Defensive Role of Plant-Derived Secondary Metabolites: Indole and Its’ Derivatives

Author(s): Mulugeta Mulat, Raksha Anand, Fazlurrahman Khan*

Journal Name: Current Biotechnology

Volume 9 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The diversity of indole concerning its production and functional role has increased in both prokaryotic and eukaryotic systems. The bacterial species produce indole and use it as a signaling molecule at interspecies, intraspecies, and even at an interkingdom level for controlling the capability of drug resistance, level of virulence, and biofilm formation. Numerous indole derivatives have been found to play an important role in the different systems and are reported to occur in various bacteria, plants, human, and plant pathogens. Indole and its derivatives have been recognized for a defensive role against pests and insects in the plant kingdom. These indole derivatives are produced as a result of the breakdown of glucosinolate products at the time of insect attack or physical damages. Apart from the defensive role of these products, in plants, they also exhibit several other secondary responses that may contribute directly or indirectly to the growth and development. The present review summarized recent signs of progress on the functional properties of indole and its derivatives in different plant systems. The molecular mechanism involved in the defensive role played by indole as well as its’ derivative in the plants has also been explained. Furthermore, the perspectives of indole and its derivatives (natural or synthetic) in understanding the involvement of these compounds in diverse plants have also been discussed.

Keywords: Defense, indole, indole derivatives, infection, insect, herbivores, plants.

[1]
Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 2010; 34(4): 426-44.
[http://dx.doi.org/10.1111/j.1574-6976.2009.00204.x ] [PMID: 20070374]
[2]
Li G, Young KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 2013; 159(Pt 2): 402-10.
[http://dx.doi.org/10.1099/mic.0.064139-0] [PMID: 23397453]
[3]
Novotny M, Strand JW, Smith SL, Wiesler D, Schwende FJ. Compositional studies of coal tar by capillary gas chromatography mass spectrometry. Fuel 1981; 60(3): 213-20.
[http://dx.doi.org/10.1016/0016-2361(81)90182-4]
[4]
Hong X, Zhang X, Liu B, Mao Y, Liu Y, Zhao L. Structural differentiation of bacterial communities in indole-degrading bioreactors under denitrifying and sulfate-reducing conditions. Res Microbiol 2010; 161(8): 687-93.
[http://dx.doi.org/10.1016/j.resmic.2010.06.010] [PMID: 20656022]
[5]
Chen Y, Xie XG, Ren CG, Dai CC. Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol 2013; 129: 568-74.
[http://dx.doi.org/10.1016/j.biortech.2012.11.100] [PMID: 23274220]
[6]
Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007; 31(4): 425-48.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00072.x ] [PMID: 17509086]
[7]
Paré PW, Tumlinson JH. Plant volatiles as a defense against insect herbivores. Plant Physiol 1999; 121(2): 325-32.
[http://dx.doi.org/10.1104/pp.121.2.325] [PMID: 10517823]
[8]
Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol Res 2007; 55(3): 224-36.
[http://dx.doi.org/10.1016/j.phrs.2007.01.009] [PMID: 17317210]
[9]
Fan S, Meng Q, Saha T, Sarkar FH, Rosen EM. Low concentrations of diindolylmethane, a metabolite of indole-3-carbinol, protect against oxidative stress in a BRCA1-dependent manner. Cancer Res 2009; 69(15): 6083-91.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3309 ] [PMID: 19622773]
[10]
Kutacek M, Prochazka Z, Gruenberger D. Biogenesis of ascorbigen, 3-indolylacetonitrile and indole-3-carboxylic acid from D, L-tryptophan-3-14C in Brassica oleracea L. Nature 1960; 187: 61-2.
[http://dx.doi.org/10.1038/187061a0] [PMID: 14412966]
[11]
Frey M, Stettner C, Pare PW, Schmelz EA, Tumlinson JH, Gierl A. An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci USA 2000; 97(26): 14801-6.
[http://dx.doi.org/10.1073/pnas.260499897] [PMID: 11106389]
[12]
Schmelz EA, Alborn HT, Engelberth J, Tumlinson JH. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol 2003; 133(1): 295-306.
[http://dx.doi.org/10.1104/pp.103.024174] [PMID: 12970495]
[13]
Pfalz M, Mikkelsen MD, Bednarek P, Olsen CE, Halkier BA, Kroymann J. Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. Plant Cell 2011; 23(2): 716-29.
[http://dx.doi.org/10.1105/tpc.110.081711] [PMID: 21317374]
[14]
Wittstock U, Gershenzon J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 2002; 5(4): 300-7.
[http://dx.doi.org/10.1016/S1369-5266(02)00264-9 ] [PMID: 12179963]
[15]
Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J. Chapter five glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Adv Phytochem 2003; (37): 101-25.
[http://dx.doi.org/10.1016/S0079-9920(03)80020-5]
[16]
Wittstock U, Halkier BA. Glucosinolate research in the Arabidopsis era. Trends Plant Sci 2002; 7(6): 263-70.
[http://dx.doi.org/10.1016/S1360-1385(02)02273-2 ] [PMID: 12049923]
[17]
Barth C, Jander G. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 2006; 46(4): 549-62.
[http://dx.doi.org/10.1111/j.1365-313X.2006.02716.x ] [PMID: 16640593]
[18]
Bones AM, Rossiter JT. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 1996; 97(1): 194-208.
[http://dx.doi.org/10.1111/j.1399-3054.1996.tb00497.x]
[19]
Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J. Myrosinase: Gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 2000; 42(1): 93-113.
[http://dx.doi.org/10.1023/A:1006380021658] [PMID: 10688132]
[20]
Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 2005; 55(4): 1113-26.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04449.x ] [PMID: 15686558]
[21]
Lee J, Maeda T, Hong SH, Wood TK. Reconfiguring the quorum-sensing regulator SdiA of Escherichia coli to control biofilm formation via indole and N-acylhomoserine lactones. Appl Environ Microbiol 2009; 75(6): 1703-16.
[http://dx.doi.org/10.1128/AEM.02081-08] [PMID: 19168658]
[22]
Bandara HM, Lam OL, Jin LJ, Samaranayake L. Microbial chemical signaling: A current perspective. Crit Rev Microbiol 2012; 38(3): 217-49.
[http://dx.doi.org/10.3109/1040841X.2011.652065 ] [PMID: 22300377]
[23]
Lee J-H, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 2015; 23(11): 707-18.
[http://dx.doi.org/10.1016/j.tim.2015.08.001] [PMID: 26439294]
[24]
Cerboneschi M, Decorosi F, Biancalani C, et al. Indole-3-acetic acid in plant-pathogen interactions: A key molecule for in planta bacterial virulence and fitness. Res Microbiol 2016; 167(9-10): 774-87.
[http://dx.doi.org/10.1016/j.resmic.2016.09.002] [PMID: 27637152]
[25]
Palacios OA, Choix FJ, Bashan Y, de-Bashan LE. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions. Res Microbiol 2016; 167(5): 367-79.
[http://dx.doi.org/10.1016/j.resmic.2016.02.005] [PMID: 26924113]
[26]
Qu Y, Dai C, Zhang X, Ma Q. A new interspecies and interkingdom signaling molecule-Indole. Sheng Wu Gong Cheng Xue Bao 2019; 35(11): 2177-88.
[PMID: 31814363]
[27]
Lee J-H, Cho MH, Lee J. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol 2011; 13(1): 62-73.
[http://dx.doi.org/10.1111/j.1462-2920.2010.02308.x ] [PMID: 20649646]
[28]
Spaepen S, Vanderleyden J. Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 2011; 3(4)a001438
[http://dx.doi.org/10.1101/cshperspect.a001438] [PMID: 21084388]
[29]
Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 2014; 80(5): 758-71.
[http://dx.doi.org/10.1111/tpj.12666] [PMID: 25227998]
[30]
Chandra S, Askari K, Kumari M. Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J Genet Eng Biotechnol 2018; 16(2): 581-6.
[http://dx.doi.org/10.1016/j.jgeb.2018.09.001] [PMID: 30733776]
[31]
Gowtham HG, Duraivadivel P, Hariprasad P, Niranjana SR. A novel split-pot bioassay to screen indole acetic acid producing rhizobacteria for the improvement of plant growth in tomato (Solanum lycopersicum L.). Sci Hortic 2017; 224: 351-7.
[http://dx.doi.org/10.1016/j.scienta.2017.06.017]
[32]
Saundane AR, Mathada KN. Synthesis, characterization, and biological evaluation of some new chalcones containing indole moiety and their derivatives. Monatsh Chem 2016; 147(7): 1291-301.
[http://dx.doi.org/10.1007/s00706-015-1648-8]
[33]
Neilson EH, Goodger JQ, Woodrow IE, Møller BL. Plant chemical defense: At what cost? Trends Plant Sci 2013; 18(5): 250-8.
[http://dx.doi.org/10.1016/j.tplants.2013.01.001] [PMID: 23415056]
[34]
Böttcher C, Chapman A, Fellermeier F, Choudhary M, Scheel D, Glawischnig E. The biosynthetic pathway of indole-3-carbaldehyde and indole-3-carboxylic acid derivatives in Arabidopsis. Plant Physiol 2014; 165(2): 841-53.
[http://dx.doi.org/10.1104/pp.114.235630] [PMID: 24728709]
[35]
Wouters FC, Blanchette B, Gershenzon J, Vassão DG. Plant defense and herbivore counter-defense: Benzoxazinoids and insect herbivores. Phytochem Rev 2016; 15(6): 1127-51.
[http://dx.doi.org/10.1007/s11101-016-9481-1 ] [PMID: 27932939]
[36]
Jung BK, Khan AR, Hong SJ, et al. Genomic and phenotypic analyses of Serratia fonticola strain GS2: A rhizobacterium isolated from sesame rhizosphere that promotes plant growth and produces N-acyl homoserine lactone. J Biotechnol 2017; 241: 158-62.
[http://dx.doi.org/10.1016/j.jbiotec.2016.12.002 ] [PMID: 27923736]
[37]
Okada K, Abe H, Arimura G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol 2015; 56(1): 16-27.
[http://dx.doi.org/10.1093/pcp/pcu158] [PMID: 25378688]
[38]
Devoto A, Ellis C, Magusin A, et al. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 2005; 58(4): 497-513.
[http://dx.doi.org/10.1007/s11103-005-7306-5] [PMID: 16021335]
[39]
Redovnikovic IR, Glivetic T, Delonga K, Vorkapic-Furac J. Glucosinolates and their potential role in plant. Period Biol 2008; 110(4): 297-309.
[40]
Malka SK, Cheng Y. Possible Interactions between the biosynthetic pathways of indole glucosinolate and auxin. Front Plant Sci 2017; 8: 2131-1.
[http://dx.doi.org/10.3389/fpls.2017.02131] [PMID: 29312389]
[41]
Agerbirk N, De Vos M, Kim JH, Jander G. Indole glucosinolate breakdown and its biological effects. Phytochem Rev 2008; 8(1): 101-20.
[http://dx.doi.org/10.1007/s11101-008-9098-0]
[42]
Zhou N, Tootle TL, Glazebrook J. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 1999; 11(12): 2419-28.
[http://dx.doi.org/10.1105/tpc.11.12.2419] [PMID: 10590168]
[43]
Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 2009; 21(6): 1830-45.
[http://dx.doi.org/10.1105/tpc.109.066670] [PMID: 19567706]
[44]
Ouyang J, Shao X, Li J. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 2000; 24(3): 327-33.
[http://dx.doi.org/10.1046/j.1365-313x.2000.00883.x ] [PMID: 11069706]
[45]
Dubouzet JG, Matsuda F, Ishihara A, Miyagawa H, Wakasa K. Production of indole alkaloids by metabolic engineering of the tryptophan pathway in rice. Plant Biotechnol J 2013; 11(9): 1103-11.
[http://dx.doi.org/10.1111/pbi.12105] [PMID: 23980801]
[46]
Li J, Chen S, Zhu L, Last RL. Isolation of cDNAs encoding the tryptophan pathway enzyme indole-3-glycerol phosphate synthase from Arabidopsis thaliana. Plant Physiol 1995; 108(2): 877-8.
[http://dx.doi.org/10.1104/pp.108.2.877] [PMID: 7610197]
[47]
Mewis I, Ulrich C, Schnitzler WH. The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomol Exp Appl 2002; 105(2): 129-39.
[http://dx.doi.org/10.1046/j.1570-7458.2002.01041.x]
[48]
Miles CI, del Campo ML, Renwick JA. Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191(2): 147-55.
[http://dx.doi.org/10.1007/s00359-004-0580-x] [PMID: 15711970]
[49]
Renwick JA, Radke C, Sachdev-Gupta K, Stdler E. Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 1992; 3(1): 33-8.
[http://dx.doi.org/10.1007/BF01261454]
[50]
Städler E, Renwick JAA, Radke CD, Sachdev-Gupta K. Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rape. Physiol Entomol 1995; 20(2): 175-87.
[http://dx.doi.org/10.1111/j.1365-3032.1995.tb00814.x]
[51]
Sun JY, Sønderby IE, Halkier BA, Jander G, de Vos M. Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. J Chem Ecol 2009; 35(12): 1427-36.
[http://dx.doi.org/10.1007/s10886-009-9723-4 ] [PMID: 20054620]
[52]
Read DP, Feeny PP, Root RB. Habitat selection by the aphid parasite Diaeretiella rapae (Hymenoptera: braconidae) and hyperparasite Charips brassicae (hymenoptera: cynipidae). Can Entomol 1970; 102(12): 1567-78.
[http://dx.doi.org/10.4039/Ent1021567-12]
[53]
Mattiacci L, Dicke M, Posthumus MA. Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor. J Chem Ecol 1994; 20(9): 2229-47.
[http://dx.doi.org/10.1007/BF02033199] [PMID: 24242803]
[54]
Kim JH, Lee BW, Schroeder FC, Jander G. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J 2008; 54(6): 1015-26.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03476.x ] [PMID: 18346197]
[55]
Pedras MS, Nycholat CM, Montaut S, Xu Y, Khan AQ. Chemical defenses of crucifers: Elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 2002; 59(6): 611-25.
[http://dx.doi.org/10.1016/S0031-9422(02)00026-2 ] [PMID: 11867093]
[56]
de Vos M, Kriksunov KL, Jander G. Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae. Plant Physiol 2008; 146(3): 916-26.
[http://dx.doi.org/10.1104/pp.107.112185] [PMID: 18192443]
[57]
Searle LM, Chamberlain K, Rausch T, Butcher DN. The conversion of 3-indolylmethylglucosinolate to 3-indolylacetonitrile by myrosinase, and its relevance to the clubroot disease of the cruciferae. J Exp Bot 1982; 33(5): 935-42.
[http://dx.doi.org/10.1093/jxb/33.5.935]
[58]
Bartel B, Fink GR. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci USA 1994; 91(14): 6649-53.
[http://dx.doi.org/10.1073/pnas.91.14.6649] [PMID: 8022831]
[59]
Marcinek H, Weyler W, Deus-Neumann B, Zenk MH. Indoxyl-UDPG-glucosyltransferase from Baphicacanthus cusia. Phytochemistry 2000; 53(2): 201-7.
[http://dx.doi.org/10.1016/S0031-9422(99)00430-6 ] [PMID: 10680172]
[60]
Minami Y, Nishimura O, Hara-Nishimura I, Nishimura M, Matsubara H. Tissue and intracellular localization of indican and the purification and characterization of indican synthase from indigo plants. Plant Cell Physiol 2000; 41(2): 218-25.
[http://dx.doi.org/10.1093/pcp/41.2.218] [PMID: 10795317]
[61]
Warzecha H, Frank A, Peer M, Gillam EM, Guengerich FP, Unger M. Formation of the indigo precursor indican in genetically engineered tobacco plants and cell cultures. Plant Biotechnol J 2007; 5(1): 185-91.
[http://dx.doi.org/10.1111/j.1467-7652.2006.00231.x ] [PMID: 17207267]
[62]
Davies PJ. The plant hormones: Their nature, occurrence, and functions Plant hormones. Springer 2010; pp. 1-15.
[http://dx.doi.org/10.1007/978-1-4020-2686-7_1]
[63]
Mano Y, Nemoto K, Suzuki M, Seki H, Fujii I, Muranaka T. The AMI1 gene family: Indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. J Exp Bot 2010; 61(1): 25-32.
[http://dx.doi.org/10.1093/jxb/erp292] [PMID: 19887500]
[64]
Woodward AW, Bartel B. Auxin: Regulation, action, and interaction. Ann Bot 2005; 95(5): 707-35.
[http://dx.doi.org/10.1093/aob/mci083] [PMID: 15749753]
[65]
Chandler JW. Local auxin production: A small contribution to a big field. BioEssays 2009; 31(1): 60-70.
[http://dx.doi.org/10.1002/bies.080146] [PMID: 19154004]
[66]
Normanly J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2010; 2(1)a001594
[http://dx.doi.org/10.1101/cshperspect.a001594] [PMID: 20182605]
[67]
Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 2010; 61: 49-64.
[http://dx.doi.org/10.1146/annurev-arplant-042809-112308 ] [PMID: 20192736]
[68]
Zhang R, Wang B, Ouyang J, Li J, Wang Y. Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. J Integr Plant Biol 2008; 50(9): 1070-7.
[http://dx.doi.org/10.1111/j.1744-7909.2008.00729.x ] [PMID: 18844775]
[69]
Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 2011; 108(45): 18512-7.
[http://dx.doi.org/10.1073/pnas.1108434108] [PMID: 22025724]
[70]
Stepanova AN, Yun J, Robles LM, et al. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 2011; 23(11): 3961-73.
[http://dx.doi.org/10.1105/tpc.111.088047] [PMID: 22108406]
[71]
Won C, Shen X, Mashiguchi K, et al. Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 2011; 108(45): 18518-23.
[http://dx.doi.org/10.1073/pnas.1108436108] [PMID: 22025721]
[72]
Schröder G, Waffenschmidt S, Weiler EW, Schröder J. The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 1984; 138(2): 387-91.
[http://dx.doi.org/10.1111/j.1432-1033.1984.tb07927.x ] [PMID: 6365544]
[73]
Thomashow LS, Reeves S, Thomashow MF. Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 1984; 81(16): 5071-5.
[http://dx.doi.org/10.1073/pnas.81.16.5071] [PMID: 6089175]
[74]
Yamada T, Palm CJ, Brooks B, Kosuge T. Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci USA 1985; 82(19): 6522-6.
[http://dx.doi.org/10.1073/pnas.82.19.6522] [PMID: 16593610]
[75]
Gaudin V, Jouanin L. Expression of Agrobacterium rhizogenes auxin biosynthesis genes in transgenic tobacco plants. Plant Mol Biol 1995; 28(1): 123-36.
[http://dx.doi.org/10.1007/BF00042044] [PMID: 7787177]
[76]
Casanova E, Trillas MI, Moysset L, Vainstein A. Influence of rol genes in floriculture. Biotechnol Adv 2005; 23(1): 3-39.
[http://dx.doi.org/10.1016/j.biotechadv.2004.06.002 ] [PMID: 15610964]
[77]
Bower PJ, Brown HM, Purves WK. Cucumber seedling indoleacetaldehyde oxidase. Plant Physiol 1978; 61(1): 107-10.
[http://dx.doi.org/10.1104/pp.61.1.107] [PMID: 16660220]
[78]
Koshiba T, Matsuyama H. An in vitro system of indole-3-acetic acid formation from tryptophan in maize (Zea mays) coleoptile extracts. Plant Physiol 1993; 102(4): 1319-24.
[http://dx.doi.org/10.1104/pp.102.4.1319] [PMID: 12231908]
[79]
Koshiba T, Saito E, Ono N, Yamamoto N, Sato M. Purification and properties of flavin-and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol 1996; 110(3): 781-9.
[http://dx.doi.org/10.1104/pp.110.3.781] [PMID: 12226218]
[80]
Seo M, Akaba S, Oritani T, et al. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 1998; 116(2): 687-93.
[http://dx.doi.org/10.1104/pp.116.2.687] [PMID: 9489015]
[81]
Hull AK, Vij R, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 2000; 97(5): 2379-84.
[http://dx.doi.org/10.1073/pnas.040569997] [PMID: 10681464]
[82]
Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 2000; 275(43): 33712-7.
[http://dx.doi.org/10.1074/jbc.M001667200] [PMID: 10922360]
[83]
Kindl H. Oxidases and oxygenases in higher plants, I. On the occurrence of indolyl-(3)-acetaldehyde oxime and its formation from L-tryptophan. Hoppe Seylers Z Physiol Chem 1968; 349(4): 519-20.
[PMID: 4385097]
[84]
Ludwig‐Müller J, Hilgenberg W. A plasma membrane‐bound enzyme oxidizes L‐tryptophan to indole‐3‐acetaldoxime. Physiol Plant 1988; 74(2): 240-50.
[http://dx.doi.org/10.1111/j.1399-3054.1988.tb00627.x]
[85]
Nafisi M, Goregaoker S, Botanga CJ, et al. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 2007; 19(6): 2039-52.
[http://dx.doi.org/10.1105/tpc.107.051383] [PMID: 17573535]
[86]
Bartling D, Seedorf M, Mithöfer A, Weiler EW. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. Eur J Biochem 1992; 205(1): 417-24.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb16795.x ] [PMID: 1555601]
[87]
Lehmann T, Janowitz T, Sánchez-Parra B, et al. Arabidopsis NITRILASE 1 contributes to the regulation of root growth and development through modulation of auxin biosynthesis in seedlings. Front Plant Sci 2017; 8(36): 36.
[http://dx.doi.org/10.3389/fpls.2017.00036] [PMID: 28174581]
[88]
Bartling D, Seedorf M, Schmidt RC, Weiler EW. Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: Key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proc Natl Acad Sci USA 1994; 91(13): 6021-5.
[http://dx.doi.org/10.1073/pnas.91.13.6021] [PMID: 8016109]
[89]
Hillebrand H, Bartling D, Weiler EW. Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol Biol 1998; 36(1): 89-99.
[http://dx.doi.org/10.1023/A:1005998918418] [PMID: 9484465]
[90]
Hillebrand H, Tiemann B, Hell R, Bartling D, Weiler EW. Structure of the gene encoding nitrilase 1 from Arabidopsis thaliana. Gene 1996; 170(2): 197-200.
[http://dx.doi.org/10.1016/0378-1119(95)00839-X] [PMID: 8666244]
[91]
Camilleri C, Jouanin L. The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: Nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact 1991; 4(2): 155-62.
[http://dx.doi.org/10.1094/MPMI-4-155] [PMID: 1932811]
[92]
Gaudin V, Camilleri C, Jouanin L. Multiple regions of a divergent promoter control the expression of the Agrobacterium rhizogenes aux1 and aux2 plant oncogenes. Mol Gen Genet 1993; 239(1-2): 225-34.
[http://dx.doi.org/10.1007/BF00281622] [PMID: 8510649]
[93]
Kawaguchi M, Kobayashi M, Sakurai A, Syono K. The presence of an enzyme that converts indole-3-acetamide into IAA in wild and cultivated rice (Oryza sativa). Japan: Plant Cell Physiol 1991.
[94]
Arai Y, Kawaguchi M, Syono K, Ikuta A. Partial purification of an enzyme hydrolyzing indole-3-acetamide from rice cells. J Plant Res 2004; 117(3): 191-8.
[http://dx.doi.org/10.1007/s10265-004-0146-6] [PMID: 15042416]
[95]
Pollmann S, Düchting P, Weiler EW. Tryptophan-dependent indole-3-acetic acid biosynthesis by ‘IAA-synthase’ proceeds via indole-3-acetamide. Phytochemistry 2009; 70(4): 523-31.
[http://dx.doi.org/10.1016/j.phytochem.2009.01.021 ] [PMID: 19268331]
[96]
Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot 2012; 63(8): 2853-72.
[http://dx.doi.org/10.1093/jxb/ers091] [PMID: 22447967]
[97]
Brumos J, Alonso JM, Stepanova AN. Genetic aspects of auxin biosynthesis and its regulation. Physiol Plant 2014; 151(1): 3-12.
[http://dx.doi.org/10.1111/ppl.12098] [PMID: 24007561]
[98]
Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 2012; 5(2): 334-8.
[http://dx.doi.org/10.1093/mp/ssr104] [PMID: 22155950]
[99]
Abbey ER, Liu SY. BN isosteres of indole. Org Biomol Chem 2013; 11(13): 2060-9.
[http://dx.doi.org/10.1039/c3ob27436e] [PMID: 23403937]
[100]
Abbey ER, Zakharov LN, Liu SY. Boron in disguise: The parent “fused” BN indole. J Am Chem Soc 2011; 133(30): 11508-11.
[http://dx.doi.org/10.1021/ja205779b] [PMID: 21751771]
[101]
Chen G, Jiang L, Dong L, et al. Synthesis and biological evaluation of novel indole-2-one and 7-aza-2-oxindole derivatives as anti-inflammatory agents. Drug Des Devel Ther 2014; 8: 1869-92.
[PMID: 25378906]
[102]
Abe F, Nagafuji S, Okabe H, et al. Trypanocidal constituents in plants 3. Leaves of Garcinia intermedia and heartwood of Calophyllum brasiliense. Biol Pharm Bull 2004; 27(1): 141-3.
[http://dx.doi.org/10.1248/bpb.27.141] [PMID: 14709920]
[103]
De Moura KC, Emery FS, Neves-Pinto C, et al. Trypanocidal activity of isolated naphthoquinones from Tabebuia and some heterocyclic derivatives: A review from an interdisciplinary study. J Braz Chem Soc 2001; 12(3): 325-38.
[http://dx.doi.org/10.1590/S0103-50532001000300003]
[104]
Estévez-braun A, Pérez-sacau E. The chemistry and biology of lapachol and related natural products α and β-lapachones.Attaur-Rahman, Ed Studies in Natural Products Chemistry Elsevier. 2003; 29: pp. 719-60.
[105]
Zhang C, Qu Y, Niu B. Design, synthesis and biological evaluation of lapachol derivatives possessing indole scaffolds as topoisomerase I inhibitors. Bioorg Med Chem 2016; 24(22): 5781-6.
[http://dx.doi.org/10.1016/j.bmc.2016.09.034] [PMID: 27667553]
[106]
Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem Pharm Bull 2004; 52(8): 916-28.
[http://dx.doi.org/10.1248/cpb.52.916] [PMID: 15304982]
[107]
Takayama H, Ishikawa H, Kurihara M, et al. Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: Discovery of opioid agonists structurally different from other opioid ligands. J Med Chem 2002; 45(9): 1949-56.
[http://dx.doi.org/10.1021/jm010576e] [PMID: 11960505]
[108]
Zuldin M, Nahazima N, Said IM, et al. Induction and analysis of the alkaloid mitragynine content of a Mitragyna speciosa suspension culture system upon elicitation and precursor feeding. Sci World J 2013; 2013209434
[http://dx.doi.org/10.1155/2013/209434] [PMID: 24065873]
[109]
Tsugafune S, Mashiguchi K, Fukui K, et al. Yucasin DF, a potent and persistent inhibitor of auxin biosynthesis in plants. Sci Rep 2017; 7(1): 13992.
[http://dx.doi.org/10.1038/s41598-017-14332-w] [PMID: 29070794]
[110]
Zhao F, Dai JK, Liu D, Wang SJ, Wang JR. Synthesis and evaluation of ester derivatives of 10-hydroxycanthin-6-one as potential antimicrobial agents. Molecules 2016; 21(3): 390.
[http://dx.doi.org/10.3390/molecules21030390] [PMID: 27007362]
[111]
Ohmoto T, Koike K. Chapter 3 Canthin-6-one Alkaloids In: 1990; pp. 135-70.
[112]
Kawasaki T, Higuchi K. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep 2005; 22(6): 761-93.
[http://dx.doi.org/10.1039/b502162f] [PMID: 16311634]
[113]
Takayama H, Ishikawa H, Kitajima M, Aimi N, Aji BM. A new 9-methoxyyohimbine-type indole alkaloid from Mitragyna africanus. Chem Pharm Bull 2004; 52(3): 359-61.
[http://dx.doi.org/10.1248/cpb.52.359] [PMID: 14993762]
[114]
Lambert GA, Lang WJ, Friedman E, Meller E, Gershon S. Pharmacological and biochemical properties of isomeric yohimbine alkaloids. Eur J Pharmacol 1978; 49(1): 39-48.
[http://dx.doi.org/10.1016/0014-2999(78)90220-0] [PMID: 658127]
[115]
Kim JY, Lee K, Kim Y, Kim CK, Lee K. Production of dyestuffs from indole derivatives by naphthalene dioxygenase and toluene dioxygenase. Lett Appl Microbiol 2003; 36(6): 343-8.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01279.x ] [PMID: 12753239]
[116]
Hoessel R, Leclerc S, Endicott JA, et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1999; 1(1): 60-7.
[http://dx.doi.org/10.1038/9035] [PMID: 10559866]
[117]
Nguyen HH, Lavrenov SN, Sundar SN, et al. 1-Benzyl-indole-3-carbinol is a novel indole-3-carbinol derivative with significantly enhanced potency of anti-proliferative and anti-estrogenic properties in human breast cancer cells. Chem Biol Interact 2010; 186(3): 255-66.
[http://dx.doi.org/10.1016/j.cbi.2010.05.015] [PMID: 20570586]
[118]
Wallwey C, Li SM. Ergot alkaloids: Structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 2011; 28(3): 496-510.
[http://dx.doi.org/10.1039/C0NP00060D] [PMID: 21186384]
[119]
Prior AM, Yu X, Park EJ, et al. Structure-activity relationships and docking studies of synthetic 2-arylindole derivatives determined with aromatase and quinone reductase 1. Bioorg Med Chem Lett 2017; 27(24): 5393-9.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.010] [PMID: 29153737]
[120]
Nanjo T, Yamamoto S, Tsukano C, Takemoto Y. Synthesis of 3-acyl-2-arylindole via palladium-catalyzed isocyanide insertion and oxypalladation of alkyne. Org Lett 2013; 15(14): 3754-7.
[http://dx.doi.org/10.1021/ol4016699] [PMID: 23822877]
[121]
Demurtas M, Baldisserotto A, Lampronti I, et al. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorg Chem 2019; 85: 568-76.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.007] [PMID: 30825715]
[122]
Luthra T, Nayak AK, Bose S, Chakrabarti S, Gupta A, Sen S. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation. Eur J Med Chem 2019; 168: 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.019] [PMID: 30798050]
[123]
Yang C, Yu Y, Sun W, Xia C. Indole derivatives inhibited the formation of bacterial biofilm and modulated Ca2+ efflux in diatom. Mar Pollut Bull 2014; 88(1-2): 62-9.
[http://dx.doi.org/10.1016/j.marpolbul.2014.09.027 ] [PMID: 25287229]
[124]
Popolo A, Pinto A, Daglia M, Nabavi SF, Farooqi AA, Rastrelli L. Two likely targets for the anti-cancer effect of indole derivatives from cruciferous vegetables: PI3K/Akt/mTOR signalling pathway and the aryl hydrocarbon receptor. Semin Cancer Biol 2017; 46: 132-7.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.002 ] [PMID: 28596013]
[125]
Marinho FF, Simões AO, Barcellos T, Moura S. Brazilian Tabernaemontana genus: Indole alkaloids and phytochemical activities. Fitoterapia 2016; 114: 127-37.
[http://dx.doi.org/10.1016/j.fitote.2016.09.002] [PMID: 27639415]
[126]
Sravanthi TV, Manju SL. Indoles - A promising scaffold for drug development. Eur J Pharm Sci 2016; 91: 1-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.025] [PMID: 27237590]
[127]
Hendricks RT, Sherman D, Strulovici B, Broka CA, Letters MC. 2-Aryl-indolyl maleimides-novel and potent inhibitors of protein kinase C. Bioorg Med Chem Lett 1995; 5(1): 67-72.
[http://dx.doi.org/10.1016/0960-894X(94)00460-W]
[128]
Ali Khan MS. Misbah, Ahmed N, Arifuddin M, Rehman A, Ling MP. Indole alkaloids and anti-nociceptive mechanisms of Tabernaemontana divaricata (L.) R. Br. flower methanolic extract. Food Chem Toxicol 2018; 118: 953-62.
[http://dx.doi.org/10.1016/j.fct.2018.06.007] [PMID: 29883785]
[129]
Martin NJ, Ferreiro SF, Barbault F, et al. Indole alkaloids from the Marquesan plant Rauvolfia nukuhivensis and their effects on ion channels. Phytochemistry 2015; 109: 84-95.
[http://dx.doi.org/10.1016/j.phytochem.2014.10.026 ] [PMID: 25468537]
[130]
Estevão MS, Carvalho LC, Ribeiro D, et al. Antioxidant activity of unexplored indole derivatives: Synthesis and screening. Eur J Med Chem 2010; 45(11): 4869-78.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.059] [PMID: 20727623]
[131]
Okabe N, Adachi Y. 1H-indole-3-propionic acid. Acta Crystallogr C 1998; 54(3): 386-7.
[http://dx.doi.org/10.1107/S010827019701593X]
[132]
Yang L, Wang G, Wang M, et al. Indole alkaloids from the roots of Isatis indigotica and their inhibitory effects on nitric oxide production. Fitoterapia 2014; 95: 175-81.
[http://dx.doi.org/10.1016/j.fitote.2014.03.019] [PMID: 24685504]
[133]
Long SY, Li CL, Hu J, Zhao QJ, Chen D. Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities. Fitoterapia 2018; 129: 145-9.
[http://dx.doi.org/10.1016/j.fitote.2018.06.017] [PMID: 29935259]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 2
Year: 2020
Published on: 16 November, 2020
Page: [78 - 88]
Pages: 11
DOI: 10.2174/2211550109999200728153839
Price: $65

Article Metrics

PDF: 10
HTML: 1