Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense

Author(s): Indrani Baruah, Gajendra Mohan Baldodiya, Jagajjit Sahu*, Geetanjali Baruah*

Journal Name: Current Genomics

Volume 21 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Plants inherently show resistance to pathogen attack but are susceptible to multiple bacteria, viruses, fungi, and phytoplasmas. Diseases as a result of such infection leads to the deterioration of crop yield. Several pathogen-sensitive gene activities, promoters of such genes, associated transcription factors, and promoter elements responsible for crosstalk between the defense signaling pathways are involved in plant resistance towards a pathogen. Still, only a handful of genes and their promoters related to plant resistance have been identified to date. Such pathogen-sensitive promoters are accountable for elevating the transcriptional activity of certain genes in response to infection. Also, a suitable promoter is a key to devising successful crop improvement strategies as it ensures the optimum expression of the required transgene. The study of the promoters also helps in mining more details about the transcription factors controlling their activities and helps to unveil the involvement of new genes in the pathogen response. Therefore, the only way out to formulate new solutions is by analyzing the molecular aspects of these promoters in detail. In this review, we provided an overview of the promoter motifs and cis-regulatory elements having specific roles in pathogen attack response. To elaborate on the importance and get a vivid picture of the pathogen-sensitive promoter sequences, the key motifs and promoter elements were analyzed with the help of PlantCare and interpreted with available literature. This review intends to provide useful information for reconstructing the gene networks underlying the resistance of plants against pathogens.

Keywords: Pathogen-induced promoters, crop improvement, PlantCare, transcription factors, defense signaling, pathogen resistance, synthetic promoters, circos.

[1]
Mazarei, M.; Teplova, I.; Hajimorad, M.R.; Stewart, C.N. Pathogen phytosensing: plants to report plant pathogens. Sensors (Basel), 2008, 8(4), 2628-2641.
[http://dx.doi.org/10.3390/s8042628] [PMID: 27879840]
[2]
Smirnova, O.G.; Ibragimova, S.S.; Kochetov, A.V. Simple database to select promoters for plant transgenesis. Transgenic Res., 2012, 21(2), 429-437.
[http://dx.doi.org/10.1007/s11248-011-9538-2] [PMID: 21811802]
[3]
TGP. Database on Plant Promoters for Transgenesis., http://wwwmgs.bionet.nsc.ru/mgs/dbases/tgp/home.html (Accessed 28 December, 2019)
[4]
Feys, B.J.; Parker, J.E. Interplay of signaling pathways in plant disease resistance. Trends Genet., 2000, 16(10), 449-455.
[http://dx.doi.org/10.1016/S0168-9525(00)02107-7] [PMID: 11050331]
[5]
Xu, J.; Audenaert, K.; Hofte, M.; De Vleesschauwer, D. Correction: abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PLoS One, 2013, 8(7), e67413
[http://dx.doi.org/10.1371/annotation/659105c2-8364-4cc7-94e7-66620370637a]
[6]
Yang, J.; Duan, G.; Li, C.; Liu, L.; Han, G.; Zhang, Y.; Wang, C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci., 2019, 10, 1349.
[http://dx.doi.org/10.3389/fpls.2019.01349] [PMID: 31681397]
[7]
Zhou, C.; Zhang, L.; Duan, J.; Miki, B.; Wu, K. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 2005, 17(4), 1196-1204.
[http://dx.doi.org/10.1105/tpc.104.028514] [PMID: 15749761]
[8]
Hou, Y.; Wang, Y.; Tang, L.; Tong, X.; Wang, L.; Liu, L.; Huang, S.; Zhang, J. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. iScience, , 2019, 16, 499-510.
[9]
Li, J.; Zhang, K.; Meng, Y.; Hu, J.; Ding, M.; Bian, J.; Yan, M.; Han, J.; Zhou, M. Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor. Plant J., 2018, 95(3), 444-457.
[10]
Maruri-López, I.; Aviles-Baltazar, N.Y.; Buchala, A.; Serrano, M. Intra and extracellular journey of the phytohormone salicylic acid. Front. Plant Sci., 2019, 10, 423.
[http://dx.doi.org/10.3389/fpls.2019.00423] [PMID: 31057566]
[11]
Maiti, S.; Patro, S.; Pal, A.; Dey, N. Identification of a novel salicylic acid inducible endogenous plant promoter regulating expression of CYR1, a CC-NB-LRR type candidate disease resistance gene in Vigna mungo. Plant Cell Tissue Organ Cult., 2015, 120, 489-505.
[http://dx.doi.org/10.1007/s11240-014-0616-z]
[12]
Srivastava, L.M. Plant growth and development. Hormones and environment; Academic Press, 2002, pp. 251-268.
[http://dx.doi.org/10.1016/B978-012660570-9/50153-2]
[13]
Van der Does, D.; Leon-Reyes, A.; Koornneef, A.; Van Verk, M.C.; Rodenburg, N.; Pauwels, L.; Goossens, A.; Körbes, A.P.; Memelink, J.; Ritsema, T.; Van Wees, S.C.M.; Pieterse, C.M.J. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell, 2013, 25(2), 744-761.
[http://dx.doi.org/10.1105/tpc.112.108548] [PMID: 23435661]
[14]
Zhang, H.; Zhang, Q.; Zhai, H.; Gao, S.; Yang, L.; Wang, Z.; Xu, Y.; Huo, J.; Ren, Z.; Zhao, N.; Wang, X.; Li, J.; Liu, Q.; He, S. IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato. Plant Cell, 2020, 32(4), 1102-1123.
[http://dx.doi.org/10.1105/tpc.19.00641] [PMID: 32034034]
[15]
Li, J.; Zhang, K.; Meng, Y.; Hu, J.; Ding, M.; Bian, J.; Yan, M.; Han, J.; Zhou, M. Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor. Plant J., 2018, 95(3), 444-457.
[http://dx.doi.org/10.1111/tpj.13960] [PMID: 29752755]
[16]
Roekgaarden, C.; Caarls, L.; Vos, I.A.; Pieterse, C.M.; Van Wees, S.C. Ethylene: traffic controller on hormonal crossroads to defense. 2015, 169(4), 2371-2379.
[http://dx.doi.org/10.1104/pp.15.01020]
[17]
Zhu, X.; Qi, L.; Liu, X.; Cai, S.; Xu, H.; Huang, R.; Li, J.; Wei, X.; Zhang, Z. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol., 2014, 164(3), 1499-1514.
[http://dx.doi.org/10.1104/pp.113.229575] [PMID: 24424323]
[18]
Glazebrook, J.; Chen, W.; Estes, B.; Chang, H.S.; Nawrath, C.; Métraux, J.P.; Zhu, T.; Katagiri, F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J., 2003, 34(2), 217-228.
[http://dx.doi.org/10.1046/j.1365-313X.2003.01717.x] [PMID: 12694596]
[19]
Schenk, P.M.; Kazan, K.; Wilson, I.; Anderson, J.P.; Richmond, T.; Somerville, S.C.; Manners, J.M. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA, 2000, 97(21), 11655-11660.
[http://dx.doi.org/10.1073/pnas.97.21.11655] [PMID: 11027363]
[20]
Hart, C.M.; Nagy, F.; Meins, F.; Jr, A. 61 bp enhancer element of the tobacco beta-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Mol. Biol., 1993, 21(1), 121-131.
[http://dx.doi.org/10.1007/BF00039623] [PMID: 8425042]
[21]
Ohme-Takagi, M.; Shinshi, H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7(2), 173-182.
[http://dx.doi.org/10.1105/tpc.7.2.173] [PMID: 7756828]
[22]
Sato, F.; Kitajima, S.; Koyama, T.; Yamada, Y. Ethylene-induced gene expression of osmotin-like protein, a neutral isoform of tobacco PR-5, is mediated by the AGCCGCC cis-sequence. Plant Cell Physiol., 1996, 37(3), 249-255.
[http://dx.doi.org/10.1093/oxfordjournals.pcp.a028939] [PMID: 8673338]
[23]
Lorenzo, O.; Piqueras, R.; Sánchez-Serrano, J.J.; Solano, R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15(1), 165-178.
[http://dx.doi.org/10.1105/tpc.007468] [PMID: 12509529]
[24]
Brown, R.L.; Kazan, K.; McGrath, K.C.; Maclean, D.J.; Manners, J.M. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol., 2003, 132(2), 1020-1032.
[http://dx.doi.org/10.1104/pp.102.017814] [PMID: 12805630]
[25]
Thain, S.C.; Vandenbussche, F.; Laarhoven, L.J.J.; Dowson-Day, M.J.; Wang, Z-Y.; Tobin, E.M.; Harren, F.J.M.; Millar, A.J.; Van Der Straeten, D. Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol., 2004, 136(3), 3751-3761.
[http://dx.doi.org/10.1104/pp.104.042523] [PMID: 15516515]
[26]
Alazem, M.; Lin, N.S. Antiviral roles of abscisic acid in plants. Front. Plant Sci., 2017, 8, 1760.
[http://dx.doi.org/10.3389/fpls.2017.01760] [PMID: 29075279]
[27]
Schmidt, K.; Pflugmacher, M.; Klages, S.; Mäser, A.; Mock, A.; Stahl, D.J. Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus Cercosporabeticola supports the role of ABA as a repressor of plant defense in sugar beet. 2008, 9(5), 661-73.
[28]
Chen, L.; Zhang, L.; Li, D.; Wang, F.; Yu, D. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2013, 110(21), E1963-E1971.
[http://dx.doi.org/10.1073/pnas.1221347110] [PMID: 23650359]
[29]
Alazem, M.; Kim, K.H.; Lin, N.S. Effects of abscisic acid and salicylic acid on gene expression in the antiviral RNA silencing pathway in arabidopsis. Int. J. Mol. Sci., 2019, 20(10), 2538.
[http://dx.doi.org/10.3390/ijms20102538] [PMID: 31126102]
[30]
Kumudini, B.S.; Shetty, A.H.S. Association of lignification and callose deposition with host cultivar resistance and induced systemic resistance in pearl millet to Sclerospora graminicola. Australas. Plant Pathol., 2009, 31, 157-164.
[http://dx.doi.org/10.1071/AP02010]
[31]
Braga, M.R.; Claudia, M.; Young, M.; Dietrich, S.M.C.; Gottlieb, O.R. Phytoalexin induction in rubiaceae. J. Chem. Ecol., 1991, 17(6), 1079-1090.
[http://dx.doi.org/10.1007/BF01402935] [PMID: 24259169]
[32]
Smith, C.J. Accumulation of phytoalexins: defense mechanism and stimulus response system. New Phytol., 1996, 132(1), 1-45.
[http://dx.doi.org/10.1111/j.1469-8137.1996.tb04506.x]
[33]
Singh, R.; Chandrawat, K.S. Role of phytoalexins in plant disease resistance. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6(1), 125-129.
[http://dx.doi.org/10.20546/ijcmas.2017.601.016]
[34]
Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci., 2012, 17(2), 73-90.
[http://dx.doi.org/10.1016/j.tplants.2011.11.002] [PMID: 22209038]
[35]
Choi, C.; Hwang, S.H.; Fang, I.R.; Kwon, S.I.; Park, S.R.; Ahn, I.; Kim, J.B.; Hwang, D.J. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens. New Phytol., 2015, 208(3), 846-859.
[http://dx.doi.org/10.1111/nph.13516] [PMID: 26083148]
[36]
Rinerson, C.I.; Scully, E.D.; Palmer, N.A.; Donze-Reiner, T.; Rabara, R.C.; Tripathi, P.; Shen, Q.J.; Sattler, S.E.; Rohila, J.S.; Sarath, G.; Rushton, P.J. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics, 2015, 16, 912.
[http://dx.doi.org/10.1186/s12864-015-2057-4] [PMID: 26552372]
[37]
Kaur, A.; Pati, P.K.; Pati, A.M.; Nagpal, A.K. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One, 2017, 12(9), e0184523
[http://dx.doi.org/10.1371/journal.pone.0184523] [PMID: 28910327]
[38]
Jiang, L.; Wu, J.; Fan, S.; Li, W.; Dong, L.; Cheng, Q.; Xu, P.; Zhang, S. Isolation and characterization of a novel pathogenesis-related protein gene (GmPRP) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. PLoS One, 2015, 10(6), e0129932
[http://dx.doi.org/10.1371/journal.pone.0129932] [PMID: 26114301]
[39]
Lee, S.C.; Kim, D.S.; Kim, N.H.; Hwang, B.K. Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses. Plant Sci., 2007, 172(2), 236-245.
[http://dx.doi.org/10.1016/j.plantsci.2006.08.015]
[40]
Rushton, P.J.; Torres, J.T.; Parniske, M.; Wernert, P.; Hahlbrock, K.; Somssich, I.E. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J., 1996, 15(20), 5690-5700.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00953.x] [PMID: 8896462]
[41]
Arruda, R.L.; Paz, A.T.S.; Bara, M.T.F.; Côrtes, M.V.C.B.; Corsi de Filippi, M.V.; Cardoso da Conceição, E. An approach on phytoalexins: function, characterization and biosynthesis in plants of the family Poaceae. Cienc. Rural, Santa Maria, 2016, 46(7), 1206-1216.
[http://dx.doi.org/10.1590/0103-8478cr20151164]
[42]
Kojima, T.; Asakura, N.; Hasegawa, S.; Hirasawa, T.; Mizuno, Y.; Takemoto, D.; Katou, S. Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC Plant Biol., 2019, 19(1), 576.
[http://dx.doi.org/10.1186/s12870-019-2204-1] [PMID: 31864296]
[43]
Ren, D.; Liu, Y.; Yang, K.Y.; Han, L.; Mao, G.; Glazebrook, J.; Zhang, S. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2008, 105(14), 5638-5643.
[http://dx.doi.org/10.1073/pnas.0711301105] [PMID: 18378893]
[44]
Qiu, J.L.; Fiil, B.K.; Petersen, K.; Nielsen, H.B.; Botanga, C.J.; Thorgrimsen, S.; Palma, K.; Suarez-Rodriguez, M.C.; Sandbech-Clausen, S.; Lichota, J.; Brodersen, P.; Grasser, K.D.; Mattsson, O.; Glazebrook, J.; Mundy, J.; Petersen, M. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J., 2008, 27(16), 2214-2221.
[http://dx.doi.org/10.1038/emboj.2008.147]
[45]
Mao, G.; Meng, X.; Liu, Y.; Zheng, Z.; Chen, Z.; Zhang, S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 2011, 23(4), 1639-1653.
[http://dx.doi.org/10.1105/tpc.111.084996] [PMID: 21498677]
[46]
Eckardt, N.A. Induction of phytoalexin biosynthesis: WRKY33 is a target of MAPK signaling. Plant Cell, 2011, 23(4), 1190.
[http://dx.doi.org/10.1105/tpc.111.230413]
[47]
Fu, J.; Liu, Q.; Wang, C.; Liang, J.; Liu, L.; Wang, Q. ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. J. Exp. Bot., 2018, 69(3), 497-510.
[http://dx.doi.org/10.1093/jxb/erx436] [PMID: 29281032]
[48]
Fan, G.; Dong, Y.; Deng, M.; Zhao, Z.; Niu, S.; Xu, E. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int. J. Mol. Sci., 2014, 15(12), 23141-23162.
[http://dx.doi.org/10.3390/ijms151223141] [PMID: 25514414]
[49]
Lee, H.Y.; Byeon, Y.; Back, K. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J. Pineal Res., 2014, 57(3), 262-268.
[http://dx.doi.org/10.1111/jpi.12165] [PMID: 25099383]
[50]
Gao, S.; Ma, W.; Lyu, X.; Cao, X.; Yao, Y. Melatonin may increase disease resistance and flavonoid biosynthesis through effects on DNA methylation and gene expression in grape berries. BMC Plant Biol., 2020, 20(1), 231.
[http://dx.doi.org/10.1186/s12870-020-02445-w] [PMID: 32448301]
[51]
Giri, M.K.; Singh, N.; Banday, Z.Z.; Singh, V.; Ram, H.; Singh, D.; Chattopadhyay, S.; Nandi, A.K. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. Plant J., 2017, 91(5), 802-815.
[http://dx.doi.org/10.1111/tpj.13608] [PMID: 28622438]
[52]
Lee, S.C.; Kim, D.S.; Kim, N.H.; Byung Kook Hwang, B.K. Functional analysis of the promoter of the pepper pathogen-induced gene,CAPIP2, during bacterial infection and abiotic stresses. Plant Sci., 2007, 172(2), 236-245.
[http://dx.doi.org/10.1016/j.plantsci.2006.08.015]
[53]
Chattopadhyay, A.; Purohit, J.; Tiwari, K.K.; Deshmukh, R. Targeting transcription factors for plant disease resistance: shifting paradigm. Curr. Sci., 2019, 117(10), 1598-1607.
[http://dx.doi.org/10.18520/cs/v117/i10/1598-1607]
[54]
Zhang, Y.L.; Zhang, C.L.; Wang, G.L.; Wang, Y.X.; Qi, C.H.; Zhao, Q.; You, C.X.; Li, Y.Y.; Hao, Y.J. The R2R3 MYB transcription factor MdMYB30 modulates plantresistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biol., 2019, 19(1), 362.
[55]
Vos, I.A.; Verhage, A.; Watt, L.G.; Vlaardingerbroek, I.; Schuurink, R.C.; Pieterse, C.M.J.; Van Wees, C.M.S. Abscisic acid is essential for rewiring of jasmonic acid-dependent defenses during herbivory; BioRviv, 2019, p. 747345.
[http://dx.doi.org/10.1101/747345]
[56]
Müller, M.; Munné-Bosch, S. Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol., 2015, 169(1), 32-41.
[http://dx.doi.org/10.1104/pp.15.00677] [PMID: 26103991]
[57]
Kazan, K.; Manners, J.M. MYC2: the master in action. Mol. Plant, 2013, 6(3), 686-703.
[http://dx.doi.org/10.1093/mp/sss128] [PMID: 23142764]
[58]
Song, N.; Ma, L.; Wang, W.; Sun, H.; Wang, L.; Baldwin, I.T.; Wu, J. An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. J. Exp. Bot., 2019, 70(20), 5895-5908.
[http://dx.doi.org/10.1093/jxb/erz327] [PMID: 31294452]
[59]
Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci., 2010, 15(5), 247-258.
[http://dx.doi.org/10.1016/j.tplants.2010.02.006] [PMID: 20304701]
[60]
Fu, Z.Q.; Dong, X. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol., 2013, 64, 839-863.
[http://dx.doi.org/10.1146/annurev-arplant-042811-105606] [PMID: 23373699]
[61]
Turck, F.; Zhou, A.; Somssich, I.E. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley. Plant Cell, 2004, 16(10), 2573-2585.
[http://dx.doi.org/10.1105/tpc.104.024810] [PMID: 15367720]
[62]
Memelink, J. Regulation of gene expression by jasmonate hormones. Phytochemistry, 2009, 70(13-14), 1560-1570.
[http://dx.doi.org/10.1016/j.phytochem.2009.09.004] [PMID: 19796781]
[63]
Martini, N.; Egen, M.; Rüntz, I.; Strittmatter, G. Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection. Mol. Gen. Genet., 1993, 236(2-3), 179-186.
[http://dx.doi.org/10.1007/BF00277110] [PMID: 8437562]
[64]
Goossens, J.; Fernández-Calvo, P.; Schweizer, F.; Goossens, A. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol. Biol., 2016, 91(6), 673-689.
[http://dx.doi.org/10.1007/s11103-016-0480-9] [PMID: 27086135]
[65]
Andolfo, G.; Iovieno, P.; Ricciardi, L.; Lotti, C.; Filippone, E.; Pavan, S.; Ercolano, M.R. Evolutionary conservation of MLO gene promoter signatures. BMC Plant Biol., 2019, 19(1), 150.
[http://dx.doi.org/10.1186/s12870-019-1749-3] [PMID: 30995906]
[66]
Andolfo, G.; Ercolano, M.R. Plant innate immunity multicomponent model. Front. Plant Sci., 2015, 6, 987.
[http://dx.doi.org/10.3389/fpls.2015.00987]
[67]
Shokouhifar, F.; Bahrabadi, M.; Bagheri, A.; Mamarabadi, M. Transient expression analysis of synthetic promoters containing F and D cis-acting elements in response to Ascochyta rabiei and two plant defense hormones. AMB Express, 2019, 9(1), 195.
[http://dx.doi.org/10.1186/s13568-019-0919-x] [PMID: 31802269]
[68]
Yamamoto, S.; Suzuki, K.; Shinshi, H. Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J., 1999, 20(5), 571-579.
[http://dx.doi.org/10.1046/j.1365-313X.1999.00634.x] [PMID: 10652129]
[69]
Cardoso, M.I.; Meijer, A.H.; Rueb, S.; Machado, J.A.; Memelink, J.; Hoge, J.H. A promoter region that controls basal and elicitor-inducible expression levels of the NADPH: cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1. Mol. Gen. Genet., 1997, 256(6), 674-681.
[http://dx.doi.org/10.1007/PL00008617] [PMID: 9435792]
[70]
van de Rhee, M.D.; Lemmers, R.; Bol, J.F. Analysis of regulatory elements involved in stress-induced and organ-specific expression of tobacco acidic and basic beta-1,3-glucanase genes. Plant Mol. Biol., 1993, 21(3), 451-461.
[http://dx.doi.org/10.1007/BF00028803] [PMID: 8443340]
[71]
Livne, B.; Faktor, O.; Zeitoune, S.; Edelbaum, O.; Sela, I. TMV-induced expression of tobacco beta-glucanase promoter activity is mediated by a single,inverted, GCC motif. Plant Sci., 1997, 130, 159-169.
[http://dx.doi.org/10.1016/S0168-9452(97)00210-0]
[72]
Mac, A.; Krzymowska, M.; Barabasz, A.; Hennig, J. Transcriptional regulation of the gluB promoter during plant response to infection. Cell. Mol. Biol. Lett., 2004, 9(4B), 843-853.
[PMID: 15647801]
[73]
Hong, J.K.; Hwang, B.K. Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta, 2006, 223(3), 433-448.
[http://dx.doi.org/10.1007/s00425-005-0099-6] [PMID: 16151843]
[74]
Manners, J.M.; Penninckx, I.A.; Vermaere, K.; Kazan, K.; Brown, R.L.; Morgan, A.; Maclean, D.J.; Curtis, M.D.; Cammue, B.P.; Broekaert, W.F. The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol. Biol., 1998, 38(6), 1071-1080.
[http://dx.doi.org/10.1023/A:1006070413843] [PMID: 9869413]
[75]
Park, H.C.; Kim, M.L.; Kang, Y.H.; Jeon, J.M.; Yoo, J.H.; Kim, M.C.; Park, C.Y.; Jeong, J.C.; Moon, B.C.; Lee, J.H.; Yoon, H.W.; Lee, S.H.; Chung, W.S.; Lim, C.O.; Lee, S.Y.; Hong, J.C.; Cho, M.J. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol., 2004, 135(4), 2150-2161.
[http://dx.doi.org/10.1104/pp.104.041442] [PMID: 15310827]
[76]
Park, H.C.; Kim, M.L.; Kang, Y.H.; Jeong, J.C.; Cheong, M.S.; Choi, W.; Lee, S.Y.; Cho, M.J.; Kim, M.C.; Chung, W.S.; Yun, D.J. Functional analysis of the stress-inducible soybean calmodulin isoform-4 (GmCaM-4) promoter in transgenic tobacco plants. Mol. Cells, 2009, 27(4), 475-480.
[http://dx.doi.org/10.1007/s10059-009-0063-6] [PMID: 19390829]
[77]
Toquin, V.; Grausem, B.; Geoffroy, P.; Legrand, M. Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene: identification of promoter sequences involved in gene inducibility by various stimuli. Plant Mol. Biol., 2003, 52(3), 495-509.
[http://dx.doi.org/10.1023/A:1024810916909] [PMID: 12956522]
[78]
Sanseverino, W.; Ercolano, M.R. In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res. Notes, 2012, 5(1), 678.
[http://dx.doi.org/10.1186/1756-0500-5-678] [PMID: 23216678]
[79]
Sun, R.; Wang, S.; Ma, D.; Liu, C. Genome-wide analysis of LRR-RLK gene family in four Gossypium species and expression analysis during cotton development and stress responses. Genes (Basel), 2018, 9(12), 592.
[http://dx.doi.org/10.3390/genes9120592] [PMID: 30501109]
[80]
Abe, H.; Urao, T.; Ito, T.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15(1), 63-78.
[http://dx.doi.org/10.1105/tpc.006130] [PMID: 12509522]
[81]
Srivastava, V.K.; Raikwar, S.; Tuteja, N. Cloning and functional characterization of the promoter of PsSEOF1 gene from Pisum sativum under different stress conditions using Agrobacterium-mediated transient assay. Plant Signal. Behav., 2014, 9(9), e29626
[http://dx.doi.org/10.4161/psb.29626] [PMID: 25763698]
[82]
Sharma, M.; Bhatt, D. The circadian clock and defence signalling in plants. Mol. Plant Pathol., 2015, 16(2), 210-218.
[http://dx.doi.org/10.1111/mpp.12178] [PMID: 25081907]
[83]
Zhang, J.; Ren, Z.; Zhou, Y.; Ma, Z.; Ma, Y.; Hou, D.; Xu, Z.; Huang, X. NPR1 and Redox rhythmx: connections, between circadian clock and plant immunity. Int. J. Mol. Sci., 2019, 20(5), 1211.
[http://dx.doi.org/10.3390/ijms20051211] [PMID: 30857376]
[84]
Shahmuradov, I.A.; Gammerman, A.J.; Hancock, J.M.; Bramley, P.M.; Solovyev, V.V. PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 2003, 31(1), 114-117.
[http://dx.doi.org/10.1093/nar/gkg041] [PMID: 12519961]
[85]
Yamamoto, Y.Y.; Obokata, J. PPDB: a plant promoter database. Nucleic Acids Res., 2008, 36(Database issue), D977-D981.
[http://dx.doi.org/10.1007/978-1-4939-6658-5_18] [PMID: 17947329]
[86]
O’Connor, T.R.; Dyreson, C.; Wyrick, J.J. Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics, 2005, 21(24), 4411-4413.
[http://dx.doi.org/10.1093/bioinformatics/bti714] [PMID: 16223790]
[87]
Morris, R.T.; O’Connor, T.R.; Wyrick, J.J. Osiris: an integrated promoter database for Oryza sativa L. Bioinformatics, 2008, 24(24), 2915-2917.
[http://dx.doi.org/10.1093/bioinformatics/btn537] [PMID: 18922805]
[88]
Ali, S.; Kim, W-C. A fruitful decade using synthetic promoters in the improvement of transgenic plants. Front. Plant Sci., 2019, 10, 1433.
[http://dx.doi.org/10.3389/fpls.2019.01433] [PMID: 31737027]
[89]
Osakabe, Y.; Osakabe, K. Genome editing to improve abiotic stress responses in plants. Prog. Mol. Biol. Transl. Sci., 2017, 149, 99-109.
[http://dx.doi.org/10.1016/bs.pmbts.2017.03.007] [PMID: 28712503]
[90]
Ochola, S.; Huang, J.; Ali, H.; Shu, H.; Shen, D.; Qiu, M.; Wang, L.; Li, X.; Chen, H.; Kange, A.; Qutob, D.; Dong, S. Editing of an effector gene promoter sequence impacts plant-Phytophthora interaction. J. Integr. Plant Biol., 2019, 62(3), 378-392.
[http://dx.doi.org/10.1111/jipb.12883] [PMID: 31691466]
[91]
Oliva, R.; Ji, C.; Atienza-Grande, G.; Huguet-Tapia, J.C.; Perez-Quintero, A.; Li, T.; Eom, J.S.; Li, C.; Nguyen, H.; Liu, B.; Auguy, F.; Sciallano, C.; Luu, V.T.; Dossa, G.S.; Cunnac, S.; Schmidt, S.M.; Slamet-Loedin, I.H.; Vera Cruz, C.; Szurek, B.; Frommer, W.B.; White, F.F.; Yang, B. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol., 2019, 37(11), 1344-1350.
[http://dx.doi.org/10.1038/s41587-019-0267-z] [PMID: 31659337]
[92]
Liu, W.; Mazarei, M.; Rudis, M.R.; Fethe, M.H.; Stewart, C.N., Jr Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnol., 2011, 11, 108.
[http://dx.doi.org/10.1186/1472-6750-11-108] [PMID: 22093754]
[93]
Kálai, K.; Mészáros, A.; Dénes, F.; Balázs, E. Comparative study of constitutive and inducible promoters in tobacco. S. Afr. J. Bot., 2008, 74(2), 313-319.
[http://dx.doi.org/10.1016/j.sajb.2008.01.003]
[94]
Yokoyama, R.; Hirose, T.; Fujii, N.; Aspuria, E.T.; Kato, A.; Uchimiya, H. The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol. Gen. Genet., 1994, 244(1), 15-22.
[http://dx.doi.org/10.1007/BF00280182] [PMID: 8041357]
[95]
Pandolfini, T.; Molesini, B.; Avesani, L.; Spena, A.; Polverari, A. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotechnol., 2003, 3, 7.
[http://dx.doi.org/10.1186/1472-6750-3-7] [PMID: 12823862]
[96]
Boni, R.; Chauhan, H.; Hensel, G.; Roulin, A.; Sucher, J.; Kumlehn, J.; Brunner, S.; Krattinger, S.G.; Keller, B. Pathogen-inducible Ta-Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects. Plant Biotechnol. J., 2018, 16(1), 245-253.
[http://dx.doi.org/10.1111/pbi.12765] [PMID: 28561994]
[97]
Malnoy, M.; Venisse, J.S.; Reynoird, J.P.; Chevreau, E. Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta, 2003, 216(5), 802-814.
[http://dx.doi.org/10.1007/s00425-002-0932-0] [PMID: 12624768]
[98]
Swartzberg, D.; Kirshner, B.; Rav-David, D.; Elad, Y.; Granot, D. Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. Eur. J. Plant Pathol., 2008, 120, 289-297.
[http://dx.doi.org/10.1007/s10658-007-9217-6]
[99]
Yang, Q.; Grimmig, B.; Matern, U. Anthranilate N-hydroxycinnamoyl/benzoyltransferase gene from carnation: rapid elicitation of transcription and promoter analysis. Plant Mol. Biol., 1998, 38(6), 1201-1214.
[http://dx.doi.org/10.1023/A:1006003731919] [PMID: 9869425]
[100]
Kirsch, C.; Logemann, E.; Lippok, B.; Schmelzer, E.; Hahlbrock, K. A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J., 2001, 26(2), 217-227.
[http://dx.doi.org/10.1046/j.1365-313x.2001.01015.x] [PMID: 11389762]
[101]
van de Löcht, U.; Meier, I.; Hahlbrock, K.; Somssich, I.E.A.A. 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO J., 1990, 9(9), 2945-2950.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07486.x] [PMID: 2390976]
[102]
Eulgem, T.; Rushton, P.J.; Schmelzer, E.; Hahlbrock, K.; Somssich, I.E. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J., 1999, 18(17), 4689-4699.
[http://dx.doi.org/10.1093/emboj/18.17.4689] [PMID: 10469648]
[103]
Hennig, J.; Dewey, R.E.; Cutt, J.R.; Klessig, D.F. Pathogen, salicylic acid and developmental dependent expression of a beta-1,3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J., 1993, 4(3), 481-493.
[http://dx.doi.org/10.1046/j.1365-313X.1993.04030481.x] [PMID: 8220491]
[104]
Castresana, C.; de Carvalho, F.; Gheysen, G.; Habets, M.; Inzé, D.; Van Montagu, M. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene. Plant Cell, 1990, 2(12), 1131-1143.
[http://dx.doi.org/10.1105/tpc.2.12.1131] [PMID: 2152158]
[105]
Strompen, G.; Grüner, R.; Pfitzner, U.M. An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco. Plant Mol. Biol., 1998, 37(5), 871-883.
[http://dx.doi.org/10.1023/A:1006003916284] [PMID: 9678582]
[106]
Molina, A.; Diaz, I.; Vasil, I.K.; Carbonero, P.; García-Olmedo, F. Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol. Gen. Genet., 1996, 252(1-2), 162-168.
[http://dx.doi.org/10.1007/BF02173216] [PMID: 8804389]
[107]
Berna, A.; Bernier, F. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol. Biol., 1999, 39(3), 539-549.
[http://dx.doi.org/10.1023/A:1006123432157] [PMID: 10092181]
[108]
Ohl, S.; Hedrick, S.A.; Chory, J.; Lamb, C.J. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell, 1990, 2(9), 837-848.
[http://dx.doi.org/10.1105/tpc.2.9.837] [PMID: 2152131]
[109]
Mauch-Mani, B.; Slusarenko, A.J. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 1996, 8(2), 203-212.
[http://dx.doi.org/10.2307/3870265] [PMID: 12239383]
[110]
Choi, J.J.; Klosterman, S.J.; Hadwiger, L.A. A comparison of the effects of DNA-damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion, and cell death. Plant Physiol., 2001, 125(2), 752-762.
[http://dx.doi.org/10.1104/pp.125.2.752] [PMID: 11161032]
[111]
Park, H.C.; Kim, M.L.; Lee, S.M.; Bahk, J.D.; Yun, D.J.; Lim, C.O.; Hong, J.C.; Lee, S.Y.; Cho, M.J.; Chung, W.S. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter. Nucleic Acids Res., 2007, 35(11), 3612-3623.
[http://dx.doi.org/10.1093/nar/gkm273] [PMID: 17485478]
[112]
Choi, J.J.; Klosterman, S.J.; Hadwiger, L.A. A Promoter from Pea Gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance. Phytopathology, 2004, 94(6), 651-660.
[http://dx.doi.org/10.1094/PHYTO.2004.94.6.651] [PMID: 18943490]
[113]
Klosterman, S.J.; Choi, J.J.; Hadwiger, L.A. Analysis of pea HMG-I/Y expression suggests a role in defence gene regulation. Mol. Plant Pathol., 2003, 4(4), 249-258.
[http://dx.doi.org/10.1046/j.1364-3703.2003.00171.x] [PMID: 20569385]
[114]
Zhu, B.; Chen, T.H.H.; Li, P.H. Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol., 1995, 108(3), 929-937.
[http://dx.doi.org/10.1104/pp.108.3.929] [PMID: 7630973]
[115]
Evrard, A.; Meynard, D.; Guiderdoni, E.; Joudrier, P.; Gautier, M.F. The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice. Planta, 2007, 225(2), 287-300.
[http://dx.doi.org/10.1007/s00425-006-0347-4] [PMID: 16845527]
[116]
Wiley, P.R.; Tosi, P.; Evrard, A.; Lovegrove, A.; Jones, H.D.; Shewry, P.R. Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol. Biol., 2007, 64(1-2), 125-136.
[http://dx.doi.org/10.1007/s11103-007-9139-x] [PMID: 17294254]
[117]
Nakashima, K.; Tran, L.S.; Van Nguyen, D.; Fujita, M.; Maruyama, K.; Todaka, D.; Ito, Y.; Hayashi, N.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J., 2007, 51(4), 617-630.
[http://dx.doi.org/10.1111/j.1365-313X.2007.03168.x] [PMID: 17587305]
[118]
Mohan, R.; Bajar, A.M.; Kolattukudy, P.E. Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. Plant Mol. Biol., 1993, 21(2), 341-354.
[http://dx.doi.org/10.1007/BF00019949] [PMID: 7678769]
[119]
Bondino, H.G.; Valle, E.M. A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana. BMC Mol. Biol., 2009, 10, 95.
[http://dx.doi.org/10.1186/1471-2199-10-95] [PMID: 19835620]
[120]
Banerjee, J.; Sahoo, D.K.; Dey, N.; Houtz, R.L.; Maiti, I.B. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants. PLoS One, 2013, 8(11), e79622
[http://dx.doi.org/10.1371/journal.pone.0079622] [PMID: 24260266]
[121]
Hong, J.K.; Lee, S.C.; Hwang, B.K. Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses. Gene, 2005, 356, 169-180.
[http://dx.doi.org/10.1016/j.gene.2005.04.030] [PMID: 16005163]
[122]
Jung, H.W.; Lim, C.W.; Hwang, B.K. Isolation and functional analysis of a pepper lipid transfer protein III (CALTPIII) gene promoter during signaling to pathogen, abiotic and environmental stresses. Plant Sci.,, 2006, 170 (2), 258-266.
[http://dx.doi.org/10.1016/j.plantsci.2005.08.010]
[123]
Hahn, K.; Strittmatter, G. Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. Eur. J. Biochem., 1994, 226(2), 619-626.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb20088.x] [PMID: 8001577]
[124]
Malnoy, M.; Reynoird, J.P.; Borejsza-Wysocka, E.E.; Aldwinckle, H.S. Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus x domestica). Transgenic Res., 2006, 15(1), 83-93.
[http://dx.doi.org/10.1007/s11248-005-2943-7] [PMID: 16475012]
[125]
Barbosa-Mendes, J.M.; de Assis Alves Mourao Filho, F.; Filho, A.B.; Harakava, R.; Beer, S.V.; Mendes, B.M.J. Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci. Hortic. (Amsterdam), 2009, 122, 109-115.
[http://dx.doi.org/10.1016/j.scienta.2009.04.001]
[126]
Blume, B.; Grierson, D. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J., 1997, 12(4), 731-746.
[http://dx.doi.org/10.1046/j.1365-313X.1997.12040731.x] [PMID: 9375389]
[127]
Wiśniewska, A.; Dąbrowska-Bronk, J.; Szafrański, K.; Fudali, S.; Święcicka, M.; Czarny, M.; Wilkowska, A.; Morgiewicz, K.; Matusiak, J.; Sobczak, M.; Filipecki, M. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis. Transgenic Res., 2013, 22(3), 557-569.
[http://dx.doi.org/10.1007/s11248-012-9665-4] [PMID: 23129482]
[128]
Wang, X.; Replogle, A.; Davis, E.L.; Mitchum, M.G. The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding sites of heterologous plants. Mol. Plant Pathol., 2007, 8(4), 423-436.
[http://dx.doi.org/10.1111/j.1364-3703.2007.00403.x] [PMID: 20507511]
[129]
Leitner-Dagan, Y.; Ovadis, M.; Shklarman, E.; Elad, Y.; Rav David, D.; Vainstein, A. Expression and functional analyses of the plastid lipid-associated protein CHRC suggest its role in chromoplastogenesis and stress. Plant Physiol., 2006, 142(1), 233-244.
[http://dx.doi.org/10.1104/pp.106.082404] [PMID: 16815957]
[130]
Vishnevetsky, M.; Ovadis, M.; Zuker, A.; Vainstein, A. Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes. Plant J., 1999, 20(4), 423-431.
[http://dx.doi.org/10.1046/j.1365-313x.1999.00615.x] [PMID: 10607295]
[131]
Zhang, C.; Liu, L.; Wang, X.; Vossen, J.; Li, G.; Li, T.; Zheng, Z.; Gao, J.; Guo, Y.; Visser, R.G.; Li, J.; Bai, Y.; Du, Y. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theor. Appl. Genet., 2014, 127(6), 1353-1364.
[http://dx.doi.org/10.1007/s00122-014-2303-1] [PMID: 24756242]
[132]
Agius, F.; Amaya, I.; Botella, M.A.; Valpuesta, V. Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J. Exp. Bot., 2005, 56(409), 37-46.
[http://dx.doi.org/10.1093/jxb/eri004] [PMID: 15533885]
[133]
Enfissi, E.M.; Fraser, P.D.; Lois, L.M.; Boronat, A.; Schuch, W.; Bramley, P.M. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol. J., 2005, 3(1), 17-27.
[http://dx.doi.org/10.1111/j.1467-7652.2004.00091.x] [PMID: 17168896]
[134]
Langenkämper, G.; Manac’h, N.; Broin, M.; Cuiné, S.; Becuwe, N.; Kuntz, M.; Rey, P. Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J. Exp. Bot., 2001, 52(360), 1545-1554.
[http://dx.doi.org/10.1093/jexbot/52.360.1545] [PMID: 11457915]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 7
Year: 2020
Published on: 21 October, 2020
Page: [491 - 503]
Pages: 13
DOI: 10.2174/1389202921999200727213500

Article Metrics

PDF: 40
HTML: 3
EPUB: 1
PRC: 1