Applications of Machine Learning in Drug Target Discovery

Author(s): Dongrui Gao, Qingyuan Chen, Yuanqi Zeng, Meng Jiang, Yongqing Zhang*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Drug target discovery is a critical step in drug development. It is the basis of modern drug development because it determines the target molecules related to specific diseases in advance. Predicting drug targets by computational methods saves a great deal of financial and material resources compared to in vitro experiments. Therefore, several computational methods for drug target discovery have been designed. Recently, machine learning (ML) methods in biomedicine have developed rapidly. In this paper, we present an overview of drug target discovery methods based on machine learning. Considering that some machine learning methods integrate network analysis to predict drug targets, network-based methods are also introduced in this article. Finally, the challenges and future outlook of drug target discovery are discussed.

Keywords: Drug target discovery, drug target interaction, machine learning, network-based methods, drug development, biomedicine.

[1]
Chen, X.; Yan, C.C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug-target interaction prediction: databases, web servers and computational models. Brief. Bioinform., 2016, 17(4), 696-712.
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[2]
Xing, C.; Ya-Zhou, S.; De-Hong, Z.; Jian-Qiang, L.; Gui-Ying, Y.; Ji-Yong, A.; Zhu-Hong, Y. NRDTD: a database for clinically or experimentally supported non-coding RNAs and drug targets associations. Database (Oxford), 2017, 2017bax057
[3]
Sturm, M.; Hackenberg, M.; Langenberger, D.; Frishman, D. TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics, 2010, 11(1), 292.
[http://dx.doi.org/10.1186/1471-2105-11-292] [PMID: 20509939]
[4]
Wei, T.; Li, S. Development of genomics-based gene expression signature biomarkers in oncology and toxicology to facilitate drug discovery and translational medicine. Curr. Bioinform., 2011, 5(2), 109-117.
[http://dx.doi.org/10.2174/157489310791268423]
[5]
Cava, C.; Bertoli, G.; Castiglioni, I. In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition. J. Transl. Med., 2018, 16(1), 154.
[http://dx.doi.org/10.1186/s12967-018-1535-2] [PMID: 29871693]
[6]
Perumal, D.; Lim, C.; Sakharkar, K.; Sakharkar, M. ‘Load Points’ and ‘Choke Points’ as nodes for prioritizing drug targets in Pseudomonas aeruginosa (Supplementary). Curr. Bioinform., 2009, 4(1), 48-53.
[http://dx.doi.org/10.2174/157489309787158189]
[7]
Dai, Y.F.; Zhao, X.M. A survey on the computational approaches to identify drug targets in the postgenomic era. BioMed Res. Int., 2015, 2015239654
[http://dx.doi.org/10.1155/2015/239654] [PMID: 26060814]
[8]
Tsigelny, I.F. Artificial intelligence in drug combination therapy. Brief. Bioinform., 2019, 20(4), 1434-1448.
[http://dx.doi.org/10.1093/bib/bby004] [PMID: 29438494]
[9]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[10]
Christensen, M.H.; Thomsen, R. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[11]
Zanni, R.; Gálvez-Llompart, M.; Gálvez, J.; García-Domenech, R. QSAR multi-target in drug discovery: a review. Curr. Comput. Aided Drug Des., 2014, 10(2), 129-136.
[http://dx.doi.org/10.2174/157340991002140708105124] [PMID: 24724898]
[12]
Butina, D.; Segall, M.D.; Frankcombe, K. Predicting ADME properties in silico: methods and models. Drug Discov. Today, 2002, 7(11), S83-S88.
[http://dx.doi.org/10.1016/S1359-6446(02)02288-2] [PMID: 12047885]
[13]
Azevedo, L.S.; Moraes, F.P.; Xavier, M.M.; Pantoja, E.O.; Villavicencio, B.; Finck, J.A.; Proenca, A.M.; Rocha, K.B.; Azevedo, W.F.D. Recent progress of molecular docking simulations applied to development of drugs. Curr. Bioinform., 2012, 7(4), 352-365.
[http://dx.doi.org/10.2174/157489312803901063]
[14]
Alberto Ambesi-Impiombato, D.B. Computational biology and drug discovery: from single-target to network drugs. Curr. Bioinform., 2006, 1(1), 3-13.
[http://dx.doi.org/10.2174/157489306775330598]
[15]
Luo, G.; Guenthner, T.; Gan, L.S.; Humphreys, W.G. CYP3A4 induction by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development. Curr. Drug Metab., 2004, 5(6), 483-505.
[http://dx.doi.org/10.2174/1389200043335397] [PMID: 15578943]
[16]
Janiszewski, J.S.; Liston, T.E.; Cole, M.J. Perspectives on bioanalytical mass spectrometry and automation in drug discovery. Curr. Drug Metab., 2008, 9(9), 986-994.
[http://dx.doi.org/10.2174/138920008786485173] [PMID: 18991596]
[17]
Matthews, H.; Hanison, J.; Nirmalan, N. “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes, 2016, 4(3), 28.
[http://dx.doi.org/10.3390/proteomes4030028] [PMID: 28248238]
[18]
Hopkins, A.L. Drug discovery: predicting promiscuity. Nature, 2009, 462(7270), 167-168.
[http://dx.doi.org/10.1038/462167a] [PMID: 19907483]
[19]
Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol., 2014, 32(1), 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[20]
Hingorani, A.D.; Kuan, V.; Finan, C.; Kruger, F.A.; Gaulton, A.; Chopade, S.; Sofat, R.; MacAllister, R.J.; Overington, J.P.; Hemingway, H.; Denaxas, S.; Prieto, D.; Casas, J.P. Improving the odds of drug development success through human genomics: modelling study. Sci. Rep., 2019, 9(1), 18911.
[http://dx.doi.org/10.1038/s41598-019-54849-w]
[21]
Emig, D.; Ivliev, A.; Pustovalova, O.; Lancashire, L.; Bureeva, S.; Nikolsky, Y.; Bessarabova, M. Drug target prediction and repositioning using an integrated network-based approach. PLoS One, 2013, 8(4)e60618
[http://dx.doi.org/10.1371/journal.pone.0060618] [PMID: 23593264]
[22]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/10.7150/ijbs.9224] [PMID: 25013375]
[23]
Cockell, S.J.; Weile, J.; Lord, P.; Wipat, C.; Andriychenko, D.; Pocock, M.; Wilkinson, D.; Young, M.; Wipat, A. An integrated dataset for in silico drug discovery. J. Integr. Bioinform., 2010, 7(3), 15-27.
[http://dx.doi.org/10.1515/jib-2010-116] [PMID: 20375448]
[24]
Dudley, J.T.; Deshpande, T.; Butte, A.J. Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform., 2011, 12(4), 303-311.
[http://dx.doi.org/10.1093/bib/bbr013] [PMID: 21690101]
[25]
Sirci, F.; Napolitano, F.; di Bernardo, D. Computational Drug Networks: a computational approach to elucidate drug mode of action and to facilitate drug repositioning for neurodegenerative diseases. Drug Discov. Today Dis. Models, 2016, 19, 11-17.
[http://dx.doi.org/10.1016/j.ddmod.2017.04.004]
[26]
Wu, Z.; Wang, Y.; Chen, L. Network-based drug repositioning. Mol. Biosyst., 2013, 9(6), 1268-1281.
[http://dx.doi.org/10.1039/c3mb25382a] [PMID: 23493874]
[27]
Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. A review of network-based approaches to drug repositioning. Brief. Bioinform., 2018, 19(5), 878-892.
[http://dx.doi.org/10.1093/bib/bbx017] [PMID: 28334136]
[28]
Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Asiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med., 2017, 23(4), 405-408.
[http://dx.doi.org/10.1038/nm.4306] [PMID: 28388612]
[29]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[30]
Zhang, Y.; Pu, Y.; Zhang, H.; Su, Y.; Zhang, L.; Zhou, J. Using gene expression programming to infer gene regulatory networks from time-series data. Comput. Biol. Chem., 2013, 47, 198-206.
[http://dx.doi.org/10.1016/j.compbiolchem.2013.09.004] [PMID: 24140883]
[31]
van Dam, S.; Võsa, U.; van der Graaf, A.; Franke, L.; de Magalhães, J.P. Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform., 2018, 19(4), 575-592.
[PMID: 28077403]
[32]
Tran, T.; Ekenna, C. Metabolic pathway and graph identification of new potential drug targets for Plasmodium Falciparum 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO2017, pp. 1887-1893.
[http://dx.doi.org/10.1109/BIBM.2017.8217947]
[33]
Moschopoulos, C.N.; Pavlopoulos, G.A.; Likothanassis, S.; Kossida, S. Analyzing protein-protein interaction networks with web tools. Curr. Bioinform., 2011, 6(4), 389-397.
[http://dx.doi.org/10.2174/157489311798072972]
[34]
Yao, L.; Rzhetsky, A. Quantitative systems-level determinants of human genes targeted by successful drugs. Genome Res., 2008, 18(2), 206-213.
[http://dx.doi.org/10.1101/gr.6888208] [PMID: 18083776]
[35]
Zhou, M.; Chen, Y.; Xu, R. A drug-side effect context-sensitive network approach for drug target prediction. Bioinformatics, 2019, 35(12), 2100-2107.
[http://dx.doi.org/10.1093/bioinformatics/bty906] [PMID: 30428013]
[36]
Campillos, M.; Kuhn, M.; Gavin, A-C.; Jensen, L.J.; Bork, P. Drug target identification using side-effect similarity. Science, 2008, 321(5886), 263-266.
[http://dx.doi.org/10.1126/science.1158140] [PMID: 18621671]
[37]
Ud-Dean, S.M.M.; Gunawan, R. Ensemble inference and inferability of gene regulatory networks. PLoS One, 2014, 9(8)e103812
[http://dx.doi.org/10.1371/journal.pone.0103812] [PMID: 25093509]
[38]
Noh, H.; Gunawan, R. Inferring gene targets of drugs and chemical compounds from gene expression profiles. Bioinformatics, 2016, 32(14), 2120-2127.
[http://dx.doi.org/10.1093/bioinformatics/btw148] [PMID: 27153589]
[39]
Isik, Z.; Baldow, C.; Cannistraci, C.V.; Schroeder, M. Drug target prioritization by perturbed gene expression and network information. Sci. Rep., 2015, 5, 17417.
[http://dx.doi.org/10.1038/srep17417] [PMID: 26615774]
[40]
Shnaps, O.; Perry, E.; Silverbush, D.; Sharan, R. Inference of personalized drug targets via network propagation. Biocomputing; , 2016, pp. 156-157.
[http://dx.doi.org/10.1142/9789814749411_0015]
[41]
Galeano, D.; Paccanaro, A. Drug targets prediction using chemical similarity XLII Latin American Computing Conference , 2016; pp. 1-7.
[42]
Kunimoto, R.; Bajorath, J. Design of a tripartite network for the prediction of drug targets. J. Comput. Aided Mol. Des., 2018, 32(2), 321-330.
[http://dx.doi.org/10.1007/s10822-018-0098-x] [PMID: 29340865]
[43]
Barrett, T.; Troup, D.B.; Wilhite, S.E.; Ledoux, P.; Kim, I.F. NCBI GEO: archive for functional genomics data sets - 10years on. Nucleic Acids Res., 2012, 39, D1005-10.
[44]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[45]
Faith, J.J.; Driscoll, M.E.; Fusaro, V.A.; Cosgrove, E.J.; Hayete, B.; Juhn, F.S.; Schneider, S.J.; Gardner, T.S. Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res., 2008, 36, D866-D870.
[PMID: 17932051]
[46]
Kuhn, M.; Szklarczyk, D.; Franceschini, A.; von Mering, C.; Jensen, L.J.; Bork, P. STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res., 2012, 40, D876-D880.
[http://dx.doi.org/10.1093/nar/gkr1011] [PMID: 22075997]
[47]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43, D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[48]
Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr; Laird, P.W.; Baty, J.D.; Fulton, L.L.; Fulton, R.; Heath, S.E.; Kalicki-Veizer, J.; Kandoth, C.; Klco, J.M.; Koboldt, D.C.; Kanchi, K.L.; Kulkarni, S.; Lamprecht, T.L.; Larson, D.E.; Lin, L.; Lu, C.; McLellan, M.D.; McMichael, J.F.; Payton, J.; Schmidt, H.; Spencer, D.H.; Tomasson, M.H.; Wallis, J.W.; Wartman, L.D.; Watson, M.A.; Welch, J.; Wendl, M.C.; Ally, A.; Balasundaram, M.; Birol, I.; Butterfield, Y.; Chiu, R.; Chu, A.; Chuah, E.; Chun, H.J.; Corbett, R.; Dhalla, N.; Guin, R.; He, A.; Hirst, C.; Hirst, M.; Holt, R.A.; Jones, S.; Karsan, A.; Lee, D.; Li, H.I.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, K.; Parker, J.; Pleasance, E.; Plettner, P.; Schein, J.; Stoll, D.; Swanson, L.; Tam, A.; Thiessen, N.; Varhol, R.; Wye, N.; Zhao, Y.; Gabriel, S.; Getz, G.; Sougnez, C.; Zou, L.; Leiserson, M.D.; Vandin, F.; Wu, H.T.; Applebaum, F.; Baylin, S.B.; Akbani, R.; Broom, B.M.; Chen, K.; Motter, T.C.; Nguyen, K.; Weinstein, J.N.; Zhang, N.; Ferguson, M.L.; Adams, C.; Black, A.; Bowen, J.; Gastier-Foster, J.; Grossman, T.; Lichtenberg, T.; Wise, L.; Davidsen, T.; Demchok, J.A.; Shaw, K.R.; Sheth, M.; Sofia, H.J.; Yang, L.; Downing, J.R.; Eley, G. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med., 2013, 368(22), 2059-2074.
[http://dx.doi.org/10.1056/NEJMoa1301689] [PMID: 23634996]
[49]
Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z.T.; Han, B.; Zhou, Y.; Wishart, D.S. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res., 2014, 42, D1091-D1097.
[http://dx.doi.org/10.1093/nar/gkt1068] [PMID: 24203711]
[50]
Schaefer, M.H.; Fontaine, J.F.; Vinayagam, A.; Porras, P.; Wanker, E.E.; Andrade-Navarro, M.A. HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores. Plos One, 2012, 7(2)e31826
[51]
Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; Teague, J.W.; Campbell, P.J.; Stratton, M.R.; Futreal, P.A. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res., 2011, 39, D945-D950.
[http://dx.doi.org/10.1093/nar/gkq929] [PMID: 20952405]
[52]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45, D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[53]
Stark, C.; Breitkreutz, B.J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 2006, 34, D535-D539.
[http://dx.doi.org/10.1093/nar/gkj109] [PMID: 16381927]
[54]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40, D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[55]
Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res., 2016, 44(D1), D1075-D1079.
[http://dx.doi.org/10.1093/nar/gkv1075] [PMID: 26481350]
[56]
Ma, J.; Wang, J.; Ghoraie, L.S.; Men, X.; Liu, L.; Dai, P. Network-based method for drug target discovery at the isoform level. Sci. Rep., 2019, 9(1), 13868.
[http://dx.doi.org/10.1038/s41598-019-50224-x] [PMID: 31554914]
[57]
Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M.F.; Monahan, J.E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F.A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I.H.; Cheng, J.; Yu, G.K.; Yu, J.; Aspesi, P., Jr; de Silva, M.; Jagtap, K.; Jones, M.D.; Wang, L.; Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R.C.; Liefeld, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J.P.; Gabriel, S.B.; Getz, G.; Ardlie, K.; Chan, V.; Myer, V.E.; Weber, B.L.; Porter, J.; Warmuth, M.; Finan, P.; Harris, J.L.; Meyerson, M.; Golub, T.R.; Morrissey, M.P.; Sellers, W.R.; Schlegel, R.; Garraway, L.A. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391), 603-607.
[http://dx.doi.org/10.1038/nature11003] [PMID: 22460905]
[58]
Klijn, C.; Durinck, S.; Stawiski, E.W.; Haverty, P.M.; Jiang, Z.; Liu, H.; Degenhardt, J.; Mayba, O.; Gnad, F.; Liu, J.; Pau, G.; Reeder, J.; Cao, Y.; Mukhyala, K.; Selvaraj, S.K.; Yu, M.; Zynda, G.J.; Brauer, M.J.; Wu, T.D.; Gentleman, R.C.; Manning, G.; Yauch, R.L.; Bourgon, R.; Stokoe, D.; Modrusan, Z.; Neve, R.M.; de Sauvage, F.J.; Settleman, J.; Seshagiri, S.; Zhang, Z. A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol., 2015, 33(3), 306-312.
[http://dx.doi.org/10.1038/nbt.3080] [PMID: 25485619]
[59]
Yamanishi, Y.; Araki, M.; Gutteridge, A.; Honda, W.; Kanehisa, M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13), i232-i240.
[http://dx.doi.org/10.1093/bioinformatics/btn162] [PMID: 18586719]
[60]
Ezzat, A.; Zhao, P.; Wu, M.; Li, X.L.; Kwoh, C.K. Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2017, 14(3), 646-656.
[http://dx.doi.org/10.1109/TCBB.2016.2530062] [PMID: 26890921]
[61]
Zheng, X.; Ding, H.; Mamitsuka, H.; Zhu, S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: KDD ’13: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining; , 2013; pp. 1025-1033.
[http://dx.doi.org/10.1145/2487575.2487670]
[62]
Manoochehri, H.E.; Nourani, M. Predicting drug-target interaction using deep matrix factorization. In: IEEE Biomedical Circuits and Systems Conference; , 2018; pp. 1-4.
[http://dx.doi.org/10.1109/BIOCAS.2018.8584817]
[63]
Liu, Y.; Wu, M.; Miao, C.; Zhao, P.; Li, X.L. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLOS Comput. Biol., 2016, 12(2)e1004760
[http://dx.doi.org/10.1371/journal.pcbi.1004760] [PMID: 26872142]
[64]
Hattori, M.; Tanaka, N.; Kanehisa, M.; Goto, S. SIMCOMP/SUBCOMP: chemical structure search servers for network analyses. Nucleic Acids Res., 2010, 38W652-6
[http://dx.doi.org/10.1093/nar/gkq367] [PMID: 20460463]
[65]
Aurrecoechea, C.; Brestelli, J.; Brunk, B.P.; Dommer, J.; Fischer, S.; Gajria, B.; Gao, X.; Gingle, A.; Grant, G.; Harb, O.S.; Heiges, M.; Innamorato, F.; Iodice, J.; Kissinger, J.C.; Kraemer, E.; Li, W.; Miller, J.A.; Nayak, V.; Pennington, C.; Pinney, D.F.; Roos, D.S.; Ross, C.; Stoeckert, C.J., Jr; Treatman, C.; Wang, H. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res., 2009, 37, D539-D543.
[http://dx.doi.org/10.1093/nar/gkn814] [PMID: 18957442]
[66]
Coelho, E.D.; Arrais, J.P.; Oliveira, J.L. Ensemble-based methodology for the prediction of drug-target interactions. In: IEEE International Symposium on Computer-Based Medical Systems; , 2016; pp. 36-41.
[http://dx.doi.org/10.1109/CBMS.2016.67]
[67]
Peng, W.; Chan, K.C.C.; You, Z-H. Large-scale prediction of drug-target interactions from deep representations. In: International Joint Conference on Neural Networks; , 2016; pp. 1236-1243.
[http://dx.doi.org/10.1109/IJCNN.2016.7727339]
[68]
Tong, Z.; Zhou, Y.; Wang, J. Identifying potential drug targets in hepatocellular carcinoma based on network analysis and one-class support vector machine. Sci. Rep., 2019, 9(1), 10442.
[http://dx.doi.org/10.1038/s41598-019-46540-x] [PMID: 31320657]
[69]
González, J.P.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45, D833-D839.
[70]
Meyers, R.M.; Bryan, J.G.; McFarland, J.M.; Weir, B.A.; Sizemore, A.E.; Xu, H.; Dharia, N.V.; Montgomery, P.G.; Cowley, G.S.; Pantel, S.; Goodale, A.; Lee, Y.; Ali, L.D.; Jiang, G.; Lubonja, R.; Harrington, W.F.; Strickland, M.; Wu, T.; Hawes, D.C.; Zhivich, V.A.; Wyatt, M.R.; Kalani, Z.; Chang, J.J.; Okamoto, M.; Stegmaier, K.; Golub, T.R.; Boehm, J.S.; Vazquez, F.; Root, D.E.; Hahn, W.C.; Tsherniak, A. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet., 2017, 49(12), 1779-1784.
[http://dx.doi.org/10.1038/ng.3984] [PMID: 29083409]
[71]
Li, Z-C.; Huang, M-H.; Zhong, W-Q.; Liu, Z-Q.; Xie, Y.; Dai, Z.; Zou, X-Y. Identification of drug-target interaction from interactome network with ‘guilt-by-association’ principle and topology features. Bioinformatics, 2016, 32(7), 1057-1064.
[http://dx.doi.org/10.1093/bioinformatics/btv695] [PMID: 26614126]
[72]
Olayan, R.S.; Ashoor, H.; Bajic, V.B. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics, 2018, 34(7), 1164-1173.
[http://dx.doi.org/10.1093/bioinformatics/btx731] [PMID: 29186331]
[73]
Zheng, Y.; Peng, H.; Zhang, X.; Gao, X.; Li, J. Predicting Drug Targets from Heterogeneous Spaces using Anchor Graph Hashing and Ensemble Learning 2018 International Joint Conference on Neural Networks , 2018; pp. 1-7.
[http://dx.doi.org/10.1109/IJCNN.2018.8489028]
[74]
Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., 2004, 32, 258-261.
[http://dx.doi.org/10.1093/nar/gkh036]
[75]
Chen, B.; Wild, D.; Guha, R. PubChem as a source of polypharmacology. J. Chem. Inf. Model., 2009, 49(9), 2044-2055.
[http://dx.doi.org/10.1021/ci9001876] [PMID: 19708682]
[76]
Lee, I.; Keum, J.; Nam, H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput. Biol., 2019, 15(6),e1007129.
[77]
Southan, C.; Sharman, J.L.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Alexander, S.P.H.; Buneman, O.P.; Davenport, A.P.; McGrath, J.C.; Peters, J.A.; Spedding, M.; Catterall, W.A.; Fabbro, D.; Davies, J.A. NC-IUPHAR. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res., 2016, 44(D1), D1054-D1068.
[http://dx.doi.org/10.1093/nar/gkv1037] [PMID: 26464438]
[78]
Rayhan, F.; Ahmed, S.; Mousavian, Z.; Farid, D.M.; Shatabda, S. FRnet-DTI: deep convolutional neural networks with evolutionary and structural features for drug-target interaction. Heliyon, 2020, 6(3), 03444.
[79]
Rayhan, F.; Ahmed, S.; Shatabda, S.; Farid, D.M.; Mousavian, Z.; Dehzangi, A.; Rahman, M.S. iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting. Sci. Rep., 2017, 7(1), 17731.
[http://dx.doi.org/10.1038/s41598-017-18025-2] [PMID: 29255285]
[80]
Hu, S.; Xia, D.; Su, B.; Chen, P.; Wang, B.; Li, J. A Convolutional Neural Network System to Discriminate Drug-Target Interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 1-1.
[http://dx.doi.org/10.1109/TCBB.2019.2940187]
[81]
Monteiro, N.R.C.; Ribeiro, B.; Arrais, J.P. Deep neural network architecture for drug-target interaction prediction; Artificial Neural Networks and Machine Learning, 2019, pp. 804-809.
[http://dx.doi.org/10.1007/978-3-030-30493-5_76]
[82]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[83]
Wen, M.; Zhang, Z.; Niu, S.; Sha, H.; Yang, R.; Yun, Y.; Lu, H. Deep-learning-based drug-target interaction prediction. J. Proteome Res., 2017, 16(4), 1401-1409.
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[84]
Gao, K.Y.; Fokoue, A.; Luo, H.; Iyengar, A.; Dey, S.; Zhang, P. Interpretable Drug Target Prediction Using Deep Neural Representation. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018, pp. 3371-3377.
[http://dx.doi.org/10.24963/ijcai.2018/468]
[85]
Feng, Q.; Dueva, E.V.; Cherkasov, A.; Ester, M. PADME: a deep learning-based framework for drug-target interaction prediction., 2018. Available from: https://arxiv.org/abs/1807.09741
[86]
Davis, M.I.; Hunt, J.P.; Herrgard, S.; Ciceri, P.; Wodicka, L.M.; Pallares, G.; Hocker, M.; Treiber, D.K.; Zarrinkar, P.P. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol., 2011, 29(11), 1046-1051.
[http://dx.doi.org/10.1038/nbt.1990] [PMID: 22037378]
[87]
Metz, J.T.; Johnson, E.F.; Soni, N.B.; Merta, P.J.; Kifle, L.; Hajduk, P.J. Navigating the kinome. Nat. Chem. Biol., 2011, 7(4), 200-202.
[http://dx.doi.org/10.1038/nchembio.530] [PMID: 21336281]
[88]
Tang, J.; Szwajda, A.; Shakyawar, S.; Xu, T.; Hintsanen, P.; Wennerberg, K.; Aittokallio, T. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J. Chem. Inf. Model., 2014, 54(3), 735-743.
[http://dx.doi.org/10.1021/ci400709d] [PMID: 24521231]
[89]
Saunders, C.; Stitson, M.O.; Weston, J.; Holloway, R.; Bottou, L.; Scholkopf, B.; Smola, A. Support vector machine. Comput. Sci., 2002, 1(4), 1-28.
[90]
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1947-1958.
[91]
Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal., 2002, 38(4), 367-378.
[http://dx.doi.org/10.1016/S0167-9473(01)00065-2]
[92]
Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System, 2016. Available from: https://arxiv.org/abs/1603.02754
[93]
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T-Y. LightGBM: a highly efficient gradient boosting decision. tree. Advances in Neural Information Processing Systems 30 (NIPS 2017). , Available from: https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
[94]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[95]
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions, 2014. Available from: https://arxiv.org/abs/1409.4842
[96]
Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput., 2006, 18(7), 1527-1554.
[http://dx.doi.org/10.1162/neco.2006.18.7.1527] [PMID: 16764513]
[97]
Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.Z. Deep learning for health informatics. IEEE J. Biomed. Health Inform., 2017, 21(1), 4-21.
[http://dx.doi.org/10.1109/JBHI.2016.2636665] [PMID: 28055930]
[98]
Sun, M.; Zhao, S.; Gilvary, C.; Elemento, O.; Zhou, J.; Wang, F. Graph convolutional networks for computational drug development and discovery. Brief. Bioinform., 2020, 21(3), 919-935.
[PMID: 31155636]
[99]
Zhang, Y.; Pu, Y.; Zhang, H.; Cong, Y.; Zhou, J. An extended fractional Kalman filter for inferring gene regulatory networks using time-series data. Chemom. Intell. Lab. Syst., 2014, 138, 57-63.
[http://dx.doi.org/10.1016/j.chemolab.2014.07.007]
[100]
Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol., 1999, 19(3), 1720-1730.
[http://dx.doi.org/10.1128/MCB.19.3.1720] [PMID: 10022859]
[101]
Shi, J.Y.; Yiu, S.M.; Li, Y.M.; Leung, H.C.; Chin, F.Y. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering. Methods, 2015, 83, 98-104.
[http://dx.doi.org/10.1109/BIBM.2014.6999125]
[102]
Goh, G.B.; Siegel, C.; Vishnu, A.; Hodas, N.O.; Baker, N. Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models. 2017. Available from: https://arxiv.org/abs/1706.06689
[103]
Goh, G.B.; Hodas, N.O.; Siegel, C.; Vishnu, A. SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for Predicting Chemical Properties 2017. Available from: https://arxiv.org/abs/1712.02034


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 10
Year: 2020
Page: [790 - 803]
Pages: 14
DOI: 10.2174/1567201817999200728142023
Price: $65

Article Metrics

PDF: 37
HTML: 2