Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Wastewater Treatment and Biomedical Applications of Montmorillonite Based Nanocomposites: A Review

Author(s): Aabid Hussain Bhat, Tauseef Ahmad Rangreez, Inamuddin and Hamida-Tun-Nisa Chisti*

Volume 18, Issue 3, 2022

Published on: 29 July, 2020

Page: [269 - 287] Pages: 19

DOI: 10.2174/1573411016999200729123309

Price: $65

Abstract

Background: Rapid industrialisation, population growth and technological race worldwide have brought adverse consequences on water resources and, as a result, affect human health. Toxic metal ions, non-biodegradable dyes, organic pollutants, pesticides, pharmaceuticals are among the chief hazardous materials released into the water bodies from various sources. These hazardous contaminants drastically affect flora and fauna globally, leading to health deterioration, thereby giving rise to new biomedical challenges.

Hypothesis: Montmorillonite based nanocomposites (MMTCs) have drawn the attention of the researchers to design environmentally friendly, advanced and hygienic nanocomposites for wastewater treatment and biomedical purposes. Montmorillonite clay possesses peculiar physical and chemical properties that include enhanced surface reactivity, improved rheological performance, exorbitant miscibility in water due to which it shows highly favourable interactions with polymers, drugs, metals, mixed metals and metal oxides, leading to the fabrication of different types of advanced montmorillonite based nanocomposites that have remarkable applications.

Methodology: Here, we review the structural characteristics of montmorillonite clay, advances in the synthetic techniques involved in the fabrication of montmorillonite nanocomposites, their applications in wastewater treatment and in biomedical fields. The recently developed montmorillonite nanocomposites for (1) wastewater treatment as nano-adsorbents for the elimination of toxic inorganic species such as metal ions and heterogeneous photo-catalysts for photodegradation of dyes, pesticides and pharmaceuticals (2) biomedical utilization viz drug delivery, wound amelioration, bone cement, tissue engineering, etc., are presented.

Conclusion: The review exclusively focuses on recent research on montmorillonite based nanocomposites and their application in wastewater treatment and in biomedical fields.

Keywords: Adsorbents, drug delivery, dye degradation, montmorillonite based nanocomposites, montmorillonite clay, wastewater treatment.

Graphical Abstract
[1]
Pandey, S. A Comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq., 2017, 241, 1091-1113.
[http://dx.doi.org/10.1016/j.molliq.2017.06.115]
[2]
Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res., 2009, 12(1), 1-39.
[http://dx.doi.org/10.1590/S1516-14392009000100002]
[3]
Prado, B.R.; Bartoli, J.R. Synthesis and Characterization of PMMA and organic modified montmorilonites nanocomposites via in situ polymerization assisted by sonication. Appl. Clay Sci., 2018, 160, 132-143.
[http://dx.doi.org/10.1016/j.clay.2018.02.035]
[4]
Barraque, F.; Montes, M.L.; Fernandez, M.A.; Mercader, R.C.; Candal, R.J.; Torres Sanchez, R.M. Synthesis and characterization of magnetic-montmorillonite and magnetic-organo-montmorillonite: surface sites involved on cobalt sorption. J. Magn. Magn. Mater., 2018, 466, 376-384.
[http://dx.doi.org/10.1016/j.jmmm.2018.07.052]
[5]
Caglar, B.; Guner, E.K.; Keles, K.; Özdokur, K.V.; Cubuk, O.; Coldur, F.; Caglar, S.; Topcu, C.; Tabak, A. F3O4 Nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities. Solid State Sci., 2018, 83, 122-136.
[http://dx.doi.org/10.1016/j.solidstatesciences.2018.07.013]
[6]
Houari, M.; Hamdi, B.; Bouras, O.; Bollinger, J-C.; Baudu, M. Static Sorption of Phenol and 4-Nitrophenol onto composite Geomaterials based on montmorillonite, activated carbon and cement. Chem. Eng. J., 2014, 255, 506-512.
[http://dx.doi.org/10.1016/j.cej.2014.06.065]
[7]
Viglašová, E.; Galamboš, M.; Danková, Z.; Krivosudský, L.; Lengauer, C.L.; Hood-Nowotny, R.; Soja, G.; Rompel, A.; Matík, M.; Briančin, J. Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manag., 2018, 79, 385-394.
[http://dx.doi.org/10.1016/j.wasman.2018.08.005] [PMID: 30343768]
[8]
Zheng, X.M.; Dou, J.F.; Xia, M.; Ding, A.Z. Ammonium-pillared montmorillonite-CoFe2O4 composite caged in calcium alginate beads for the removal of Cs+ from wastewater. Carbohydr. Polym., 2017, 167, 306-316.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.059] [PMID: 28433167]
[9]
Liu, J.; Zhang, G. Recent advances in synthesis and applications of clay-based photocatalysts: A review. Phys. Chem. Chem. Phys., 2014, 16(18), 8178-8192.
[http://dx.doi.org/10.1039/C3CP54146K] [PMID: 24660221]
[10]
Momina, M. S. and S. I. Regeneration Performance of Clay-Based Adsorbents for the Removal of Industrial Dyes: A Review. RSC Advances, 2018, 8, 24571-24587.
[http://dx.doi.org/10.1039/C8RA04290J]
[11]
Li, Y.; Tian, G.; Dong, G.; Bai, S.; Han, X.; Liang, J.; Meng, J.; Zhang, H. Research progress on the raw and modified montmorillonites as adsorbents for mycotoxins: A review. Appl. Clay Sci., 2018, 163, 299-311.
[http://dx.doi.org/10.1016/j.clay.2018.07.032]
[12]
Sönmez, M.; Denisa, F.; Anton, F.; Roxana, T.; Gurau, D.F. Layered montmorillonite mineral clay used for controlled insulin release.Proceedings of the 2nd World Congress on Recent Advances in Nanotechnology (RAN’17) Barcelona, Spain - April 4 - 6, 2017.
[13]
Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Advances, 2015, 5, 29467-29481.
[http://dx.doi.org/10.1039/C4RA16945J]
[14]
Jayrajsinh, S.; Shankar, G.; Agrawal, Y.K.; Bakre, L. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J. Drug Deliv. Sci. Technol., 2017, 39, 200-209.
[http://dx.doi.org/10.1016/j.jddst.2017.03.023]
[15]
Ruiz-Hitzky, E.; Darder, M.; Aranda, P. An introduction to bio-nanohybrid materials. Bio-inorganic Hybrid Nanomaterials; E. Ruiz-Hitzky, K. Ariga, Y. M. Lvov; 1-40.,
[http://dx.doi.org/10.1002/9783527621446.ch1]
[16]
Ummartyotin, S.; Bunnak, N.; Manuspiya, H. A comprehensive review on modified clay based composite for energy based materials. Renew. Sustain. Energy Rev., 2016, 61, 466-472.
[http://dx.doi.org/10.1016/j.rser.2016.04.022]
[17]
Hassani, A.; Khataee, A.; Karaca, S.; Fathinia, M. Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/Montmorillonite Nanocomposite: Simultaneous determination and intermediates identification. J. Environ. Chem. Eng., 2017, 5(2), 1964-1976.
[http://dx.doi.org/10.1016/j.jece.2017.03.032]
[18]
Huang, Z.; Wu, P.; Li, H.; Li, W.; Zhu, Y.; Zhu, N. Synthesis and catalytic properties of La or Ce Doped Hydroxy-FeAl intercalated montmorillonite used as heterogeneous photo fenton catalysts under sunlight irradiation. RSC Advances, 2014, 4(13), 6500-6507.
[http://dx.doi.org/10.1039/c3ra46729e]
[19]
Li, C.; Sun, Z.; Huang, W.; Zheng, S. Facile Synthesis of G-C3N4/Montmorillonite composite with enhanced visible light photodegradation of Rhodamine B and Tetracycline. J. Taiwan Inst. Chem. Eng., 2016, 66, 363-371.
[http://dx.doi.org/10.1016/j.jtice.2016.06.014]
[20]
Rasouli, F.; Aber, S.; Salari, D.; Khataee, A.R. Optimized removal of reactive navy blue SP-BR by organo-montmorillonite based adsorbents through central composite Design. Appl. Clay Sci., 2014, 87, 228-234.
[http://dx.doi.org/10.1016/j.clay.2013.11.010]
[21]
Tong, D.S.; Wu, C.W.; Adebajo, M.O.; Jin, G.C.; Yu, W.H.; Ji, S.F.; Zhou, C.H. Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites. Appl. Clay Sci., 2018, 161, 256-264.
[http://dx.doi.org/10.1016/j.clay.2018.02.017]
[22]
Wang, W.; Zhao, Y.; Bai, H.; Zhang, T.; Ibarra-Galvan, V.; Song, S. Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr. Polym., 2018, 198, 518-528.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.124] [PMID: 30093030]
[23]
Xu, T.; Zhu, R.; Zhu, J.; Liang, X.; Liu, Y.; Xu, Y.; He, H. Ag3PO4 immobilized on hydroxy-metal pillared montmorillonite for the visible light driven degradation of acid red 18. Catal. Sci. Technol., 2016, 6(12), 4116-4123.
[http://dx.doi.org/10.1039/C5CY02129D]
[24]
Ali, S.S.; Tang, X.; Alavi, S.; Faubion, J. Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J. Agric. Food Chem., 2011, 59(23), 12384-12395.
[http://dx.doi.org/10.1021/jf201119v] [PMID: 21932797]
[25]
Olabarrieta, I.; Gällstedt, M.; Ispizua, I.; Sarasua, J-R.; Hedenqvist, M.S. Properties of aged montmorillonite-wheat gluten composite films. J. Agric. Food Chem., 2006, 54(4), 1283-1288.
[http://dx.doi.org/10.1021/jf0522614] [PMID: 16478249]
[26]
Pojanavaraphan, T.; Magaraphan, R.; Chiou, B-S.; Schiraldi, D.A. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay. Biomacromolecules, 2010, 11(10), 2640-2646.
[http://dx.doi.org/10.1021/bm100615a] [PMID: 20806909]
[27]
Priolo, M.A.; Gamboa, D.; Grunlan, J.C. Transparent Clay - Polymer nano brick wall assemblies with tailorable oxygen barrier. ACS Appl. Mater. Interfaces, 2010, 2(1), 312-320.
[http://dx.doi.org/10.1021/am900820k]
[28]
Unalan, I.U.; Cerri, G.; Marcuzzo, E.; Cozzolino, C.A.; Farris, S. Nanocomposite films and coatings using inorganic Nanobuilding Blocks (NBB): Current applications and future opportunities in the food packaging sector. RSC Advances, 2014, 4, 29393-29428.
[http://dx.doi.org/10.1039/C4RA01778A]
[29]
Valadares, L.F.; Alberto, C.; Leite, D.P.; Galembeck, F. Counterion effect on the morphological and mechanical properties of polymer - clay nanocomposites prepared in an aqueous medium. Chem. Mater., 2007, 19(13), 3334-3342.
[http://dx.doi.org/10.1021/cm070467+]
[30]
Atta, A.M.; Al-Lohedan, H.A. ALOthman, Z. A.; Abdel-Khalek, A. A.; Tawfeek, A. M. Characterization of reactive amphiphilic montmorillonite nanogels and its application for removal of toxic cationic dye and heavy metals water pollutants. J. Ind. Eng. Chem., 2015, 31, 374-384.
[http://dx.doi.org/10.1016/j.jiec.2015.07.012]
[31]
Bhatia, M.; Rajulapati, S.B.; Sonawane, S.; Girdhar, A. Synthesis and implication of novel poly(acrylic acid)/nanosorbent embedded hydrogel composite for lead ion removal. Sci. Rep., 2017, 7(1), 16413.
[http://dx.doi.org/10.1038/s41598-017-15642-9] [PMID: 29180764]
[32]
Radian, A.; Carmeli, M.; Zadaka-Amir, D.; Nir, S.; Wakshal, E.; Mishael, Y.G. Enhanced removal of humic acid from water by micelle-montmorillonite composites: Comparison to granulated activated carbon. Appl. Clay Sci., 2011, 54(3-4), 258-263.
[http://dx.doi.org/10.1016/j.clay.2011.09.008]
[33]
Wang, G.; Hua, Y.; Su, X.; Komarneni, S.; Ma, S.; Wang, Y. Cr(VI) adsorption by montmorillonite nanocomposites. Appl. Clay Sci., 2016, 124-125, 111-118.
[http://dx.doi.org/10.1016/j.clay.2016.02.008]
[34]
Lee, S.K.; Bai, B.C. Im, J. S.; In, S. J.; Lee, Y.-S. Flame retardant epoxy complex produced by addition of montmorillonite and carbon nanotube. J. Ind. Eng. Chem., 2010, 16(6), 891-895.
[http://dx.doi.org/10.1016/j.jiec.2010.09.014]
[35]
Liu, S-P. Flame retardant and mechanical properties of polyethylene/magnesium hydroxide/montmorillonite nanocomposites. J. Ind. Eng. Chem., 2014, 20(4), 2401-2408.
[http://dx.doi.org/10.1016/j.jiec.2013.10.020]
[36]
Qiu, X.; Li, Z.; Li, X.; Zhang, Z. Flame retardant coatings prepared using layer by layer assembly: A review. Chem. Eng. J., 2018, 334, 108-122.
[http://dx.doi.org/10.1016/j.cej.2017.09.194]
[37]
Shang, K.; Liao, W.; Wang, Y-Z. Thermally stable and flame-retardant poly(vinyl alcohol)/montmorillonite aerogel via a facile heat treatment. Chin. Chem. Lett., 2018, 29(3), 433-436.
[http://dx.doi.org/10.1016/j.cclet.2017.08.017]
[38]
Younis, A.A. Flammability properties of polypropylene containing montmorillonite and some of silicon compounds. Egypt. J. Pet., 2017, 26(1), 1-7.
[39]
Uddin, F. An Introduction to Properties and Utilization. Current Topics in the Utilization of Clay in Industrial and Medical Applications; Zoveidavianpoor, M, Ist; InTech, 2018, pp. 3-23.
[40]
Gomes, C. de S.F. Silva, J. B. P. Minerals and clay minerals in medical geology. Appl. Clay Sci., 2007, 36(1-3), 4-21.
[http://dx.doi.org/10.1016/j.clay.2006.08.006]
[41]
Mishra, A.; Mehta, A.; Basu, S. Clay Supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: A review. J. Environ. Chem. Eng., 2018, 6(5), 6088-6107.
[http://dx.doi.org/10.1016/j.jece.2018.09.029]
[42]
Mueller, B. Experimental interactions between clay minerals and bacteria: A review. Pedosphere, 2015, 25(6), 799-810.
[http://dx.doi.org/10.1016/S1002-0160(15)30061-8]
[43]
Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J., 2017, 308, 438-462.
[http://dx.doi.org/10.1016/j.cej.2016.09.029]
[44]
Jeans, C.V.E. Eslinger.; D. Pevear 1988. Clay Minerals for Petroleum Geologists and Engineers. SEPM Short Course Notes No. 22. Tulsa: Society of economic paleontologists and mineralogists. Geol. Mag., 1989, 126(03), 324.
[http://dx.doi.org/10.1017/S0016756800022718]
[45]
Reichle, W.T. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ion., 1986, 22(1), 135-141.
[http://dx.doi.org/10.1016/0167-2738(86)90067-6]
[46]
Prasanth, R.; Owuor, P.S.; Shankar, R.; Joyner, J.; Kosolwattana, S.; Jose, S.P.; Dong, P.; Thakur, V.K.; Cho, J.H.; Shelke, M. Eco-Friendly polymer-layered silicate nanocomposite-preparation, chemistry, properties, and applications. Advanced structured materials,Vijay Kumar.T; Manju Kumari. T, 2015, pp. 1-42.
[47]
Bathija, A.P. Elastic Properties of Clays., PhD Thesis, Colorado School of Mines,. 2009.
[48]
Galimberti, M. Rubber Clay Nanocomposites. Advanced Elastomers - Technology, Properties and Applications; Boczkowska. A; InTech, 2012, pp. 91-121.
[http://dx.doi.org/10.5772/51410]
[49]
Mittal, V. Thermally Stable and Flame Retardant Polymer Nanocomposites, First; Cambridge University Press, 2011.
[50]
Seema; Datta, M. Clay-Polymer nanocomposites as a novel drug carrier: synthesis, characterization and controlled release study of propranolol hydrochloride. Appl. Clay Sci., 2013, 80-81, 85-92.
[51]
Bee, S.L.; Abdullah, M.A.A.; Bee, S.T.; Sin, L.T.; Rahmat, A.R. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci., 2018, 85, 57-82.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.07.003]
[52]
Karimi, A.; Wan Daud, W.M.A. Nanocomposite cryogels based on poly (vinyl alcohol)/unmodified Na+-Montmorillonite suitable for wound dressing application: Optimizing nanoclay content. JOM, 2017, 69(7), 1213-1220.
[http://dx.doi.org/10.1007/s11837-016-2194-5]
[53]
Patel, H.A.; Somani, R.S.; Bajaj, H.C.; Jasra, R.V. Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci., 2006, 29(2), 133-145.
[http://dx.doi.org/10.1007/BF02704606]
[54]
Yu, W.H.; Li, N.; Tong, D.S.; Zhou, C.H.; Lin, C.X. (Cynthia); Xu, C. Y. Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review. Appl. Clay Sci., 2013, 80-81, 443-452.
[http://dx.doi.org/10.1016/j.clay.2013.06.003]
[55]
Hasegawa, N.; Okamoto, H.; Kato, M.; Usuki, A.; Sato, N. Nylon 6/Na-Montmorillonite nanocomposites prepared by compounding Nylon 6 with Na-Montmorillonite slurry. Polymer (Guildf.), 2003, 44(10), 2933-2937.
[http://dx.doi.org/10.1016/S0032-3861(03)00215-5]
[56]
Abd El-Ghaffar, M.A.; Youssef, A.M.; Abd El-Hakim, A.A. Polyaniline nanocomposites via in Situ emulsion polymerization based on montmorillonite: Preparation and characterization. Arab. J. Chem., 2015, 8(6), 771-779.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.001]
[57]
Kenane, A.; Galca, A.C.; Matei, E.; Yahyaoui, A.; Hachemaoui, A.; Benkouider, A.M.; Bartha, C.; Istrate, M.C.; Galatanu, M.; Rasoga, O. Synthesis and characterization of conducting aniline and O-Anisidine nanocomposites based on montmorillonite modified clay. Appl. Clay Sci., 2020, 184105395
[http://dx.doi.org/10.1016/j.clay.2019.105395]
[58]
Mohan, T.P.; Kanny, K. Water Barrier Properties of Nanoclay Filled Sisal Fibre Reinforced Epoxy Composites. Compos., Part A Appl. Sci. Manuf., 2011, 42(4), 385-393.
[http://dx.doi.org/10.1016/j.compositesa.2010.12.010]
[59]
Sancaktar, E.; Kuznicki, J. Nanocomposite adhesives: Mechanical behavior with nanoclay. Int. J. Adhes. Adhes., 2011, 31(5), 286-300.
[http://dx.doi.org/10.1016/j.ijadhadh.2010.09.006]
[60]
Yang, W.; Hu, Y.; Tai, Q.; Lu, H.; Song, L.; Yuen, R.K.K. Fire and mechanical performance of nanoclay reinforced Glass-Fiber/PBT composites containing aluminum hypophosphite particles. Compos., Part A Appl. Sci. Manuf., 2011, 42(7), 794-800.
[http://dx.doi.org/10.1016/j.compositesa.2011.03.009]
[61]
Papadopoulos, L.; Terzopoulou, Z.; Vlachopoulos, A.; Klonos, P.A.; Kyritsis, A.; Tzetzis, D.; Papageorgiou, G.Z.; Bikiaris, D. Synthesis and Characterization of Novel Polymer/Clay Nanocomposites Based on Poly (Butylene 2,5-Furan Dicarboxylate). Appl. Clay Sci., 2020, 190105588
[http://dx.doi.org/10.1016/j.clay.2020.105588]
[62]
Sciascia, L.; Casella, S.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Princivalle, F.; Parisi, F. Olive mill wastewaters decontamination based on organo-nano-clay composites. Ceram. Int., 2018, 2018, 1.
[63]
Kaur, M.; Arshad, M.; Ullah, A. In-Situ nanoreinforced green bionanomaterials from natural keratin and montmorillonite (MMT)/Cellulose Nanocrystals (CNC). ACS Sustain. Chem.& Eng., 2018, 6(2), 1977-1987.
[http://dx.doi.org/10.1021/acssuschemeng.7b03380]
[64]
Souza, J. de L.; Chiaregato, C.G.; Faez, R. Green composite based on phb and montmorillonite for KNO3 and NPK delivery system. J. Polym. Environ., 2018, 26(2), 670-679.
[http://dx.doi.org/10.1007/s10924-017-0979-4]
[65]
Baloyi, J.; Ntho, T.; Moma, J. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 2018, 8, 5197-5211.
[http://dx.doi.org/10.1039/C7RA12924F]
[66]
Wu, P.X.; Liao, Z.W.; Zhang, H.F.; Guo, J.G. Adsorption of phenol on inorganic-organic pillared montmorillonite in polluted water. Environ. Int., 2001, 26(5-6), 401-407.
[http://dx.doi.org/10.1016/S0160-4120(01)00019-8] [PMID: 11392758]
[67]
Wu, T.S.; Wang, K.X.; Li, G.D.; Sun, S.Y.; Sun, J.; Chen, J.S. Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material. ACS Appl. Mater. Interfaces, 2010, 2(2), 544-550.
[http://dx.doi.org/10.1021/am900743d] [PMID: 20356203]
[68]
Zhang, C.; Yu, Y.; Wei, H.; Li, K. In Situ growth of cube-like agcl on montmorillonite as an efficient photocatalyst for dye (Acid Red 18) Degradation. Appl. Surf. Sci., 2018, 456, 577-585.
[http://dx.doi.org/10.1016/j.apsusc.2018.06.009]
[69]
Chen, J.; Liu, X.; Li, G.; Nie, X.; An, T.; Zhang, S.; Zhao, H. Synthesis and Characterization of Novel SiO2 and TiO2 Co-Pillared montmorillonite composite for adsorption and photocatalytic degradation of hydrophobic organic pollutants in water. Catal. Today, 2011, 164(1), 364-369.
[http://dx.doi.org/10.1016/j.cattod.2010.11.014]
[70]
Peng, K.; Fu, L.; Yang, H.; Ouyang, J. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep., 2016, 6(1), 19723.
[http://dx.doi.org/10.1038/srep19723] [PMID: 26778180]
[71]
Balazs, A.C.; Chandralekha Singh, A.; Zhulina, E. Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules, 1998, 31(23), 8370-8381.
[http://dx.doi.org/10.1021/ma980727w]
[72]
Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.A.; Chung, T.C. Polypropylene/Montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater., 2001, 13, 3516-3523.
[http://dx.doi.org/10.1021/cm0110627]
[73]
Vaia, R.A.; Giannelis, E.P. Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules, 1997, 30(25), 7990-7999.
[http://dx.doi.org/10.1021/ma9514333]
[74]
Vaia, R.A.; Giannelis, E.P. Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules, 1997, 30(25), 8000-8009.
[http://dx.doi.org/10.1021/ma9603488]
[75]
Alexandre, M.; Dubois, P. Polymer-Layered silicate nanocomposites: preparation, properties and uses of a new class of materials.Mater. Sci. Eng. R Reports, 2000, 28(1-2), 1-63.,
[76]
VanderHart, D.L.; Asano, A.A.; Gilman, J.W. Solid-State NMR investigation of paramagnetic Nylon-6 Clay Nanocomposites. 1. crystallinity, morphology, and the direct influence of Fe3+ on Nuclear Spins. Chem. Mater., 2001, 13(10), 3781-3795.
[http://dx.doi.org/10.1021/cm0110775]
[77]
Gao, F. Clay/Polymer composites: The story. Mater. Today, 2004, 7(11), 50-55.
[http://dx.doi.org/10.1016/S1369-7021(04)00509-7]
[78]
Pavlidou, S.; Papaspyrides, C.D. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci., 2008, 33(12), 1119-1198.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008]
[79]
Ray, S.S. Clay-Containing Polymer Nanocomposites: From Fundamentals to Real Applications, Ist; Elsevier, 2013.
[80]
Alateyah, A.I.; Dhakal, H.N.; Zhang, Z.Y. Processing, Properties, and Applications of Polymer Nanocomposites Based on Layer Silicates: A Review. Adv. Polym. Technol., 2013, 32(4), 1.
[http://dx.doi.org/10.1002/adv.21368]
[81]
Anado, P. Clay-Containing Polysulfone Nanocomposites.Advances in Nanocomposite Technology; Hashim; A.A, InTech, 2011.
[http://dx.doi.org/10.5772/17091]
[82]
Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer, 2008, 3187-3204.
[83]
Sheikholeslami, S.N.; Rafizadeh, M.; Taromi, F.A.; Bouhendi, H. Synthesis and characterization of Poly(Trimethylene Terephthalate)/Organoclay nanocomposite via in Situ polymerization. J. Thermoplast. Compos. Mater., 2014, 27(11), 1530-1552.
[http://dx.doi.org/10.1177/0892705712475000]
[84]
Bhiwankar, N.N.; Weiss, R.A. Melt-Intercalation of sodium-montmorillonite with alkylamine and quarternized ammonium salts of sulfonated polystyrene ionomers. Polymer (Guildf.), 2005, 46, 7246-7254.
[http://dx.doi.org/10.1016/j.polymer.2005.06.035]
[85]
Yoon, J.; Jo, W.; Lee, M.; Ko, M. Effects of comonomers and shear on the melt intercalation of styrenics/clay nanocomposites. Polymer (Guildf.), 2001, 42(1), 329-336.
[http://dx.doi.org/10.1016/S0032-3861(00)00333-5]
[86]
Motamedi, P.; Bagheri, R. Investigation of the Nanostructure and mechanical properties of Polypropylene/polyamide 6/layered silicate ternary nanocomposites. Mater. Des., 2010, 31(4), 1776-1784.
[http://dx.doi.org/10.1016/j.matdes.2009.11.013]
[87]
Harrison, J.B.; Berkheiser, V.E.; Erdos, G.W. Hydrogen reduction of Pt(NH3)2+4 supported on Montmorillonite. J. Catal., 1988, 112(1), 126-134.
[http://dx.doi.org/10.1016/0021-9517(88)90126-1]
[88]
Kotkar, D.; Thakkar, N.V. Hydrogenation of Cycloalkenes on Rh/Montmorillonite. Proc. Indian Acad. Sci. Chem. Sci., 1997, 109(2), 99-104.
[89]
Ravindranathan, P.; Malla, P.B.; Komarneni, S.; Roy, R. Preparation of metal supported montmorillonite catalyst: A new approach. Catal. Lett., 1990, 6(3-6), 401-407.
[http://dx.doi.org/10.1007/BF00764008]
[90]
Mastalir, A.; Szollosi, G.; Kiraly, Z.; Razga, Z. Preparation and characterization of platinum nanoparticles immobilized in dihydrocinchonidine-modified montmorillonite and hectorite. Appl. Clay Sci., 2002, 22(1-2), 9-16.
[http://dx.doi.org/10.1016/S0169-1317(02)00107-2]
[91]
Szollosi, G.; Mastalir, A.; Kiraly, Z.; Dekany, I. Preparation of Pt nanoparticles in the presence of a chiral modifier and catalytic applications in chemoselective and asymmetric hydrogenations. J. Mater. Chem., 2005, 15(25), 2464.
[http://dx.doi.org/10.1039/b500905g]
[92]
Kiraly, Z.; Veisz, B.; Dekany, I.; Mastalir, A.; Razga, Z. Preparation of an organophilic palladium montmorillonite catalyst in a micellar system. Chem. Commun. (Camb.), 1999, 0(19), 1925-1926.
[http://dx.doi.org/10.1039/a905321b]
[93]
Mastalir, A.; Kiraly, Z.; Szollosi, G.; Bartok, M. Preparation of organophilic Pd-Montmorillonite, an efficient catalyst in alkyne semihydrogenation. J. Catal., 2000, 194(1), 146-152.
[http://dx.doi.org/10.1006/jcat.2000.2929]
[94]
Mastalir, A.; Kiraly, Z.; Berger, F. Comparative study of size-quantized Pd-Montmorillonite catalysts in liquid-phase semihydrogenations of alkynes. Appl. Catal. A Gen., 2004, 269(1-2), 161-168.
[http://dx.doi.org/10.1016/j.apcata.2004.04.012]
[95]
Dhakshinamoorthy, A.; Pitchumani, K. Clay Entrapped nickel nanoparticles as efficient and recyclable catalysts for hydrogenation of olefins. Tetrahedron Lett., 2008, 49(11), 1818-1823.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.061]
[96]
Liu, J.; Li, X.; Zuo, S.; Yu, Y. Preparation and photocatalytic activity of silver and TiO2 nanoparticles/montmorillonite composites. Appl. Clay Sci., 2007, 37(3-4), 275-280.
[http://dx.doi.org/10.1016/j.clay.2007.01.008]
[97]
Belova, V.; Möhwald, H.; Shchukin, D.G. Sonochemical intercalation of preformed gold nanoparticles into multilayered clays. Langmuir, 2008, 24(17), 9747-9753.
[http://dx.doi.org/10.1021/la8010822] [PMID: 18652497]
[98]
Belova, V.; Möhwald, H.; Shchukin, D.G. Ultrasonic intercalation of gold nanoparticles into a clay matrix in the presence of surface-active materials. Part II: Negative sodium dodecylsulfate and positive cetyltrimethylammonium bromide. J. Phys. Chem. C, 2009, 113(16), 6751-6760.
[http://dx.doi.org/10.1021/jp900431x]
[99]
Shabtai, I.A.; Mishael, Y.G. Catalytic polymer-clay composite for enhanced removal and degradation of diazinon. J. Hazard. Mater., 2017, 335, 135-142.
[http://dx.doi.org/10.1016/j.jhazmat.2017.04.017] [PMID: 28437697]
[100]
And, K.E.S.; Manias, E. Structure and properties of Poly(Vinyl Alcohol)/Na+ Montmorillonite nanocomposites. Chem. Mater., 2000, 12(10), 2943-2949.
[http://dx.doi.org/10.1021/cm000506g]
[101]
Mohsen-Nia, M.; Mohammad Doulabi, F.S. Synthesis and characterization of polyvinyl acetate/montmorillonite nanocomposite by in situ emulsion polymerization technique. Polym. Bull., 2011, 66(9), 1255-1265.
[http://dx.doi.org/10.1007/s00289-010-0399-2]
[102]
Choi, H.J.; Kim, S.G.; Hyun, Y.H.; Jhon, M.S. Preparation and Rheological Characteristics of Solvent-Cast Poly(Ethylene Oxide). Montmorillonite Nanocomposites. Macromol. Rapid Commun., 2001, 22(5), 320-325.
[http://dx.doi.org/10.1002/1521-3927(20010301)22:5<320:AID-MARC320>3.0.CO;2-3]
[103]
And, V.K.; Pochan, D.J. Poly (l-Lactic Acid)/Layered silicate nanocomposite: Fabrication, characterization, and properties. Chem. Mater., 2003, 15(22), 4317-4324.
[http://dx.doi.org/10.1021/cm034369+]
[104]
Sur, G.; Sun, H.; Lyu, S.; Mark, J. Synthesis, structure, mechanical properties, and thermal stability of some polysulfone/organoclay nanocomposites. Polymer (Guildf.), 2001, 42(24), 9783-9789.
[http://dx.doi.org/10.1016/S0032-3861(01)00527-4]
[105]
Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci. A Polym. Chem., 1993, 31(10), 2493-2498.
[http://dx.doi.org/10.1002/pola.1993.080311009]
[106]
Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. Synthesis of Nylon 6-Clay Hybrid by Montmorillonite Intercalated with E‐caprolactam. J. Polym. Sci. A Polym. Chem., 1993, 31(4), 983-986.
[http://dx.doi.org/10.1002/pola.1993.080310418]
[107]
Messersmith, P.B.; Giannelis, E.P. Polymer-Layered silicate nanocomposites: In Situ intercalative polymerization of. epsilon.-caprolactone in layered silicates. Chem. Mater., 1993, 5(8), 1064-1066.
[http://dx.doi.org/10.1021/cm00032a005]
[108]
Jin, Y-H.; Park, H-J. Im, S.-S.; Kwak, S.-Y.; Kwak, S. Polyethylene/Clay Nanocomposite by In-Situ exfoliation of montmorillonite during ziegler-natta polymerization of ethylene. Macromol. Rapid Commun., 2002, 23(2), 135-140.
[http://dx.doi.org/10.1002/1521-3927(20020101)23:2<135:AID-MARC135>3.0.CO;2-T]
[109]
Okamoto, M.; Morita, S.; Taguchi, H.; Kim, Y.H.; Kotaka, T.; Tateyama, H. Synthesis and Structure of Smectic Clay/Poly(Methyl Methacrylate) and Clay/Polystyrene Nanocomposites via in Situ Intercalative Polymerization. Polymer (Guildf.), 2000, 41(10), 3887-3890.
[http://dx.doi.org/10.1016/S0032-3861(99)00655-2]
[110]
Okamoto, M.; Morita, S.; Kotaka, T. Dispersed structure and ionic conductivity of smectic clay/polymer nanocomposites. Polymer (Guildf.), 2001, 42(6), 2685-2688.
[http://dx.doi.org/10.1016/S0032-3861(00)00642-X]
[111]
Akelah, A.; Moet, A. Polymer-Clay Nanocomposites: Free-Radical grafting of polystyrene on to organophilic montmorillonite interlayers. J. Mater. Sci., 1996, 31(13), 3589-3596.
[http://dx.doi.org/10.1007/BF00360767]
[112]
Ke, Y.; Long, C.; Qi, Z. Crystallization, properties, and crystal and nanoscale morphology of PET-Clay nanocomposites. J. Appl. Polym. Sci., 1999, 71(7), 1139-1146.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1139:AID-APP12>3.0.CO;2-E]
[113]
Lan, T.; Pinnavaia, T.J. Clay-Reinforced epoxy nanocomposites. Chem. Mater., 1994, 6(12), 2216-2219.
[http://dx.doi.org/10.1021/cm00048a006]
[114]
Kornmann, X.; Berglunda, L.A.; Sterte, J.; Giannelis, E.P. Nanocomposites based on montmorillonite and unsaturated polyester. Polym. Eng. Sci., 1998, 38(8), 1351-1358.
[http://dx.doi.org/10.1002/pen.10305]
[115]
Peeterbroeck, S.; Alexandre, M.; Jerome, R.; Dubois, P. Poly(Ethylene-Co-Vinyl Acetate)/Clay Nanocomposites: Effect of Clay Nature and Organic Modifiers on Morphology, Mechanical and Thermal Properties. Polym. Degrad. Stabil., 2005, 90(2), 288-294.
[http://dx.doi.org/10.1016/j.polymdegradstab.2005.03.023]
[116]
Huang, M.; Yu, J. Structure and Properties of Thermoplastic Corn Starch/Montmorillonite Biodegradable Composites. J. Appl. Polym. Sci., 2006, 99(1), 170-176.
[http://dx.doi.org/10.1002/app.22046]
[117]
Hossain, M.K.; Dewan, M.W.; Hosur, M.; Jeelani, S. Mechanical Performances of Surface Modified Jute Fiber Reinforced Biopol Nanophased Green Composites. Compos., Part B Eng., 2011, 42(6), 1701-1707.
[http://dx.doi.org/10.1016/j.compositesb.2011.03.010]
[118]
Syed, M.A.; Syed, A.A. Investigation on Physicomechanical and Wear Properties of New Green Thermoplastic Composites. Polym. Compos., 2016, 37(8), 2306-2312.
[http://dx.doi.org/10.1002/pc.23409]
[119]
El Adraa, K.; Georgelin, T.; Lambert, J-F.; Jaber, F.; Tielens, F.; Jaber, M. Cysteine-Montmorillonite Composites for Heavy Metal Cation Complexation: A Combined Experimental and Theoretical Study. Chem. Eng. J., 2017, 314, 406-417.
[http://dx.doi.org/10.1016/j.cej.2016.11.160]
[120]
Park, H.M.; Liang, X.; Mohanty, A.K.; Manjusri Misra, A.; Drzal, L.T. Effect of Compatibilizer on Nanostructure of the Biodegradable Cellulose Acetate/Organoclay Nanocomposites. Macromolecules, 2004, 37, 9076-9082.
[http://dx.doi.org/10.1021/ma048958s]
[121]
Mahmoudian, S.; Wahit, M.U.; Ismail, A.F.; Yussuf, A.A. Preparation of Regenerated Cellulose/Montmorillonite Nanocomposite Films via Ionic Liquids. Carbohydr. Polym., 2012, 88(4), 1251-1257.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.088]
[122]
Kord, B. Nanofiller Reinforcement Effects on the Thermal, Dynamic Mechanical, and Morphological Behavior of HDPE/Rice Husk Flour Composites. BioResources, 2011, 6(2), 1351-1358.
[123]
Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents Based on Montmorillonite for Contaminant Removal from Water: A Review. Appl. Clay Sci., 2016, 123, 239-258.
[http://dx.doi.org/10.1016/j.clay.2015.12.024]
[124]
Kustov, L. M.; Isaeva, V. I.; Přech, J.; Bisht, K. K. Metal-Organic Frameworks as Materials for Applications in Sensors Mendeleev Communications, 2019, 361-368.
[http://dx.doi.org/10.1016/j.mencom.2019.07.001]
[125]
Liu, W.; Shen, X.; Han, Y.; Liu, Z.; Dai, W.; Dutta, A.; Kumar, A.; Liu, J. Selective adsorption and removal of drug contaminants by using an extremely stable Cu(II)-based 3D metal-organic framework. Chemosphere, 2019, 215, 524-531.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.075] [PMID: 30342397]
[126]
Zhao, Y.; Wang, Y.J.; Wang, N.; Zheng, P.; Fu, H.R.; Han, M.L.; Ma, L.F.; Wang, L.Y. Tetraphenylethylene-Decorated Metal-Organic Frameworks as Energy-Transfer Platform for the Detection of Nitro-Antibiotics and White-Light Emission. Inorg. Chem., 2019, 58(19), 12700-12706.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01588] [PMID: 31556291]
[127]
Yu, C.X.; Hu, F.L.; Song, J.G.; Zhang, J. Lou; Liu, S. S.; Wang, B. X.; Meng, H.; Liu, L. L.; Ma, L. F. Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets Decorated with Tetra-Pyridyl Calix[4]Arene: Design, Synthesis and Application in Pesticide Detection. Sens. Actuators B Chem., 2020, 310127819
[http://dx.doi.org/10.1016/j.snb.2020.127819]
[128]
Gautam, S.; Agrawal, H.; Thakur, M.; Akbari, A.; Sharda, H.; Kaur, R.; Amini, M. Metal Oxides and Metal Organic Frameworks for the Photocatalytic Degradation: A Review. J. Environ. Chem. Eng., 2020, 8(3)103726
[http://dx.doi.org/10.1016/j.jece.2020.103726]
[129]
Liu, J.Q.; Luo, Z.D.; Pan, Y.; Kumar Singh, A.; Trivedi, M.; Kumar, A. Recent Developments in Luminescent Coordination Polymers: Designing Strategies; Sensing Application and Theoretical Evidences Coordination Chemistry Reviews, 2020, p. 213145.
[130]
Xiang, Z.; Fang, C.; Leng, S.; Cao, D. An Amino Group Functionalized Metal-Organic Framework as a Luminescent Probe for Highly Selective Sensing of Fe3+ Ions. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(21), 7662-7665.
[http://dx.doi.org/10.1039/c4ta00313f]
[131]
Wu, Z.F.; Tan, B.; Feng, M.L.; Lan, A.J.; Huang, X.Y. A magnesium MOF as a sensitive fluorescence sensor for CS2 and nitroaromatic compounds. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(18), 6426-6431.
[http://dx.doi.org/10.1039/C3TA15071B]
[132]
Jin, J.C.; Pang, L.Y.; Yang, G.P.; Hou, L.; Wang, Y.Y. Two porous luminescent metal-organic frameworks: quantifiable evaluation of dynamic and static luminescent sensing mechanisms towards Fe(3.). Dalton Trans., 2015, 44(39), 17222-17228.
[http://dx.doi.org/10.1039/C5DT03038B] [PMID: 26373680]
[133]
Dang, S.; Wang, T.; Yi, F.; Liu, Q.; Yang, W.; Sun, Z.M. A nanoscale multiresponsive luminescent sensor based on a Terbium(III) metal-organic framework. Chem. Asian J., 2015, 10(8), 1703-1709.
[http://dx.doi.org/10.1002/asia.201500249] [PMID: 25965107]
[134]
Bhattacharyya, S.; Chakraborty, A.; Jayaramulu, K.; Hazra, A.; Maji, T.K. A bimodal anionic MOF: turn-off sensing of Cu(II) and specific sensitization of Eu(III.). Chem. Commun. (Camb.), 2014, 50(88), 13567-13570.
[http://dx.doi.org/10.1039/C4CC05991C] [PMID: 25243506]
[135]
Patil, S.P.; Shrivastava, V.S.; Sonawane, G.H. Photocatalytic Degradation of Rhodamine 6G Using ZnO-Montmorillonite Nanocomposite: A kinetic approach. Desalin. Water Treat., 2015, 54(2), 374-381.
[http://dx.doi.org/10.1080/19443994.2014.883334]
[136]
Kenawy, E.R.; Ghfar, A.A.; Wabaidur, S.M.; Khan, M.A.; Siddiqui, M.R.; Alothman, Z.A.; Alqadami, A.A.; Hamid, M. Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes. J. Environ. Manage., 2018, 219, 285-293.
[http://dx.doi.org/10.1016/j.jenvman.2018.04.121] [PMID: 29751259]
[137]
Sani, H.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Musa, A.; Saleh, T.A. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Prot., 2017, 109, 97-105.
[http://dx.doi.org/10.1016/j.psep.2017.03.024]
[138]
Ai, L.; Zhou, Y.; Jiang, J. Removal of methylene blue from aqueous solution by Montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination, 2011, 266(1-3), 72-77.
[http://dx.doi.org/10.1016/j.desal.2010.08.004]
[139]
Tangaraj, V.; Janot, J.M.; Jaber, M.; Bechelany, M.; Balme, S. Adsorption and photophysical properties of fluorescent dyes over montmorillonite and saponite modified by surfactant. Chemosphere, 2017, 184, 1355-1361.
[http://dx.doi.org/10.1016/j.chemosphere.2017.06.126] [PMID: 28687034]
[140]
Xu, C.; Wu, H.; Gu, F.L. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites. J. Hazard. Mater., 2014, 275, 185-192.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.064] [PMID: 24857901]
[141]
Pereira, F.A.R.; Sousa, K.S.; Cavalcanti, G.R.S.; França, D.B.; Queiroga, L.N.F.; Santos, I.M.G.; Fonseca, M.G.; Jaber, M. Green biosorbents based on chitosan-montmorillonite beads for anionic dye removal. J. Environ. Chem. Eng., 2017, 5(4), 3309-3318.
[http://dx.doi.org/10.1016/j.jece.2017.06.032]
[142]
Djouadi, L.; Khalaf, H.; Boukhatem, H.; Boutoumi, H.; Kezzime, A.; Santaballa, J.A.; Canle, M. Degradation of aqueous ketoprofen by heterogeneous photocatalysis using bi2s3/tio2-montmorillonite nanocomposites under simulated solar irradiation. appl. clay sci., 2018, 166, 27-37..
[http://dx.doi.org/10.1016/j.clay.2018.09.008]
[143]
Khataee, A.; Kıranşan, M.; Karaca, S.; Sheydaei, M. Photocatalytic ozonation of metronidazole by synthesized zinc oxide nanoparticles immobilized on montmorillonite. J. Taiwan Inst. Chem. Eng., 2017, 74, 196-204.
[http://dx.doi.org/10.1016/j.jtice.2017.02.014]
[144]
Kameshima, Y.; Tamura, Y.; Nakajima, A.; Okada, K. Preparation and properties of TiO2/Montmorillonite composites. Appl. Clay Sci., 2009, 45(1-2), 20-23.
[http://dx.doi.org/10.1016/j.clay.2009.03.005]
[145]
Hassani, A.; Khataee, A.; Karaca, S.; Fathinia, M. Heterogeneous photocatalytic ozonation of ciprofloxacin using synthesized titanium dioxide nanoparticles on a montmorillonite support: parametric studies, mechanistic analysis and intermediates identification. RSC Advances, 2016, 6(90), 87569-87583.
[http://dx.doi.org/10.1039/C6RA19191F]
[146]
Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Rajabi, H.; Daraei, P. Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. J. Membr. Sci., 2011, 382(1-2), 135-147.
[http://dx.doi.org/10.1016/j.memsci.2011.08.004]
[147]
Narayanan, N.; Gupta, S.; Gajbhiye, V.T.; Manjaiah, K.M. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere, 2017, 173, 502-511.
[http://dx.doi.org/10.1016/j.chemosphere.2017.01.084] [PMID: 28131920]
[148]
Giroto, A.S.; de Campos, A.; Pereira, E.I.; Ribeiro, T.S.; Marconcini, J.M.; Ribeiro, C. Photoprotective Effect of Starch/Montmorillonite Composites on Ultraviolet-Induced Degradation of Herbicides. React. Funct. Polym., 2015, 93, 156-162.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2015.06.013]
[149]
Henych, J.; Kormunda, M.; Stastny, M.; Janos, P.; Vomacka, P.; Matousek, J.; Stengl, V. Water-Based Synthesis of TiO2/CeO2 composites supported on plasma-treated montmorillonite for parathion methyl degradation. Appl. Clay Sci., 2017, 144, 26-35.
[http://dx.doi.org/10.1016/j.clay.2017.05.001]
[150]
Kalidhasan, S.; Dror, I.; Berkowitz, B. Atrazine degradation through PEI-copper nanoparticles deposited onto montmorillonite and sand. Sci. Rep., 2017, 7(1), 1415.
[http://dx.doi.org/10.1038/s41598-017-01429-5] [PMID: 28469190]
[151]
Abd El-Aziz, M.E.; Kamal, K.H.; Ali, K.A.; Abdel-Aziz, M.S.; Kamel, S. Biodegradable grafting cellulose/clay composites for metal ions removal. Int. J. Biol. Macromol., 2018, 118(Pt B), 2256- 2264,
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.105] [PMID: 30030075]
[152]
Zhang, R.; Chen, C.; Li, J.; Wang, X. Preparation of Montmorillonite@carbon composite and its application for U(VI) Removal from aqueous solution. Appl. Surf. Sci., 2015, 349, 129-137.
[http://dx.doi.org/10.1016/j.apsusc.2015.04.222]
[153]
Xia, M.; Zheng, X.; Du, M.; Wang, Y.; Ding, A.; Dou, J. The adsorption of Cs+ from wastewater using lithium-modified montmorillonite caged in calcium alginate beads. Chemosphere, 2018, 203, 271-280.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.129] [PMID: 29625316]
[154]
Li, W.P.; Han, X.Y.; Wang, X.Y.; Wang, Y.Q.; Wang, W.X.; Xu, H.; Tan, T.S.; Wu, W.S.; Zhang, H.X. Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated na-montmorillonite composite. Chem. Eng. J., 2015, 279, 735-746.
[http://dx.doi.org/10.1016/j.cej.2015.05.060]
[155]
Dukic, A.B.; Kumric, K.R.; Vukelic, N.S.; Dimitrijevic, M.S.; Bascarevic, Z.D.; Kurko, S.V.; Matovic, L.L. Simultaneous Removal of Pb2 +, Cu2 +, Zn2 + and Cd2 + from Highly Acidic Solutions using mechanochemically synthesized montmorillonite-Kaolinite/TiO2 composite. Appl. Clay Sci., 2015, 103, 20-27.
[http://dx.doi.org/10.1016/j.clay.2014.10.021]
[156]
Hu, C.; Zhu, P.; Cai, M.; Hu, H.; Fu, Q. Comparative adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite: kinetic, thermodynamic and equilibrium studies. Appl. Clay Sci., 2017, 143, 320-326.
[http://dx.doi.org/10.1016/j.clay.2017.04.005]
[157]
Thagira Banu, H.; Karthikeyan, P.; Meenakshi, S. Lanthanum (III) encapsulated chitosan-montmorillonite composite for the adsorptive removal of phosphate ions from aqueous solution. Int. J. Biol. Macromol., 2018, 112, 284-293.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.138] [PMID: 29378275]
[158]
Salehinia, S.; Ghoreishi, S.M.; Maya, F.; Cerdà, V. Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol a from water samples. J. Environ. Chem. Eng., 2016, 4(4), 4062-4071.
[http://dx.doi.org/10.1016/j.jece.2016.08.007]
[159]
Gu, N.; Meng, X.; Gao, J.; Wang, K.; Zhao, P.; Qin, H. SnO2-montmorillonite composite for removal and inhibition microcystis aeruginosa assisted by UV-xlight. Prog. Nat. Sci. Mater. Int., 2018, 28(3), 281-287.
[http://dx.doi.org/10.1016/j.pnsc.2018.04.010]
[160]
Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci., 2002, 21, 155-163.
[http://dx.doi.org/10.1016/S0169-1317(01)00085-0]
[161]
Carretero, M.I.; Gomes, C.S.F.; Tateo, F. Clays, drugs, and human health. Dev. Clay Sci., 2013, 5, 711-764.
[http://dx.doi.org/10.1016/B978-0-08-098259-5.00025-1]
[162]
Li, P.R.; Wei, J.C.; Chiu, Y.F.; Su, H.L.; Peng, F.C.; Lin, J.J. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl. Mater. Interfaces, 2010, 2(6), 1608-1613.
[http://dx.doi.org/10.1021/am1001162] [PMID: 20568705]
[163]
Vergaro, V.; Abdullayev, E.; Lvov, Y.M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 2010, 11(3), 820-826.
[http://dx.doi.org/10.1021/bm9014446] [PMID: 20170093]
[164]
Vilar, G.; Tulla-Puche, J.; Albericio, F. Polymers and drug delivery systems. Curr. Drug Deliv., 2012, 9(4), 367-394.
[http://dx.doi.org/10.2174/156720112801323053] [PMID: 22640038]
[165]
El-Kebir, A.; Harrane, A.; Belbachir, M. Protonated montmorillonite clay used as green non-toxic catalyst for the synthesis of biocompatible polyglycidol. Arab. J. Sci. Eng., 2016, 41(6), 2179-2184.
[http://dx.doi.org/10.1007/s13369-015-1862-z]
[166]
Bounabi, L.; Mokhnachi, N.B.; Haddadine, N.; Ouazib, F.; Barille, R. Development of poly(2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J. Drug Deliv. Sci. Technol., 2016, 33, 58-65.
[http://dx.doi.org/10.1016/j.jddst.2016.03.010]
[167]
Lin, J.J.; Wei, J.C.; Juang, T.Y.; Tsai, W.C. Preparation of protein-silicate hybrids from polyamine intercalation of layered montmorillonite. Langmuir, 2007, 23(4), 1995-1999.
[http://dx.doi.org/10.1021/la062013h] [PMID: 17279686]
[168]
Hashizume, H. Adsorption of nucleic Acid bases, ribose, and phosphate by some clay minerals. Life (Basel), 2015, 5(1), 637-650.
[http://dx.doi.org/10.3390/life5010637] [PMID: 25734235]
[169]
Sironmani, T.A. Comparison of nanocarriers for gene delivery and nanosensing using montmorillonite, silver nanoparticles and multiwalled carbon nanotubes. Appl. Clay Sci., 2015, 103, 55-61.
[http://dx.doi.org/10.1016/j.clay.2014.11.004]
[170]
Kapusetti, G.; Misra, N.; Singh, V.; Srivastava, S.; Roy, P.; Dana, K.; Maiti, P. Bone cement based nanohybrid as a super biomaterial for bone healing. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(25), 3984-3997.
[http://dx.doi.org/10.1039/C4TB00501E] [PMID: 32261650]
[171]
Aliabadi, M.; Dastjerdi, R.; Kabiri, K. HTCC-modified nanoclay for tissue engineering applications: a synergistic cell growth and antibacterial efficiency. BioMed Res. Int., 2013, 2013749240
[http://dx.doi.org/10.1155/2013/749240] [PMID: 23998128]
[172]
Ambre, A.H.; Katti, K.S.; Katti, D.R. Nanoclay based composite scaffolds for bone tissue engineering applications. J. Nanotechnol. Eng. Med., 2010, 1(3)031013
[http://dx.doi.org/10.1115/1.4002149]
[173]
Katti, K.S.; Katti, D.R.; Dash, R. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed. Mater., 2008, 3(3)034122
[http://dx.doi.org/10.1088/1748-6041/3/3/034122] [PMID: 18765898]
[174]
Mkhabela, V.; Ray, S.S. Biodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds. Int. J. Biol. Macromol., 2015, 79, 186-192.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.056] [PMID: 25952165]
[175]
Olad, A.; Farshi Azhar, F. The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan-gelatin/nanohydroxya patite-montmorillonite scaffold for bone tissue engineering. Ceram. Int., 2014, 40(7), 10061-10072.
[http://dx.doi.org/10.1016/j.ceramint.2014.04.010]
[176]
Yang, Y.; Hu, Q.; Zhang, Q.; Jiang, K.; Lin, W.; Yang, Y.; Cui, Y.; Qian, G. A large capacity cationic metal-organic framework nanocarrier for physiological pH responsive drug delivery. Mol. Pharm., 2016, 13(8), 2782-2786.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00374] [PMID: 27414996]
[177]
Lin, W.; Hu, Q.; Jiang, K.; Yang, Y.; Yang, Y.; Cui, Y.; Qian, G. A porphyrin-based metal-organic framework as a PH-responsive drug carrier. J. Solid State Chem., 2016, 237, 307-312.
[http://dx.doi.org/10.1016/j.jssc.2016.02.040]
[178]
Xu, W.; Raychowdhury, S.; Jiang, D.D.; Retsos, H.; Giannelis, E.P. Dramatic improvements in toughness in poly(lactide-co-glycolide) nanocomposites. Small, 2008, 4(5), 662-669.
[http://dx.doi.org/10.1002/smll.200701231] [PMID: 18398925]
[179]
Lee, J.H.; Park, T.G.; Park, H.S.; Lee, D.S.; Lee, Y.K.; Yoon, S.C.; Nam, J-D. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Biomaterials, 2003, 24(16), 2773-2778.
[http://dx.doi.org/10.1016/S0142-9612(03)00080-2] [PMID: 12711524]
[180]
Lee, Y.H.; Lee, J.H.; An, I-G.; Kim, C.; Lee, D.S.; Lee, Y.K.; Nam, J-D. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials, 2005, 26(16), 3165-3172.
[http://dx.doi.org/10.1016/j.biomaterials.2004.08.018] [PMID: 15603811]
[181]
Tsivintzelis, I.; Pavlidou, E.; Panayiotou, C. Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent: I. poly(l-lactic acid). J. Supercrit. Fluids, 2007, 40(2), 317-322.
[http://dx.doi.org/10.1016/j.supflu.2006.06.001]
[182]
Haroun, A.A.; Gamal-Eldeen, A.; Harding, D.R.K. Preparation, characterization and in vitro biological study of biomimetic three-dimensional gelatin-montmorillonite/cellulose scaffold for tissue engineering. J. Mater. Sci. Mater. Med., 2009, 20(12), 2527-2540.
[http://dx.doi.org/10.1007/s10856-009-3818-x] [PMID: 19629650]
[183]
Depan, D.; Kumar, A.P.; Singh, R.P. Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater., 2009, 5(1), 93-100.
[http://dx.doi.org/10.1016/j.actbio.2008.08.007] [PMID: 18796355]
[184]
Jin, X.; Hu, X.; Wang, Q.; Wang, K.; Yao, Q.; Tang, G.; Chu, P.K. Multifunctional cationic polymer decorated and drug intercalated layered silicate (NLS) for early gastric cancer prevention. Biomaterials, 2014, 35(10), 3298-3308.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.040] [PMID: 24439413]
[185]
Kevadiya, B.D.; Rajkumar, S.; Bajaj, H.C.; Chettiar, S.S.; Gosai, K.; Brahmbhatt, H.; Bhatt, A.S.; Barvaliya, Y.K.; Dave, G.S.; Kothari, R.K. Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf. B Biointerfaces, 2014, 122, 175-183.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.051] [PMID: 25033437]
[186]
Stathokostopoulou, C.; Tarantili, P.A. Preparation, characterization and drug release studies from poly(D,L-lactic acid). Organoclay Nanocomposite Films. J. Macromol. Sci. Part A, 2014, 51(2), 117-124.
[http://dx.doi.org/10.1080/10601325.2014.864920]
[187]
Iannuccelli, V.; Maretti, E.; Montorsi, M.; Rustichelli, C.; Sacchetti, F.; Leo, E. Gastroretentive montmorillonite-tetracycline nanoclay for the treatment of Helicobacter pylori infection. Int. J. Pharm., 2015, 493(1-2), 295-304.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.049] [PMID: 26238817]
[188]
Salahuddin, N.; Abdeen, R. Drug release behavior and antitumor efficiency of 5-ASA loaded chitosan-layered silicate nanocomposites. J. Inorg. Organomet. Polym. Mater., 2013, 23(5), 1078-1088.
[http://dx.doi.org/10.1007/s10904-013-9890-1]
[189]
Kevadiya, B.D.; Chettiar, S.S.; Rajkumar, S.; Bajaj, H.C.; Gosai, K.A.; Brahmbhatt, H. Evaluation of clay/poly (L-lactide) microcomposites as anticancer drug, 6-mercaptopurine reservoir through in vitro cytotoxicity, oxidative stress markers and in vivo pharmacokinetics. Colloids Surf. B Biointerfaces, 2013, 112, 400-407.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.008] [PMID: 24036475]
[190]
Jain, S.; Datta, M.; Jain, S.; Datta, M. Oral extended release of dexamethasone: Montmorillonite-PLGA nanocomposites as a delivery vehicle. Appl. Clay Sci., 2015, 104(104), 182-188.
[http://dx.doi.org/10.1016/j.clay.2014.11.028]
[191]
Kaygusuz, H.; Uysal, M.; Adımcılar, V.; Erim, F.B. Natural Alginate biopolymer montmorillonite clay composites for Vitamin B2 delivery. J. Bioact. Compat. Polym., 2015, 30(1), 48-56.
[http://dx.doi.org/10.1177/0883911514557014]
[192]
Anirudhan, T.S.; Divya, P.L.; Nima, J. Silylated montmorillonite based molecularly imprinted polymer for the selective binding and controlled release of thiamine hydrochloride. React. Funct. Polym., 2013, 73(8), 1144-1155.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2013.05.004]
[193]
Oh, Y.J.; Choi, G.; Choy, Y.B.; Park, J.W.; Park, J.H.; Lee, H.J.; Yoon, Y.J.; Chang, H.C.; Choy, J.H. Aripiprazole-montmorillonite: a new organic-inorganic nanohybrid material for biomedical applications. Chemistry, 2013, 19(15), 4869-4875.
[http://dx.doi.org/10.1002/chem.201203384] [PMID: 23436433]
[194]
Jain, S.; Datta, M. Montmorillonite-Alginate microspheres as a delivery vehicle for oral extended release of venlafaxine hydrochloride. J. Drug Deliv. Sci. Technol., 2016, 33, 149-156.
[http://dx.doi.org/10.1016/j.jddst.2016.04.002]
[195]
da Silva, G.R.; da Silva-Cunha, A.; Behar-Cohen, F.; Ayres, E.; Oréfice, R.L. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route. Mater. Sci. Eng. C, 2011, 31(2), 414-422.
[http://dx.doi.org/10.1016/j.msec.2010.10.019]
[196]
Dong, Y.; Feng, S.S. Poly(d,l-lactide-co-glycolide)/montmorillo-nite nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005, 26(30), 6068-6076.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.021] [PMID: 15894372]
[197]
Feng, S.S.; Mei, L.; Anitha, P.; Gan, C.W.; Zhou, W. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials, 2009, 30(19), 3297-3306.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.045] [PMID: 19299012]
[198]
Joshi, G.V.; Kevadiya, B.D.; Bajaj, H.C. Design and evaluation of controlled drug delivery system of buspirone using inorganic layered clay mineral. Microporous Mesoporous Mater., 2010, 132(3), 526-530.
[http://dx.doi.org/10.1016/j.micromeso.2010.04.003]
[199]
Baek, M.; Choy, J.H.; Choi, S.J. Montmorillonite intercalated with glutathione for antioxidant delivery: Synthesis, characterization, and bioavailability evaluation. Int. J. Pharm., 2012, 425(1-2), 29-34.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.015] [PMID: 22266539]
[200]
Marques, I.J.; Vaz, P.D.; Fernandes, A.C.; Nunes, C.D. Advantageous delivery of nifedipine from inorganic materials showing increased solubility and biocompatibility. Microporous Mesoporous Mater., 2014, 183, 192-200.
[http://dx.doi.org/10.1016/j.micromeso.2013.09.021]
[201]
Calabrese, I.; Cavallaro, G.; Scialabba, C.; Licciardi, M.; Merli, M.; Sciascia, L.; Turco Liveri, M.L. Montmorillonite nanodevices for the colon metronidazole delivery. Int. J. Pharm., 2013, 457(1), 224-236.
[http://dx.doi.org/10.1016/j.ijpharm.2013.09.017] [PMID: 24076230]
[202]
Lee, J.H.; Choi, G.; Oh, Y.J.; Park, J.W.; Choy, Y.B.; Park, M.C.; Yoon, Y.J.; Lee, H.J.; Chang, H.C.; Choy, J.H. A nanohybrid system for taste masking of sildenafil. Int. J. Nanomedicine, 2012, 7, 1635-1649.
[PMID: 22619517]
[203]
Lin, F.H.; Lee, Y.H.; Jian, C.H.; Wong, J.M.; Shieh, M.J.; Wang, C.Y. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials, 2002, 23(9), 1981-1987.
[http://dx.doi.org/10.1016/S0142-9612(01)00325-8] [PMID: 11996039]
[204]
Park, J.K.; Choy, Y.B.; Oh, J.M.; Kim, J.Y.; Hwang, S.J.; Choy, J.H. Controlled release of donepezil intercalated in smectite clays. Int. J. Pharm., 2008, 359(1-2), 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.012] [PMID: 18502063]
[205]
Joshi, G.V.; Patel, H.A.; Bajaj, H.C.; Jasra, R.V. Intercalation and Controlled Release of Vitamin B6 from Montmorillonite-Vitamin B6 Hybrid. Colloid Polym. Sci., 2009, 287(9), 1071-1076.
[http://dx.doi.org/10.1007/s00396-009-2067-3]
[206]
Joshi, G.V.; Kevadiya, B.D.; Patel, H.A.; Bajaj, H.C.; Jasra, R.V. Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. Int. J. Pharm., 2009, 374(1-2), 53-57.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.004] [PMID: 19446759]
[207]
Chen, Y.; Zhou, A.; Liu, B.; Liang, J. Ttramadol hydrochloride/montmorillonite composite: Preparation and controlled drug release. Appl. Clay Sci., 2010, 49(3), 108-112.
[http://dx.doi.org/10.1016/j.clay.2010.04.011]
[208]
Meng, N.; Zhou, N.L.; Zhang, S.Q.; Shen, J. Controlled release and antibacterial activity chlorhexidine acetate (CA) intercalated in montmorillonite. Int. J. Pharm., 2009, 382(1-2), 45-49.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.004] [PMID: 19666092]
[209]
Joshi, G.V.; Patel, H.A.; Kevadiya, B.D.; Bajaj, H.C. Montmorillonite Intercalated with Vitamin B1 as Drug Carrier. Appl. Clay Sci., 2009, 45(4), 248-253.
[http://dx.doi.org/10.1016/j.clay.2009.06.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy