.201502589] [PMID: 26461848]
[6]
Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous organic materials: strategic design and structure-function correlation. Chem. Rev., 2017, 117(3), 1515-1563.
[http://dx.doi.org/10.1021/acs.chemrev.6b00439] [PMID: 28035812]
[7]
Chiykowski, V.A.; Lam, B.; Du, C.; Berlinguette, C.P. Comparative analysis of triarylamine and phenothiazine sensitizer donor units in dye-sensitized solar cells. Chem. Commun. (Camb.), 2017, 53(15), 2367-2370.
[http://dx.doi.org/10.1039/C6CC09178D] [PMID: 28165524]
[8]
Kanibolotsky, A.L.; Laurand, N.; Dawson, M.D.; Turnbull, G.A.; Samuel, I.D.W.; Skabara, P.J. Design of linear and star-shaped macromolecular organic semiconductors for photonic applications. Acc. Chem. Res., 2019, 52(6), 1665-1674.
[http://dx.doi.org/10.1021/acs.accounts.9b00129] [PMID: 31117341]
[9]
Wang, Y.; Sun, L.; Wang, C.; Yang, F.; Ren, X.; Zhang, X.; Dong, H.; Hu, W. Organic crystalline materials in flexible electronics. Chem. Soc. Rev., 2019, 48(6), 1492-1530.
[http://dx.doi.org/10.1039/C8CS00406D] [PMID: 30283937]
[10]
Li, T.; Chen, Z.; Wang, Y.; Tu, J.; Deng, X.; Li, Q.; Li, Z. Materials for interfaces in organic solar cells and photodetectors. ACS Appl. Mater. Interfaces, 2020, 12(3), 3301-3326.
[http://dx.doi.org/10.1021/acsami.9b19830] [PMID: 31845796]
[11]
Yoshida, K.; Manousiadis, P.P.; Bian, R.; Chen, Z.; Murawski, C.; Gather, M.C.; Haas, H.; Turnbull, G.A.; Samuel, I.D.W. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun., 2020, 11(1), 1-7.
[http://dx.doi.org/10.1038/s41467-020-14880-2] [PMID: 32127529]
[12]
Srivastava, A.K.; Singh, A.K.; Kumari, N.; Yadav, R.; Gulino, A.; Speghini, A.; Nagarajan, R.; Mishra, L. Pyridyl substituted 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzamides with aggregation enhanced emission and multi-stimuli-responsive properties. J. Lumin., 2017, 182, 274-282.
[http://dx.doi.org/10.1016/j.jlumin.2016.10.042]
[13]
Jia, S.; Fong, W-K.; Graham, B.; Boyd, B.J. Photoswitchable molecules in long-wavelength light-responsive drug delivery: from molecular design to applications. Chem. Mater., 2018, 30, 2873-2887.
[http://dx.doi.org/10.1021/acs.chemmater.8b00357]
[14]
Hou, Y.; Li, Z.; Hou, J.; Shi, P.; Li, Y.; Niu, M.; Liu, Y.; Han, T. Conditional mechanochromic fluorescence with turn-on response: a new way to encrypt and decrypt binary data. Dyes Pigments, 2018, 159, 252-261.
[http://dx.doi.org/10.1016/j.dyepig.2018.06.037]
[15]
Fedorenko, E.V.; Mirochnik, A.G.; Gerasimenko, A.V.; Beloliptsev, A.Y.; Merkulov, E.B. Mechanofluorochromism, thermofluorochromism, solvatochromism, and solid-state luminescence of difluoroboron o-hydroxy-, p-benzoyloxydibenzoylmetanates. Dyes Pigments, 2018, 159, 557-572.
[http://dx.doi.org/10.1016/j.dyepig.2018.07.022]
[16]
Fu, Z.; Wang, K.; Zou, B. Recent advances in organic pressure-responsive luminescent materials. Chin. Chem. Lett., 2019, 30, 1883-1894.
[http://dx.doi.org/10.1016/j.cclet.2019.08.041]
[17]
Hou, Y.; Du, J.; Hou, J.; Shi, P.; Wang, K.; Zhang, S.; Han, T.; Li, Z. Rewritable optical data storage based on mechanochromic fluorescence materials with aggregation-induced emission. Dyes Pigments, 2019, 160, 830-838.
[http://dx.doi.org/10.1016/j.dyepig.2018.09.023]
[18]
Sun, L.; Yang, F.; Zhang, X.; Hu, W. Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Mater. Chem. Front., 2020, 4, 715-728.
[http://dx.doi.org/10.1039/C9QM00760A]
[19]
Darzi, E.R.; Hirst, E.S.; Weber, C.D.; Zakharov, L.N.; Lonergan, M.C.; Jasti, R. Synthesis, properties, and design principles of donor-acceptor nanohoops. ACS Cent. Sci., 2015, 1(6), 335-342.
[http://dx.doi.org/10.1021/acscentsci.5b00269] [PMID: 27162989]
[20]
Ball, M.; Nuckolls, C. Stepping into the light: conjugated macrocycles with donor-acceptor motifs. ACS Cent. Sci., 2015, 1(8), 416-417.
[http://dx.doi.org/10.1021/acscentsci.5b00339] [PMID: 27163002]
[21]
Klikar, M.; Solanke, P.; Tydlitát, J.; Bureš, F. Alphabet‐inspired design of (hetero)aromatic push-pull chromophores. Chem. Rec., 2016, 16(4), 1886-1905.
[http://dx.doi.org/10.1002/tcr.201600032] [PMID: 27272649]
[22]
Bishnoi, S.; Milton, M.D.; Paul, T.K.; Pal, A.K.; Taraphder, S. Small non-planar phenothiazine-5-oxide-based molecules: structural characterization, photophysical, thermal and computational studies. ChemistrySelect, 2017, 2, 3084-3092.
[http://dx.doi.org/10.1002/slct.201700279]
[23]
Chaudhary, S.; Mukherjee, M.; Paul, T.K.; Bishnoi, S.; Taraphder, S.; Milton, M.D. Novel phenothiazine-5-oxide based push-pull molecules: synthesis and fine-tuning of electronic, optical and thermal properties. ChemistrySelect, 2018, 3, 5073-5081.
[http://dx.doi.org/10.1002/slct.201800131]
[24]
Adak, A.; Panda, T.; Raveendran, A.; Bejoymohandas, K.S.; Asha, K.S.; Prakasham, A.P.; Mukhopadhyay, B.; Panda, M.K. Bejoymohandas, Asha, K. S.; Prakasham, A. P.; Mukhopadhyay, B.; Panda, M. K. Distinct mechanoresponsive luminescence, thermochromism, vapochromism, and chlorine gas sensing by a solid-state organic emitter. ACS Omega, 2018, 3(5), 5291-5300.
[http://dx.doi.org/10.1021/acsomega.8b00250] [PMID: 31458738]
[25]
Park, J.M.; Jung, C.Y.; Jang, W-D.; Jaung, J.Y. Effect of donor-π-acceptor structure on photochromism of dithienylethene-based dyes. Dyes Pigments, 2020, 177108315
[http://dx.doi.org/10.1016/j.dyepig.2020.108315]
[26]
Izumi, S.; Higginbotham, H.F.; Nyga, A.; Stachelek, P.; Tohnai, N.; Silva, P.; Data, P.; Takeda, Y.; Minakata, S. Thermally activated delayed fluorescent donor-acceptor-donor-acceptor π-conjugated macrocycle for organic light-emitting diodes. J. Am. Chem. Soc., 2020, 142(3), 1482-1491.
[http://dx.doi.org/10.1021/jacs.9b11578] [PMID: 31895980]
[27]
Ekbote, A.; Mobin, S.M.; Misra, R. Stimuli-responsive phenothiazine-based donor-acceptor isomers: AIE, mechanochromism and polymorphism. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8, 3589-3602.
[http://dx.doi.org/10.1039/C9TC05192A]
[28]
Verbitskiy, E.V.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: a review. Dyes Pigments, 2020, 180108414
[http://dx.doi.org/10.1016/j.dyepig.2020.108414]
[29]
Chi, Z.; Zhang, X.; Xu, B.; Zhou, X.; Ma, C.; Zhang, Y.; Liu, S.; Xu, J. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev., 2012, 41(10), 3878-3896.
[http://dx.doi.org/10.1039/c2cs35016e] [PMID: 22447121]
[30]
Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev., 2015, 115(21), 11718-11940.
[http://dx.doi.org/10.1021/acs.chemrev.5b00263] [PMID: 26492387]
[31]
Kortekaas, L.; Browne, W.R. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev., 2019, 48(12), 3406-3424.
[http://dx.doi.org/10.1039/C9CS00203K] [PMID: 31150035]
[32]
Genovese, M.E.; Athanassioua, A.; Fragouli, D. Photoactivated acidochromic elastomeric films for on demand acidic vapor sensing. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 22441-22447.
[http://dx.doi.org/10.1039/C5TA06118K]
[33]
Genovese, M.E.; Colusso, E.; Colombo, M.; Martucci, A.; Athanassioua, A.; Fragouli, D. Acidochromic fibrous polymer composites for rapid gas detection. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 339-348.
[http://dx.doi.org/10.1039/C6TA08793K]
[34]
Genovese, M.E.; Abraham, S.; Caputo, G.; Nanni, G.; Kumaran, S.K.; Montemagno, C.D.; Athanassiou, A.; Fragouli, D. Photochromic paper indicators for acidic food spoilage detection. ACS Omega, 2018, 3(10), 13484-13493.
[http://dx.doi.org/10.1021/acsomega.8b02570] [PMID: 31458057]
[35]
Rad, J.K.; Ghomi, A.R.; Karimipour, K.; Mahdavian, A.R. Progressive readout platform based on photoswitchable polyacrylic nanofibers containing spiropyran in photopatterning with instant responsivity to acid-base vapors. Macromolecules, 2020, 53, 1613-1622.
[http://dx.doi.org/10.1021/acs.macromol.9b02603]
[36]
Achelle, S.; López, J.R.; Bureš, F.; Guen, F.R. Tuning the photophysical properties of push‐pull azaheterocyclic chromophores by protonation: A brief overview of a French‐Spanish‐Czech project. Chem. Rec., 2020, 20(5), 440-451.
[http://dx.doi.org/10.1002/tcr.201900064] [PMID: 31638743]
[37]
Song, W.; Gao, L.; Zhang, T.; Huang, J.; Su, J. [1,2,4]Triazolo[1,5-a]pyridines based host materials for high-performance red PhOLEDs with external quantum efficiencies over 23%. J. Lumin., 2019, 206, 386-392.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.006]
[38]
Zhang, Q.; Wang, G.; Li, H.; Zhu, F.; Li, H.; Lu, J. Improved molecular stacking and data-storage performance of pyridine- and pyrimidine- substituted small molecules. Adv. Funct. Mater., 2018, 281800568
[http://dx.doi.org/10.1002/adfm.201800568]
[39]
Biswal, B.; Mallick, D.; Thirunavoukkarasu, M.; Mohanty, R.; Bag, B. A pyridine and pyrrole coupled rhodamine derivative for Co(II) ion detection and its imaging application in plant tissues. Sens. Actuators B Chem., 2016, 232, 410-419.
[http://dx.doi.org/10.1016/j.snb.2016.03.160]
[40]
Teo, P.; Hor, T.S.A. Spacer directed metallo-supramolecular assemblies of pyridine carboxylates. Coord. Chem. Rev., 2016, 323, 107-119.
[http://dx.doi.org/10.1016/j.ccr.2016.02.005]
[41]
McPherson, J.N.; Das, B.; Colbran, S.B. Tridentate pyridine-pyrrolide chelate ligands: an under-appreciated ligand set with an immensely promising coordination chemistry. Coord. Chem. Rev., 2018, 375, 285-332.
[http://dx.doi.org/10.1016/j.ccr.2018.01.012]
[42]
Zhang, C.; Li, M.; Liang, W.; Zhang, G.; Fan, L.; Yao, Q.; Shuang, S.; Dong, C. Substituent effect on the properties of pH fluorescence probes containing pyridine group. ChemistrySelect, 2019, 4, 5735-5739.
[http://dx.doi.org/10.1002/slct.201901003]
[43]
Yuan, C.; Li, J.; Xi, H.; Li, Y. A sensitive pyridine-containing turn-off fluorescent probe for pH detection. Mater. Lett., 2019, 236, 9-12.
[http://dx.doi.org/10.1016/j.matlet.2018.10.060]
[44]
Bolisetty, M.N.K.P.; Li, C.T.; Thomas, K.R.J.; Bodedla, G.B.; Ho, K.C. Benzothiadiazole-based organic dyes with pyridine anchors for dyes-sensitized solar cells: effect of donor on optical properties. Tetrahedron, 2015, 71, 4203-4212.
[http://dx.doi.org/10.1016/j.tet.2015.04.089]
[45]
Cesaretti, A.; Bonaccorso, C.; Carboni, V.; Giubila, M.S.; Fortuna, C.G.; Elisei, F.; Spalleti, A. Four styryl phenanthroline derivatives as excellent acidochromic probes. Dyes Pigments, 2019, 162, 440-450.
[http://dx.doi.org/10.1016/j.dyepig.2018.10.024]
[46]
Bishnoi, S.; Milton, M.D. Tunable phenothiazine hydrazones as colour displaying, ratiometric and reversible pH sensors. Tetrahedron Lett., 2015, 56, 6633-6638.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.041]
[47]
Zhang, J.; Chen, J.; Xu, B.; Wang, L.; Ma, S.; Dong, Y.; Li, B.; Ye, L.; Tian, W. Remarkable fluorescence change based on the protonation-deprotonation control in organic crystals. Chem. Commun. (Camb.), 2013, 49(37), 3878-3880.
[http://dx.doi.org/10.1039/c3cc41171k] [PMID: 23545943]
[48]
Dong, Y.; Zhang, J.; Tan, X.; Wang, L.; Chen, J.; Li, B.; Ye, L.; Xu, B.; Zou, B.; Tian, W. Multi-stimuli responsive fluorescence switching: the reversible piezochromism and protonation effect of a divinylanthracene derivative. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 7554-7559.
[http://dx.doi.org/10.1039/c3tc31553c]
[49]
Tang, R.; Wang, X.; Zhang, W.; Zhuang, X.; Bi, S.; Zhang, W.; Zhang, F. Aromatic azaheterocycle-cored luminogens with tunable physical properties via nitrogen atoms for sensing strong atoms. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4, 7640-7648.
[http://dx.doi.org/10.1039/C6TC02591A]
[50]
Lei, Y.; Yang, D.; Hua, H.; Dai, C.; Wang, L.; Liu, M.; Huang, X.; Guo, Y.; Chen, Y.; Wu, H. Piezochromism, acidochromism, solvent-induced emission changes and cell imaging of D-π-A 1,4-dihydropyridine derivatives with aggregation-induced emission properties. Dyes Pigments, 2016, 133, 261-272.
[http://dx.doi.org/10.1016/j.dyepig.2016.06.008]
[51]
Pradhan, B.; Gupta, M.; Pal, S.K.; Achalkumar, A.S. Multifunctional hexacatenar mesogen exhibiting supergelation, AIEE and its ability as a potential volatile acid sensor. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4, 9669-9673.
[http://dx.doi.org/10.1039/C6TC03963D]
[52]
Sun, Q.; Wang, H.; Xu, X.; Lu, Y.; Xue, S.; Zhang, H.; Yang, W. 9,10-Bis((Z)-2-phenyl-2-(pyridin-2-yl)vinyl)anthracene: aggregation-induced emi-ssion, mechanochromic luminescence, and reversible volatile acids-amines switching. Dyes Pigments, 2018, 149, 407-414.
[http://dx.doi.org/10.1016/j.dyepig.2017.10.012]
[53]
Kachwal, V.; Alam, P.; Yadav, H.R.; Pasha, S.S.; Choudhury, A.R.; Laskar, I.R. Simple ratiometric push–pull with an ‘aggregation induced enhanced emission’ active pyrene derivative: a multifunctional and highly sensitive fluorescent sensor. New J. Chem., 2018, 42, 1133-1140.
[http://dx.doi.org/10.1039/C7NJ03964F]
[54]
Yang, B.; Wei, C.Y. Stimuli-responsive fluorescence switching of cyanostilbene derivatives: ultrasensitive water, acidochromism and mechanochromism. RSC Advances, 2018, 8, 22806-22812.
[http://dx.doi.org/10.1039/C8RA03598A]
[55]
Li, K.; Cui, J.; Yang, Z.; Huo, Y.; Duan, W.; Gong, S.; Liu, Z. Solvatochromism, acidochromism and aggregation-induced emission of propeller-shaped spiroborates. Dalton Trans., 2018, 47(42), 15002-15008.
[http://dx.doi.org/10.1039/C8DT03374A] [PMID: 30302444]
[56]
Wang, M.; Qian, L.; Guo, Y.; Wu, H.; Liu, M.; Gao, W.; Li, G.; Ding, J.; Huang, X. Solid-state acidochromic properties of barbituric acid-based 1,4-dihydropyridine derivatives with multiple coloured emissions switching. Dyes Pigments, 2019, 160, 378-385.
[http://dx.doi.org/10.1016/j.dyepig.2018.08.018]
[57]
Sachdeva, T.; Milton, M.D. Logic gate based novel phenothiazine-pyridylhydrazones: halochromism in solid and solution state. Dyes Pigments, 2019, 164, 305-318.
[http://dx.doi.org/10.1016/j.dyepig.2019.01.038]
[58]
Uchacz, T.; Szlachcic, P.; Wojtasik, K.; Mac, M.; Stadnicka, K. Amino derivatives of 1, 3-diphenyl-1H-pyrazolo [3, 4-b] quinoline–photophysics and implementation of molecular logic switches. Dyes Pigments, 2016, 124, 277-292.
[http://dx.doi.org/10.1016/j.dyepig.2015.09.016]
[59]
Manickam, S.; Balijapalli, U.; Sathiyanarayanan, K.I. SnCl2-catalyzed synthesis of dihydro-5 H-benzo [f] pyrazolo [3, 4-b] quinoline and dihydroindeno [2, 1-b] pyrazolo [4, 3-e] pyridine with high fluorescence and their photophysical properties. New J. Chem., 2018, 42, 860-871.
[http://dx.doi.org/10.1039/C7NJ03654J]
[60]
Manickam, S.; Balijapalli, U.; Sawminathan, S.; Samuelrajamani, P.; Kamaraj, S.; Shanmugam, V.; Ramalingam, S.; Iyer, S.K. One‐pot synthesis and photophysical studies of styryl‐based benzo [f] pyrazolo [3, 4‐b] quinoline and indeno [2, 1‐b] pyrazolo [4, 3‐e] pyridines. Eur. J. Org. Chem., 2018, 2018, 6204-6216.
[http://dx.doi.org/10.1002/ejoc.201801015]
[61]
Hariharan, P.S.; Mothi, E.M.; Moon, D.; Anthony, S.P. Halochromic isoquinoline with mechanochromic triphenylamine: smart fluorescent material for rewritable and self-erasable fluorescent platform. ACS Appl. Mater. Interfaces, 2016, 8(48), 33034-33042.
[http://dx.doi.org/10.1021/acsami.6b11939] [PMID: 27934127]
[62]
Zhang, M.; Yang, W.; Gong, T.; Zhou, W.; Xue, R. Tunable AIEE fluorescence constructed from a triphenylamine luminogen containing quinoline - application in a reversible and tunable pH sensor. Phys. Chem. Chem. Phys., 2017, 19(32), 21672-21682.
[http://dx.doi.org/10.1039/C7CP03234J] [PMID: 28767113]
[63]
Shen, Y.; Xue, P.; Liu, J.; Ding, J.; Sun, J.; Lu, R. High-contrast mechanofluorochromism and acidochromism of D-π-A type quinoline derivatives. Dyes Pigments, 2019, 163, 71-77.
[http://dx.doi.org/10.1016/j.dyepig.2018.11.044]
[64]
Zhu, X.; Wang, D.; Huang, H.; Zhang, X.; Wang, S.; Liu, R.; Zhu, H. Design, synthesis, crystal structures, and photophysical properties of tetraphenylethene-based quinoline derivatives. Dyes Pigments, 2019, 171107657
[http://dx.doi.org/10.1016/j.dyepig.2019.107657]
[65]
Gupta, S.; Milton, M.D. Synthesis of novel AIEE active pyridopyrazines and their applications as chromogenic and fluorogenic probes for Hg2+ detection in aqueous media. New J. Chem., 2018, 42, 2838-2849.
[http://dx.doi.org/10.1039/C7NJ04573E]
[66]
Kanekar, D.N.; Chacko, S.; Kamble, R.M. Quinoxaline based amines as blue-orange emitters: Effect of modulating donor system on optoelectrochemical and theoretical properties. Dyes Pigments, 2019, 167, 36-50.
[http://dx.doi.org/10.1016/j.dyepig.2019.04.005]
[67]
Ekbote, A.; Jadhav, T.; Misra, R. T-Shaped donor–acceptor–donor type tetraphenylethylene substituted quinoxaline derivatives: aggregation-induced emission and mechanochromism. New J. Chem., 2017, 41, 9346-9353.
[http://dx.doi.org/10.1039/C7NJ01531C]
[68]
More, Y.W.; Padghan, S.D.; Bhosale, R.S.; Pawar, R.P.; Puyad, A.L.; Bhosale, S.V.; Bhosale, S.V. Proton triggered colorimetric and fluorescence response of a novel quinoxaline compromising a donor-acceptor system. Sensors (Basel), 2018, 18(10), 3433.
[http://dx.doi.org/10.3390/s18103433] [PMID: 30322092]
[69]
Pan, H.; Song, T.; Yin, X.; Jin, P.; Xiao, J. Synthesis, crystal analysis, and optoelectronic properties of diazole‐functionalized acenes and azaacenes. Chemistry, 2018, 24(25), 6572-6579.
[http://dx.doi.org/10.1002/chem.201705657] [PMID: 29341382]
[70]
Meti, P.; Gong, Y-D. Unveiling the photophysical and morphological properties of an acidochromic thiophene flanked dipyrrolopyrazine-based chromophore for optoelectronic application. RSC Advances, 2018, 8, 2004-2014.
[http://dx.doi.org/10.1039/C7RA12527E]
[71]
Kothavale, S.; Sekar, N. Novel pyrazino-phenanthroline based rigid donor-π-acceptor compounds: A detail study of optical properties, acidochromism, solvatochromism and structure-property relationship. Dyes Pigments, 2017, 136, 31-45.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.032]
[72]
Achelle, S.; López, J.R.; Katan, C.; Guen, F.O.R. Luminescence behavior of protonated methoxy-substituted diazine derivatives: toward white light emission. J. Phys. Chem. C, 2016, 120, 26986-26995.
[http://dx.doi.org/10.1021/acs.jpcc.6b08401]
[73]
Xu, L.; Zhu, H.; Long, G.; Zhao, J.; Li, D.; Ganguly, R.; Li, Y.; Xu, Q-H.; Zhang, Q. 4-Diphenylamino-phenyl substituted pyrazine: nonlinear optical switching by protonation. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 9191-9196.
[http://dx.doi.org/10.1039/C5TC01657F]
[74]
Liao, C-W.; Rao, M.R.; Sun, S-S. Structural diversity of new solid-state luminophores based on quinoxaline-β-ketoiminate boron difluoride complexes with remarkable fluorescence switching properties. Chem. Commun. (Camb.), 2015, 51(13), 2656-2659.
[http://dx.doi.org/10.1039/C4CC08958H] [PMID: 25572298]
[75]
Black, H.T.; Pelse, I.; Wolfe, R.M.; Reynolds, J.R. Halochromism and protonation-induced assembly of a benzo[g]indolo[2,3-b]quinoxaline derivative. Chem. Commun. (Camb.), 2016, 52(87), 12877-12880.
[http://dx.doi.org/10.1039/C6CC06443D] [PMID: 27738671]
[76]
Li, M.; Yuan, Y.; Chen, Y. Acid-induced multicolor fluorescence of pyridazine derivative. ACS Appl. Mater. Interfaces, 2018, 10(1), 1237-1243.
[http://dx.doi.org/10.1021/acsami.7b16050] [PMID: 29231714]
[77]
Zhao, J.; Sun, J.; Simalou, O.; Wang, H.; Peng, J.; Zhai, L.; Xue, P.; Lu, R. Multi-stimuli-responsive fluorescent aminostyrylquinoxalines: synthesis, solvatochromism, mechanofluorochromism and acidochromism. Dyes Pigments, 2018, 151, 296-302.
[http://dx.doi.org/10.1016/j.dyepig.2018.01.005]
[78]
Gupta, S.; Milton, M.D. Design and synthesis of novel V-shaped AIEE active quinoxalines for acidochromic applications. Dyes Pigments, 2019, 165, 474-487.
[http://dx.doi.org/10.1016/j.dyepig.2019.02.038]
[79]
Zhan, Y.; Wang, Y. Donor-acceptor π-conjugated quinoxaline derivatives exhibiting multi-stimuli-responsive behaviors and polymorphism-dependent multicolor solid-state emission. Dyes Pigments, 2020, 173107971
[http://dx.doi.org/10.1016/j.dyepig.2019.107971]
[80]
Zhan, Y. Fluorescence response of anthracene modified D-π-A heterocyclic chromophores containing nitrogen atom to mechanical force and acid vapor. Dyes Pigments, 2020, 173108002
[http://dx.doi.org/10.1016/j.dyepig.2019.108002]
[81]
Hogan, D.T.; Gelfand, B.S.; Spasyuk, D.M.; Sutherland, T.C. Subtle substitution controls the rainbow chromatic behaviour of multi-stimuli responsive core-expanded pyrenes. Mater. Chem. Front., 2020, 4, 268-276.
[http://dx.doi.org/10.1039/C9QM00710E]
[82]
Milton, M.D.; Garg, P. Flexible, dicationic imidazolium salts for in situ application in palladium-catalyzed Mizoroki-Heck coupling of acrylates under aerial conditions. Appl. Organomet. Chem., 2016, 30, 759-766.
[http://dx.doi.org/10.1002/aoc.3503]
[83]
Lal, A.K.; Milton, M.D. Synthesis of new benzimidazolium salts with tunable emission intensities and their application as fluorescent probes for Fe3+ in pure aqueous media. Tetrahedron Lett., 2014, 55, 1810-1814.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.127]
[84]
Lal, A.K.; Milton, M.D. Designed benzimidazolium salts: modulation of fluorescence response towards metal cations in pure aqueous media. Sens. Actuators B Chem., 2014, 202, 257-262.
[http://dx.doi.org/10.1016/j.snb.2014.05.037]
[85]
Bishnoi, S.; Milton, M.D. Selective and sensitive novel benzimidazolium-based fluorescent probes for micromolar detection of Fe3+ ions in pure aqueous media. J. Photochem. Photobiol. Chem., 2017, 335, 52-58.
[http://dx.doi.org/10.1016/j.jphotochem.2016.11.010]
[86]
Chaudhary, S.; Milton, M.D. Dicationic imidazolium salts as fluorescent probes for selective detection of Fe3+ ion in pure aqueous media. J. Photochem. Photobiol. Chem., 2018, 356, 595-602.
[http://dx.doi.org/10.1016/j.jphotochem.2018.02.003]
[87]
Bhagwat, A.A.; Avhad, K.C.; Patil, D.S.; Sekar, N. Design and synthesis of coumarin–imidazole hybrid chromophores: solvatochromism, acidochromism and nonlinear optical properties. Photochem. Photobiol., 2019, 95(3), 740-754.
[http://dx.doi.org/10.1111/php.13024] [PMID: 30267570]
[88]
Yadav, S.B.; Kothavale, S.; Sekar, N. Triphenylamine and N-phenyl carbazole-based coumarin derivatives: synthesis, solvatochromism, acidochromism, linear and nonlinear optical properties. J. Photochem. Photobiol. Chem., 2019, 382111937
[http://dx.doi.org/10.1016/j.jphotochem.2019.111937]
[89]
Aich, K.; Das, S.; Goswami, S.; Quah, C.K.; Sarkar, D.; Mondal, T.K.; Fun, H-K. Carbazole-benzimidazole based dyes for acid responsive ratiometric emissive switches. New J. Chem., 2016, 40, 6907-6915.
[http://dx.doi.org/10.1039/C6NJ00063K]
[90]
Zhan, Y.; Wei, Q.; Zhao, J.; Zhang, X. Reversible mechanofluorochromism and acidochromism using a cyanostyrylbenzimidazole derivative with aggregation-induced emission. RSC Advances, 2017, 7, 48777-48784.
[http://dx.doi.org/10.1039/C7RA09131A]
[91]
Zhang, Y.; Huang, J.; Kong, L.; Tian, Y.; Yang, J. Two novel AIEE-active imidazole/α-cyanostilbene derivatives: photophysical properties, reversible fluorescence switching, and detection of explosives. CrystEngComm, 2018, 20, 1237-1244.
[http://dx.doi.org/10.1039/C7CE01842H]
[92]
Hu, W.; Yang, W.; Gong, T.; Zhou, W.; Zhang, Y. Multi-stimuli responsive properties switch by intra-and inter-molecular charge transfer constructed from triphenylamine derivative. CrystEngComm, 2019, 21, 6630-6640.
[http://dx.doi.org/10.1039/C9CE01217F]
[93]
Zheng, F.; Alberti, S.F.; Tretiak, S.; Zhao, Y. Photoinduced intra-and intermolecular energy transfer in chlorophyll a dimer. J. Phys. Chem. B, 2017, 121(21), 5331-5339.
[http://dx.doi.org/10.1021/acs.jpcb.7b02021] [PMID: 28482160]
[94]
Wen, L.; Zang, C.; Gao, Y.; Tao, Y.; Li, G.; Shan, G.; Sun, H.; Xie, W.; Su, Z. Engineering of aggregation-induced emission luminogens by isomeric strategy to achieve high-performance optoelectronic device. Dyes Pigments, 2020, 173107912
[http://dx.doi.org/10.1016/j.dyepig.2019.107912]
[95]
Wu, Y.; Xie, Y.; Zhang, Q.; Tian, H.; Zhu, W.; Li, A.D.Q. Quantitative photoswitching in bis(dithiazole)ethene enables modulation of light for encoding optical signals. Angew. Chem. Int. Ed. Engl., 2014, 53(8), 2090-2094.
[http://dx.doi.org/10.1002/anie.201309915] [PMID: 24442799]
[96]
Liu, K.; Wen, Y.; Shi, T.; Li, Y.; Li, F.; Zhao, Y.L.; Huang, C.; Yi, T. DNA gated photochromism and fluorescent switch in a thiazole orange modified diarylethene. Chem. Commun. (Camb.), 2014, 50(65), 9141-9144.
[http://dx.doi.org/10.1039/C4CC02783C] [PMID: 24989898]
[97]
Frija, L.M.T.; Pombeiro, A.J.L.; Kopylovich, M.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coord. Chem. Rev., 2016, 308, 32-55.
[http://dx.doi.org/10.1016/j.ccr.2015.10.003]
[98]
Samal, M.; Valligatla, S.; Saad, N.A.; Rao, M.V.; Rao, D.N.; Sahu, R.; Biswal, B.P. A thiazolo[5,4-d]thiazole-bridged porphyrin organic framework as a promising nonlinear optical material. Chem. Commun. (Camb.), 2019, 55(74), 11025-11028.
[http://dx.doi.org/10.1039/C9CC05415D] [PMID: 31453586]
[99]
Hu, Y.X.; Xia, X.; He, W.Z.; Tang, Z.J.; Lv, Y.L.; Li, X.; Zhang, D.Y. Recent developments in benzothiazole-based Iridium (III) complexes for application in OLEDs as electrophosphorescent emitters. Org. Electron., 2019, 66, 126-135.
[http://dx.doi.org/10.1016/j.orgel.2018.12.029]
[100]
Niu, Y.; Wang, R.; Pu, L.; Zhang, Y. Pyrene meets 2-(2-hydroxy-phenyl)benzothiazole: Creation of highly efficient solid-state monomeric emitter for organic light-emitting diode. Dyes Pigments, 2019, 170107594
[http://dx.doi.org/10.1016/j.dyepig.2019.107594]
[101]
Sathiyan, G.; Ranjan, R.; Ranjan, S.; Garg, A.; Gupta, R.K.; Singh, A. Dicyanovinylene and thiazolo[5,4-d]thiazole core containing D-A-D type hole-transporting materials for spiro-OMeTAD-free perovskite solar cell applications with superior atmospheric stability. ACS Appl. Energy Mater., 2019, 2, 7609-7618.
[http://dx.doi.org/10.1021/acsaem.9b01598]
[102]
Nakamura, T.; Ishikura, Y.; Arakawa, N.; Hori, M.; Satou, M.; Endo, M.; Masui, H.; Fuse, S.; Takahashi, T.; Murata, Y.; Murdey, R.; Wakamiya, A. Donor-acceptor polymers containing thiazole-fused benzothiadiazole acceptor units for organic solar cells. RSC Advances, 2019, 9, 7107-7114.
[http://dx.doi.org/10.1039/C9RA00229D]
[103]
Mahmood, A.; Hu, J.; Tang, A.; Chen, F.; Wang, X.; Zhou, E. A novel thiazole based acceptor for fullerene-free organic solar cells. Dyes Pigments, 2018, 149, 470-474.
[http://dx.doi.org/10.1016/j.dyepig.2017.10.037]
[104]
Chao, J.; Liu, Y.; Sun, J.; Fan, L.; Zhang, Y.; Tong, H.; Li, Z. A ratiometric pH probe for intracellular pH imaging. Sens. Actuators B Chem., 2015, 221, 427-433.
[http://dx.doi.org/10.1016/j.snb.2015.06.087]
[105]
Neena, K.K.; Thilagar, P. Conformational restrictions in meso-(2-thiazolyl)-BODIPYs: large stokes shift and pH-dependent optical properties. ChemPlusChem, 2016, 81(9), 955-963.
[http://dx.doi.org/10.1002/cplu.201600254] [PMID: 31968798]
[106]
Zhang, W.J.; Fan, L.; Li, Z.B.; Ou, T.; Zhai, H.J.; Yang, J.; Dong, C.; Shuang, S.M. Thiazole-based ratiometric fluorescence pH probe with large Stokes shift for intracellular imaging. Sens. Actuators B Chem., 2016, 233, 566-573.
[http://dx.doi.org/10.1016/j.snb.2016.04.122]
[107]
Zhang, X.; Jing, S.Y.; Huang, S.Y.; Zhou, X.W.; Bai, J.M.; Zhao, B.X. New fluorescent pH probes for acid conditions. Sens. Actuators B Chem., 2015, 206, 663-670.
[http://dx.doi.org/10.1016/j.snb.2014.09.107]
[108]
Chaudhary, S.; Sharma, H. Milton; M. D. Novel 2-arylbenzothiazoles: selective chromogenic and fluorescent probes for the detection of picric acid. ChemistrySelect, 2018, 3, 4598-4608.
[http://dx.doi.org/10.1002/slct.201800645]
[109]
Chaudhary, S.; Mukherjee, M.; Paul, T.K.; Taraphder, S.; Milton, M.D. New thiazoline-phenothiazine based “push-pull” molecules as fluorescent probes for volatile acids detection. J. Photochem. Photobiol. Chem., 2020, 397112509
[http://dx.doi.org/10.1016/j.jphotochem.2020.112509]
[110]
Ma, C.; Xu, B.; Xie, G.; He, J.; Zhou, X.; Peng, B.; Jiang, L.; Xu, B.; Tian, W.; Chi, Z.; Liu, S.; Zhang, Y.; Xu, J. An AIE-active luminophore with tunable and remarkable fluorescence switching based on the piezo and protonation-deprotonation control. Chem. Commun. (Camb.), 2014, 50(55), 7374-7377.
[http://dx.doi.org/10.1039/C4CC01012D] [PMID: 24872230]
[111]
Naeem, K.C.; Subhakumari, A.; Varughese, S.; Nair, V.C. Heteroatom induced contrasting effects on the stimuli responsive properties of anthracene based donor–π–acceptor fluorophores. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 10225-10231.
[http://dx.doi.org/10.1039/C5TC02062J]
[112]
Sun, J.; Xue, P.; Sun, J.; Gong, P.; Wang, P.; Lu, R. Strong blue emissive nanofibers constructed from benzothiazole modified tert-butyl carbazole derivative for the detection of volatile acid vapors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 8888-8894.
[http://dx.doi.org/10.1039/C5TC02012C]
[113]
Zhan, Y.; Zhao, J.; Yang, P.; Ye, W. Multi-stimuli responsive fluorescent behaviors of a donor–π-acceptor phenothiazine modified benzothiazole derivative. RSC Advances, 2016, 6, 92144-92151.
[http://dx.doi.org/10.1039/C6RA19791D]
[114]
Zhan, Y.; Yang, P.; Li, G.; Zhang, Y.; Bao, Y. Reversible piezofluorochromism of a triphenylamine-based benzothiazole derivative with a strong fluorescence response to volatile acid vapors. New J. Chem., 2017, 41, 263-270.
[http://dx.doi.org/10.1039/C6NJ02735K]
[115]
Sachdeva, T.; Bishnoi, S.; Milton, M.D. Multi-stimuli response displaying novel phenothiazine-based non-planar D-π-A hydrazones: synthesis, characterization, photophysical and thermal studies. ChemistrySelect, 2017, 2, 11307-11313.
[http://dx.doi.org/10.1002/slct.201702684]
[116]
Ekbote, A.; Mobin, S.M.; Misra, R. Stucture property relationship in multi-stimuli responsive D-A-A’ benzothiazole functionalized isomers. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6, 10888-10901.
[http://dx.doi.org/10.1039/C8TC04310H]
[117]
Liu, N.M.; Schramm, S.; Naumov, P. pH-dependent fluorescence from firefly oxyluciferin in agarose thin films. New J. Chem., 2019, 43, 1122-1126.
[http://dx.doi.org/10.1039/C8NJ05469J]
[118]
Ghose, A.; Rebarz, M.; Maltsev, O.V.; Hintermann, L.; Ruckebusch, C.; Fron, E.; Hofkens, J.; Mély, Y.; Naumov, P.; Sliwa, M.; Didier, P. Emission properties of oxyluciferin and its derivatives in water: revealing the nature of the emissive species in firefly bioluminescence. J. Phys. Chem. B, 2015, 119(6), 2638-2649.
[http://dx.doi.org/10.1021/jp508905m] [PMID: 25364813]
[119]
Shirinian, V.Z.; Lonshakov, D.V.; Lvov, A.G.; Kavun, A.M.; Yadykov, A.V.; Krayushkin, M.M. Photo-and PH-switchable fluorescent diarylethenes based on 2, 3-diarylcyclopent-2-en-1-ones with dialkylamino groups. Dyes Pigments, 2016, 124, 258-267.
[http://dx.doi.org/10.1016/j.dyepig.2015.09.027]
[120]
Benassi, E.; Carlotti, B.; Fortuna, C.G.; Barone, V.; Elisei, F.; Spalletti, A. Acid-base strength and acidochromism of some dimethylamino-azinium iodides. An integrated experimental and theoretical study. J. Phys. Chem. A, 2015, 119(2), 323-333.
[http://dx.doi.org/10.1021/jp510982h] [PMID: 25521813]
[121]
Li, M.; Niu, Y.; Lu, H-Y.; Chen, C-F. Tetrahydro [5] helicene-based dye with remarkable and reversible acid/base stimulated fluorescence switching properties in solution and solid state. Dyes Pigments, 2015, 120, 184-189.
[http://dx.doi.org/10.1016/j.dyepig.2015.04.015]
[122]
Divya, T.T.; Ramshad, K.; Saheer, V.C.; Chakkumkumarath, L. Self-reversible mechanochromism and aggregation induced emission in neutral triarylmethanes and their application in water sensing. New J. Chem., 2018, 42, 20227-20238.
[http://dx.doi.org/10.1039/C8NJ04479A]
[123]
Chen, S.; Liu, W.; Ge, Z.; Zhang, W.; Wang, K-P.; Hu, Z-Q. Dimethylamine substituted bisbenzocoumarins: solvatochromic, mechanochromic and acidochromic properties. CrystEngComm, 2018, 20, 5432-5441.
[http://dx.doi.org/10.1039/C8CE01034J]
[124]
Chen, S.; Zhang, W.; Jia, Q.; Meng, Y.; Wang, K-P.; Hu, Z-Q. Dimethylamino naphthalene-based cyanostyrene derivatives with stimuli responsive luminescent properties. Dyes Pigments, 2019, 171107700
[http://dx.doi.org/10.1016/j.dyepig.2019.107700]
[125]
Zheng, R.; Mei, X.; Lin, Z.; Zhao, Y.; Yao, H.; Lv, W.; Ling, Q. Strong CIE activity, multi-stimuli-responsive fluorescence and data storage application of new diphenyl maleimide derivatives. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 10242-10248.
[http://dx.doi.org/10.1039/C5TC02374B]
[126]
Li, M.; Wang, Y-X.; Wang, J.; Chen, Y. (Z)-Tetraphenylbut-2-ene-1, 4-diones: facile synthesis, tunable aggregation-induced emission and fluorescence acid sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5, 3408-3414.
[http://dx.doi.org/10.1039/C7TC00173H]
[127]
Zhou, Y.; Liu, Y.; Guo, Y.; Liu, M.; Chen, J.; Huang, X.; Gao, W.; Ding, J.; Cheng, Y.; Wu, H. Mechanochromic and acidochromic response of 4H-pyran derivatives with aggregation-induced emission properties. Dyes Pigments, 2017, 141, 428-440.
[http://dx.doi.org/10.1016/j.dyepig.2017.02.045]
[128]
Yu, H-X.; Zhi, J.; Chang, Z-F.; Shen, T.; Ding, W-L.; Zhang, X.; Wang, J-L. Rational design of aggregation-induced emission sensor based on Rhodamine B for turn-on sensing of trivalent metal cations, reversible data protection, and bioimaging. Mater. Chem. Front., 2019, 3, 151-160.
[http://dx.doi.org/10.1039/C8QM00424B]
[129]
Zhang, M.; Wei, J.; Zhang, Y.; Bai, B.; Chen, F.; Wang, H.; Li, M. Multi-stimuli-responsive fluorescent switching properties of anthracene-substituted acylhydrazone derivative. Sens. Actuators B Chem., 2018, 273, 552-558.
[http://dx.doi.org/10.1016/j.snb.2018.06.085]
[130]
Huang, G.; Jiang, Y.; Yang, S.; Li, B.S.; Tang, B.Z. Multi stimuli response and polymorphism of a novel tetraphenylethylene derivative. Adv. Funct. Mater., 2019, 29(16)1900516
[http://dx.doi.org/10.1002/adfm.201900516]
[131]
Yang, W.; Yang, Y.; Qiu, Y.; Cao, X.; Huang, Z.; Gong, S.; Yang, C. AIE-active multicolor tunable luminogens: simultaneous mechanochromism and acidochromism with high contrast beyond 100 nm. Mater. Chem. Front., 2020, 4, 2047-2053.
[http://dx.doi.org/10.1039/D0QM00247J]
[132]
Wu, L.; Chen, R.; Luo, Z.; Wang, P. Solid-state photochromism and acidochromism multifunctional materials constructed by tetraphenylethene and spiropyran. J. Mater. Sci., 2020, 55, 12826-12835.
[http://dx.doi.org/10.1007/s10853-020-04930-x]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 17
Year: 2020
Page: [1976 - 1998]
Pages: 23
DOI: 10.2174/1385272824999200729132853
Price: $65

Article Metrics

PDF: 35
HTML: 1