Recent Advances in the Sustainable Synthesis of Quinazolines Using Earth-Abundant First Row Transition Metals

Author(s): Sumera Zaib, Imtiaz Khan*

Journal Name: Current Organic Chemistry

Volume 24 , Issue 15 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Achieving challenging molecular diversity in contemporary chemical synthesis remains a formidable hurdle, particularly in the delivery of diversified bioactive heterocyclic pharmacophores for drug design and pharmaceutical applications. The coupling methods that combine a diverse range of readily accessible and commercially available pools of substrates under the action of earth-abundant first row transition metal catalysts have certainly matured into powerful tools, thus offering sustainable alternatives to revolutionize the organic synthesis. This minireview highlights the successful utilization of the catalytic ability of the first row transition metals (Mn, Fe, Ni, Cu) in the modular assembly of quinazoline heterocycle, ubiquitously present in numerous alkaloids, commercial medicines and is associated with a diverse range of pharmacological activities. The broad substrate scope and high functional group tolerance of the targeted methods were extensively explored, identifying the future strategic advances in the field. The investigation will also be exemplified with mechanistic studies as long as they are deemed necessary.

Keywords: Catalysis, first row tran7sition metals, annulation, heterocycles, quinazolines, structural diversity.

[1]
Zhang, T.Y. The evolving landscape of heterocycles in drugs and drug candidates. In: Advances in Heterocyclic Chemistry; Academic Press, 2017; Vol. 121, pp. 1-12.
[http://dx.doi.org/10.1016/bs.aihch.2016.05.001]
[2]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[3]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[4]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best-selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7, 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57] [PMID: 21647262]
[5]
Webb, M.E.; Marquet, A.; Mendel, R.R.; Rébeillé, F.; Smith, A.G. Elucidating biosynthetic pathways for vitamins and cofactors. Nat. Prod. Rep., 2007, 24(5), 988-1008.
[http://dx.doi.org/10.1039/b703105j] [PMID: 17898894]
[6]
Kim, J.; Movassaghi, M. Biogenetically inspired syntheses of alkaloid natural products. Chem. Soc. Rev., 2009, 38(11), 3035-3050.
[http://dx.doi.org/10.1039/b819925f] [PMID: 19847339]
[7]
Bagley, M.C.; Dale, J.W.; Merritt, E.A.; Xiong, X. Thiopeptide antibiotics. Chem. Rev., 2005, 105(2), 685-714.
[http://dx.doi.org/10.1021/cr0300441] [PMID: 15700961]
[8]
Khan, I.; Ali, S.; Hameed, S.; Rama, N.H.; Hussain, M.T.; Wadood, A.; Uddin, R.; Ul-Haq, Z.; Khan, A.; Ali, S.; Choudhary, M.I. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur. J. Med. Chem., 2010, 45(11), 5200-5207.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.034] [PMID: 20828889]
[9]
Khan, I.; Hanif, M.; Hussain, M.T.; Khan, A.A.; Aslam, M.A.S.; Rama, N.H.; Iqbal, J. Synthesis, acetylcholinesterase and alkaline phosphatase inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Aust. J. Chem., 2012, 65, 1413-1419.
[http://dx.doi.org/10.1071/CH12134]
[10]
Hanif, M.; Khan, I.; Rama, N.H.; Noreen, S.; Choudhary, M.I.; Jones, P.G.; Iqbal, M. Synthesis, crystal structure and beta-glucuronidase inhibition activity of some new hydrazinecarboxamides and their 1,2,4-triazole derivatives. Med. Chem. Res., 2012, 21, 3885-3896.
[http://dx.doi.org/10.1007/s00044-011-9929-1]
[11]
Ibrar, A.; Khan, I.; Abbas, N. Structurally diversified heterocycles and related privileged scaffolds as potential urease inhibitors: a brief overview. Arch. Pharm. (Weinheim), 2013, 346(6), 423-446.
[http://dx.doi.org/10.1002/ardp.201300041] [PMID: 23712847]
[12]
Khan, I.; Ibrar, A.; Abbas, N. Triazolothiadiazoles and triazolothiadiazines--biologically attractive scaffolds. Eur. J. Med. Chem., 2013, 63, 854-868.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.060] [PMID: 23603045]
[13]
Khan, I.; Ibrar, A.; Abbas, N. Oxadiazoles as privileged motifs for promising anticancer leads: recent advances and future prospects. Arch. Pharm. (Weinheim), 2014, 347(1), 1-20.
[http://dx.doi.org/10.1002/ardp.201300231] [PMID: 24265208]
[14]
Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
[15]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[16]
Khan, I.; Ibrar, A.; Zaib, S.; Ahmad, S.; Furtmann, N.; Hameed, S.; Simpson, J.; Bajorath, J.; Iqbal, J. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorg. Med. Chem., 2014, 22(21), 6163-6173.
[http://dx.doi.org/10.1016/j.bmc.2014.08.026] [PMID: 25257911]
[17]
Khan, I.; Zaib, S.; Ibrar, A.; Rama, N.H.; Simpson, J.; Iqbal, J. Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Eur. J. Med. Chem., 2014, 78, 167-177.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.046] [PMID: 24681981]
[18]
Khan, I.; Bakht, S.M.; Ibrar, A.; Abbas, S.; Hameed, S.; White, J.M.; Rana, U.A.; Zaib, S.; Shahid, M.; Iqbal, J. Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies. RSC Advances, 2015, 5, 21249-21267.
[http://dx.doi.org/10.1039/C5RA00906E]
[19]
Khan, I.; Hameed, S.; Al-Masoudi, N.A.; Abdul-Reda, N.A.; Simpson, J. New triazolothiadiazole and triazolothiadiazine derivatives as kinesin Eg5 and HIV inhibitors: synthesis, QSAR and modeling studies. Z. Naturforsch., 2015, 70, 47-58.
[http://dx.doi.org/10.1515/znb-2014-0162]
[20]
Kazmi, M.; Zaib, S.; Amjad, S.T.; Khan, I.; Ibrar, A.; Saeed, A.; Iqbal, J. Exploration of aroyl/heteroaroyl iminothiazolines featuring 2,4,5-trichlorophenyl moiety as a new class of potent, selective, and in vitro efficacious glucosidase inhibitors. Bioorg. Chem., 2017, 74, 134-144.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.012] [PMID: 28780150]
[21]
Abbas, N.; Zaib, S.; Bakht, S.M.; Ibrar, A.; Khan, I.; Batool, S.; Saeed, A.; Iqbal, J. Symmetrical aryl linked bis-iminothiazolidinones as new chemical entities for the inhibition of monoamine oxidases: synthesis, in vitro biological evaluation and molecular modelling analysis. Bioorg. Chem., 2017, 70, 17-26.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.004] [PMID: 27863747]
[22]
Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S.T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem., 2018, 77, 190-202.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.022] [PMID: 29421697]
[23]
Khan, N.A.; Khan, I.; Abid, S.M.A.; Zaib, S.; Ibrar, A.; Andleeb, H.; Hameed, S.; Iqbal, J. Quinolinic carboxylic acid derivatives as potential multi-target compounds for neurodegeneration: monoamine oxidase and cholinesterase inhibition. Med. Chem., 2018, 14(1), 74-85.
[http://dx.doi.org/10.2174/1573406413666170525125231] [PMID: 28545383]
[24]
Kazmi, M.; Khan, I.; Khan, A.; Halim, S.A.; Saeed, A.; Mehsud, S.; Al-Harrasi, A.; Ibrar, A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg. Med. Chem., 2019, 27(22), 115-123.
[http://dx.doi.org/10.1016/j.bmc.2019.115123] [PMID: 31623971]
[25]
Ibrar, A.; Kazmi, M.; Khan, A.; Halim, S.A.; Saeed, A.; Mehsud, S.; Al-Harrasi, A.; Khan, I. Robust therapeutic potential of carbazole-triazine hybrids as a new class of urease inhibitors: A distinctive combination of nitrogen-containing heterocycles. Bioorg. Chem., 2020, 95, 103479.
[http://dx.doi.org/10.1016/j.bioorg.2019.103479] [PMID: 31901517]
[26]
Smits, R.A.; Adami, M.; Istyastono, E.P.; Zuiderveld, O.P.; van Dam, C.M.E.; de Kanter, F.J.J.; Jongejan, A.; Coruzzi, G.; Leurs, R.; de Esch, I.J.P. Synthesis and QSAR of quinazoline sulfonamides as highly potent human histamine H4 receptor inverse agonists. J. Med. Chem., 2010, 53(6), 2390-2400.
[http://dx.doi.org/10.1021/jm901379s] [PMID: 20192225]
[27]
Ismail, M.A.H.; Barker, S.; Abou el-Ella, D.A.; Abouzid, K.A.M.; Toubar, R.A.; Todd, M.H. Design and synthesis of new tetrazolyl- and carboxy-biphenylylmethyl-quinazolin-4-one derivatives as angiotensin II AT1 receptor antagonists. J. Med. Chem., 2006, 49(5), 1526-1535.
[http://dx.doi.org/10.1021/jm050232e] [PMID: 16509571]
[28]
Verhaeghe, P.; Azas, N.; Gasquet, M.; Hutter, S.; Ducros, C.; Laget, M.; Rault, S.; Rathelot, P.; Vanelle, P. Synthesis and antiplasmodial activity of new 4-aryl-2-trichloromethylquinazolines. Bioorg. Med. Chem. Lett., 2008, 18(1), 396-401.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.027] [PMID: 17981462]
[29]
Kashaw, S.K.; Kashaw, V.; Mishra, P.; Jain, N.K.; Stables, J.P. Synthesis, anticonvulsant and CNS depressant activity of some new bioactive 1-(4-substituted-phenyl)-3-(4-oxo-2-phenyl/ethyl-4H-quinazolin-3-yl)-urea. Eur. J. Med. Chem., 2009, 44(11), 4335-4343.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.008] [PMID: 19674817]
[30]
Grover, G.; Kini, S.G. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2006, 41(2), 256-262.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.002] [PMID: 16260068]
[31]
Malamas, M.S.; Millen, J. Quinazolineacetic acids and related analogues as aldose reductase inhibitors. J. Med. Chem., 1991, 34(4), 1492-1503.
[http://dx.doi.org/10.1021/jm00108a038] [PMID: 1901912]
[32]
Giardinà, D.; Martarelli, D.; Sagratini, G.; Angeli, P.; Ballinari, D.; Gulini, U.; Melchiorre, C.; Poggesi, E.; Pompei, P. Doxazosin-related alpha1-adrenoceptor antagonists with prostate antitumor activity. J. Med. Chem., 2009, 52(15), 4951-4954.
[http://dx.doi.org/10.1021/jm8016046] [PMID: 19719240]
[33]
Shallal, H.M.; Russu, W.A. Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives. Eur. J. Med. Chem., 2011, 46(6), 2043-2057.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.057] [PMID: 21429632]
[34]
Decker, M. Novel inhibitors of acetyl- and butyrylcholinesterase derived from the alkaloids dehydroevodiamine and rutaecarpine. Eur. J. Med. Chem., 2005, 40(3), 305-313.
[http://dx.doi.org/10.1016/j.ejmech.2004.12.003] [PMID: 15725500]
[35]
Rosowsky, A.; Wright, J.E.; Vaidya, C.M.; Forsch, R.A. The effect of side-chain, para-aminobenzoyl region, and B-ring modifications on dihydrofolate reductase binding, influx via the reduced folate carrier, and cytotoxicity of the potent nonpolyglutamatable antifolate N(α)-(4-amino-4-deoxypteroyl)-N(δ)-hemiphthaloyl-L- ornithine. Pharmacol. Ther., 2000, 85(3), 191-205.
[http://dx.doi.org/10.1016/S0163-7258(99)00055-8] [PMID: 10739874]
[36]
Gangjee, A.; Kothare, M.; Kisliuk, R.L. The synthesis of novel nonclassical reversed bridge quinazoline antifolates as inhibitors of thymidylate synthase. J. Heterocycl. Chem., 2000, 37, 1097-1102.
[http://dx.doi.org/10.1002/jhet.5570370512]
[37]
Levitzki, A. Protein kinase inhibitors as a therapeutic modality. Acc. Chem. Res., 2003, 36(6), 462-469.
[http://dx.doi.org/10.1021/ar0201207] [PMID: 12809533]
[38]
Garofalo, A.; Goossens, L.; Lemoine, A.; Ravez, S.; Six, P.; Howsam, M.; Farce, A.; Depreux, P. [4-(6,7-Disubstituted quinazolin-4-ylamino)phenyl] carbamic acid esters: a novel series of dual EGFR/VEGFR-2 tyrosine kinase inhibitors. MedChemComm, 2011, 2, 65-72.
[http://dx.doi.org/10.1039/C0MD00183J]
[39]
Nakamura, H.; Horikoshi, R.; Usui, T.; Ban, H.S. Selective inhibition of EGFR and VEGFR2 tyrosine kinases controlled by a boronic acid substituent on 4-anilinoquinazolines. MedChemComm, 2010, 1, 282-286.
[http://dx.doi.org/10.1039/c0md00115e]
[40]
Li, R-D.; Zhang, X.; Li, Q.Y.; Ge, Z.M.; Li, R.T. Novel EGFR inhibitors prepared by combination of dithiocarbamic acid esters and 4-anilinoquinazolines. Bioorg. Med. Chem. Lett., 2011, 21(12), 3637-3640.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.096] [PMID: 21570843]
[41]
López, O.C.; García, A.C.; Núñez, M.C.; Kimatrai, M.; Rubiño, M.E.G.; Morales, F.; Pérez, V.G.; Campos, J.M. Novel substituted quinazolines for potent EGFR tyrosine kinase inhibitors. Curr. Med. Chem., 2011, 18(7), 943-963.
[http://dx.doi.org/10.2174/092986711794940824] [PMID: 21254978]
[42]
O’, Neil.; Maryadele, J.; Smith, M.; Heckelman, P.E. The Merck Index No. 7803, 13th ed.; Merck Publishing Group: Rahway, 2001.
[43]
Hong, B.; Ding, X.; Lia, H.; Zhang, J. Combination treatment of captopril and prazosin to treat patients with gestational hypertension. Exp. Ther. Med., 2018, 16(4), 3694-3702.
[http://dx.doi.org/10.3892/etm.2018.6604] [PMID: 30233728]
[44]
Mohri, S. Research and development of synthetic processes for pharmaceuticals: pursuit of rapid, inexpensive, and good processes. J. Synth. Org. Chem. Jpn., 2001, 59, 514-515.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.59.514]
[45]
Fry, D.W.; Kraker, A.J.; McMichael, A.; Ambroso, L.A.; Nelson, J.M.; Leopold, W.R.; Connors, R.W.; Bridges, A.J. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science, 1994, 265(5175), 1093-1095.
[http://dx.doi.org/10.1126/science.8066447] [PMID: 8066447]
[46]
Malecki, N.; Carato, P.; Rigo, B.; Goossens, J.F.; Houssin, R.; Bailly, C.; Hénichart, J.P. Synthesis of condensed quinolines and quinazolines as DNA ligands. Bioorg. Med. Chem., 2004, 12(3), 641-647.
[http://dx.doi.org/10.1016/j.bmc.2003.10.014] [PMID: 14738975]
[47]
Seo, H.N.; Choi, J.Y.; Choe, Y.J.; Kim, Y.; Rhim, H.; Lee, S.H.; Kim, J.; Joo, D.J.; Lee, J.Y. Discovery of potent T-type calcium channel blocker. Bioorg. Med. Chem. Lett., 2007, 17(21), 5740-5743.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.070] [PMID: 17869104]
[48]
Lewerenz, A.; Hentschel, S.; Vissiennon, Z.; Michael, S.; Nieber, K. A3 receptors in cortical neurons: Pharmacological aspects and neuroprotection during hypoxia. Drug Dev. Res., 2003, 58, 420-427.
[http://dx.doi.org/10.1002/ddr.10187]
[49]
Weibel, J-M.; Blanc, A.; Pale, P. Ag-mediated reactions: coupling and heterocyclization reactions. Chem. Rev., 2008, 108(8), 3149-3173.
[http://dx.doi.org/10.1021/cr078365q] [PMID: 18616324]
[50]
Fang, G.; Bi, X. Silver-catalysed reactions of alkynes: recent advances. Chem. Soc. Rev., 2015, 44(22), 8124-8173.
[http://dx.doi.org/10.1039/C5CS00027K] [PMID: 26222839]
[51]
Li, Z.; Brouwer, C.; He, C. Gold-catalyzed organic transformations. Chem. Rev., 2008, 108(8), 3239-3265.
[http://dx.doi.org/10.1021/cr068434l] [PMID: 18613729]
[52]
Corma, A.; Pérez, A.L.; Sabater, M.J. Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem. Rev., 2011, 111(3), 1657-1712.
[http://dx.doi.org/10.1021/cr100414u] [PMID: 21391565]
[53]
Krause, N.; Winter, C. Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. Chem. Rev., 2011, 111(3), 1994-2009.
[http://dx.doi.org/10.1021/cr1004088] [PMID: 21314182]
[54]
Hashmi, A.S.K. Gold-catalyzed organic reactions. Chem. Rev., 2007, 107(7), 3180-3211.
[http://dx.doi.org/10.1021/cr000436x] [PMID: 17580975]
[55]
Beletskaya, I.P.; Cheprakov, A.V. Copper in cross-coupling reactions: the post-Ullmann chemistry. Coord. Chem. Rev., 2004, 248, 2337-2364.
[http://dx.doi.org/10.1016/j.ccr.2004.09.014]
[56]
Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737]
[57]
Hilt, G.; Hess, W.; Treutwein, J. Cobalt-catalysed carbon-carbon bond-formation reactions. Synthesis, 2008, 2008(22), 3537-3562.
[http://dx.doi.org/10.1055/s-0028-1083210]
[58]
Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev., 2004, 104(12), 6217-6254.
[http://dx.doi.org/10.1021/cr040664h] [PMID: 15584700]
[59]
Díaz, D.D.; Miranda, P.O.; Padrón, J.I.; Martín, V.S. Recent uses of iron (III) chloride in organic synthesis. Curr. Org. Chem., 2006, 10, 457-476.
[http://dx.doi.org/10.2174/138527206776055330]
[60]
Bauer, E.B. Recent advances in iron catalysis in organic synthesis. Curr. Org. Chem., 2008, 12, 1341-1369.
[http://dx.doi.org/10.2174/138527208786241556]
[61]
Beccalli, E.M.; Broggini, G.; Martinelli, M.; Sottocornola, S.C-C. C-O, C-N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem. Rev., 2007, 107(11), 5318-5365.
[http://dx.doi.org/10.1021/cr068006f] [PMID: 17973536]
[62]
Trost, B.M.; Frederiksen, M.U.; Rudd, M.T. Ruthenium-catalyzed reactions--a treasure trove of atom-economic transformations. Angew. Chem. Int. Ed. Engl., 2005, 44(41), 6630-6666.
[http://dx.doi.org/10.1002/anie.200500136] [PMID: 16206300]
[63]
Arisawa, M.; Terada, Y.; Theeraladanon, C.; Takahashi, K.; Nakagawa, M.; Nishida, A. Development of novel reactions using ruthenium carbene catalyst and its application to novel methods for preparing nitrogen-containing heterocycles. J. Organomet. Chem., 2005, 690, 5398-5406.
[http://dx.doi.org/10.1016/j.jorganchem.2005.07.029]
[64]
Faller, J.; Parr, J. Lewis acid catalysis by ruthenium complexes. Curr. Org. Chem., 2006, 10, 151-163.
[http://dx.doi.org/10.2174/138527206775192889]
[65]
Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.005] [PMID: 24583357]
[66]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: the advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.084] [PMID: 25461317]
[67]
Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed, A. Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: an update on the development of synthetic methods and pharmacological diversification. Bioorg. Med. Chem., 2016, 24(11), 2361-2381.
[http://dx.doi.org/10.1016/j.bmc.2016.03.031] [PMID: 27112448]
[68]
Ugale, V.G.; Bari, S.B. Quinazolines: new horizons in anticonvulsant therapy. Eur. J. Med. Chem., 2014, 80, 447-501.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.072] [PMID: 24813877]
[69]
Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V.R.; Sulthana, M.T.; Narendhar, B. An overview of quinazolines: pharmacological significance and recent developments. Eur. J. Med. Chem., 2018, 151, 628-685.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.076] [PMID: 29656203]
[70]
Shagufta, A.; Ahmad, I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm, 2017, 8(5), 871-885.
[http://dx.doi.org/10.1039/C7MD00097A] [PMID: 30108803]
[71]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A. Arshia; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: a comparative patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28(4), 281-297.
[http://dx.doi.org/10.1080/13543776.2018.1432596] [PMID: 29368977]
[72]
Marzaro, G.; Guiotto, A.; Chilin, A. Quinazoline derivatives as potential anticancer agents: a patent review (2007 - 2010). Expert Opin. Ther. Pat., 2012, 22(3), 223-252.
[http://dx.doi.org/10.1517/13543776.2012.665876] [PMID: 22404097]
[73]
Ravez, S.; Castillo-Aguilera, O.; Depreux, P.; Goossens, L. Quinazoline derivatives as anticancer drugs: a patent review (2011 - present). Expert Opin. Ther. Pat., 2015, 25(7), 789-804.
[http://dx.doi.org/10.1517/13543776.2015.1039512] [PMID: 25910402]
[74]
Dumitrascu, F.; Popa, M.M. Pyrrolo[1,2-a]quinazolines. Synthesis and biological properties. ARKIVOC, 2014, 1, 428-452.
[http://dx.doi.org/10.3998/ark.5550190.p008.699]
[75]
Rahman, M.U.; Jeyabalan, G.; Saraswat, P.; Parveen, G.; Khan, S.; Yar, M.S. Quinazolines and anticancer activity: a current perspectives. Synth. Commun., 2017, 47, 379-408.
[http://dx.doi.org/10.1080/00397911.2016.1269926]
[76]
Li, B.; Li, C.; Tian, L.; Zhou, J.; Huang, J.; Meng, X. Heterogeneous oxidative synthesis of quinazolines over OMS-2 under ligand-free conditions. New J. Chem., 2018, 42, 15985-15989.
[http://dx.doi.org/10.1039/C8NJ02551G]
[77]
Suib, S.L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc. Chem. Res., 2008, 41(4), 479-487.
[http://dx.doi.org/10.1021/ar7001667] [PMID: 18232663]
[78]
Suib, S.L. Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials. J. Mater. Chem., 2008, 18, 1623-1631.
[http://dx.doi.org/10.1039/b714966m]
[79]
Shen, Y.F.; Zerger, R.P.; Deguzman, R.N.; Suib, S.L.; McCurdy, L.; Potter, D.I.; O’young, C.L. Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science, 1993, 260(5107), 511-515.
[http://dx.doi.org/10.1126/science.260.5107.511] [PMID: 17830429]
[80]
Son, Y-C.; Makwana, V.D.; Howell, A.R.; Suib, S.L. Efficient, catalytic, aerobic oxidation of alcohols with octahedral molecular sieves. Angew. Chem. Int. Ed. Engl., 2001, 40(22), 4280-4283.
[http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4280:AID-ANIE4280>3.0.CO;2-L] [PMID: 29712111]
[81]
Uematsu, T.; Miyamoto, Y.; Ogasawara, Y.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. Molybdenum-doped α-MnO2 as an efficient reusable heterogeneous catalyst for aerobic sulfide oxygenation. Catal. Sci. Technol., 2016, 6, 222-233.
[http://dx.doi.org/10.1039/C5CY01552A]
[82]
Wang, M.; Ma, J.; Yu, M.; Zhang, Z.; Wang, F. Oxidative coupling of anilines to azobenzenes using heterogeneous manganese oxide catalysts. Catal. Sci. Technol., 2016, 6, 1940-1945.
[http://dx.doi.org/10.1039/C5CY01015B]
[83]
Meng, X.; Zhang, J.; Chen, G.; Chen, B.; Zhao, P. Heterogeneous synthesis of 1,4-enediones and 1,4-diketones with manganese oxide molecular sieves OMS-2 as a recyclable catalyst. Catal. Commun., 2015, 69, 239-242.
[http://dx.doi.org/10.1016/j.catcom.2015.07.003]
[84]
Jin, X.; Yamaguchi, K.; Mizuno, N. Aerobic cross-dehydrogenative coupling of terminal alkynes and tertiary amines by a combined catalyst of Zn2+ and OMS-2. RSC Advances, 2014, 4, 34712-34715.
[http://dx.doi.org/10.1039/C4RA05105J]
[85]
Yamaguchi, K.; Kobayashi, H.; Wang, Y.; Oishi, T.; Ogasawara, Y.; Mizuno, N. Green oxidative synthesis of primary amides from primary alcohols or aldehydes catalyzed by a cryptomelane-type manganese oxide-based octahedral molecular sieve, OMS-2. Catal. Sci. Technol., 2013, 3, 318-327.
[http://dx.doi.org/10.1039/C2CY20178J]
[86]
Yamaguchi, K.; Wang, Y.; Mizuno, N. A widely applicable regioselective aerobic α‐cyanation of tertiary amines heterogeneously catalyzed by manganese oxides. ChemCatChem, 2013, 5, 2835-2838.
[http://dx.doi.org/10.1002/cctc.201300477]
[87]
Wang, Y.; Yamaguchi, K.; Mizuno, N. Manganese oxide promoted liquid-phase aerobic oxidative amidation of methylarenes to monoamides using ammonia surrogates. Angew. Chem. Int. Ed. Engl., 2012, 51(29), 7250-7253.
[http://dx.doi.org/10.1002/anie.201203098] [PMID: 22689227]
[88]
Yamaguchi, K.; Kobayashi, H.; Oishi, T.; Mizuno, N. Heterogeneously catalyzed synthesis of primary amides directly from primary alcohols and aqueous ammonia. Angew. Chem. Int. Ed. Engl., 2012, 51(2), 544-547.
[http://dx.doi.org/10.1002/anie.201107110] [PMID: 22109964]
[89]
Najafpour, M.M.; Holynska, M.; Salimi, S. Applications of the “nano to bulk” Mn oxides: Mn oxide as a Swiss army knife. Coord. Chem. Rev., 2015, 285, 65-75.
[http://dx.doi.org/10.1016/j.ccr.2014.11.001]
[90]
Wei, M.; Ruan, Y.; Luo, S.; Li, X.; Xu, A.; Zhang, P. The facile synthesis of a magnetic OMS-2 catalyst for decomposition of organic dyes in aqueous solution with peroxymonosulfate. New J. Chem., 2015, 39, 6395-6403.
[http://dx.doi.org/10.1039/C5NJ00798D]
[91]
Ma, J.; Wang, C.; He, H. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl. Catal. B, 2017, 201, 503-510.
[http://dx.doi.org/10.1016/j.apcatb.2016.08.050]
[92]
Luo, S.; Duan, L.; Sun, B.; Wei, M.; Li, X.; Xu, A. Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Appl. Catal. B, 2015, 164, 92-99.
[http://dx.doi.org/10.1016/j.apcatb.2014.09.008]
[93]
Meng, X.; Wang, Y.; Chen, B.; Chen, G.; Jing, Z.; Zhao, P. OMS-2/H2O2/Dimethyl carbonate: an environmentally-friendly heterogeneous catalytic system for the oxidative synthesis of benzoxazoles at room temperature. Org. Process Res. Dev., 2017, 21, 2018-2024.
[http://dx.doi.org/10.1021/acs.oprd.7b00315]
[94]
Meng, X.; Wang, Y.; Wang, Y.; Chen, B.; Jing, Z.; Chen, G.; Zhao, P. OMS-2-Supported Cu hydroxide-catalyzed benzoxazoles synthesis from catechols and amines via domino oxidation process at room temperature. J. Org. Chem., 2017, 82(13), 6922-6931.
[http://dx.doi.org/10.1021/acs.joc.7b01119] [PMID: 28597654]
[95]
Meng, X.; Zhang, J.; Chen, B.; Jing, Z.; Zhao, P. Copper supported on H+-modified manganese oxide octahedral molecular sieves (Cu/H-OMS-2) as a heterogeneous biomimetic catalyst for the synthesis of imidazo[1,2-a]-N-heterocycles. Catal. Sci. Technol., 2016, 6, 890-896.
[http://dx.doi.org/10.1039/C5CY01433F]
[96]
Meng, X.; Yu, C.; Chen, G.; Zhao, P. Heterogeneous biomimetic aerobic synthesis of 3-iodoimidazo[1,2-a]pyridines via CuOx/OMS-2-catalyzed tandem cyclization/iodination and their late-stage functionalization. Catal. Sci. Technol., 2015, 5, 372-379.
[http://dx.doi.org/10.1039/C4CY00919C]
[97]
Meng, X.; Wang, Y.; Yu, C.; Zhao, P. Heterogeneously copper-catalyzed oxidative synthesis of imidazo[1,2-a]pyridines using 2-aminopyridines and ketones under ligand- and additive-free conditions. RSC Advances, 2014, 4, 27301-27307.
[http://dx.doi.org/10.1039/c4ra03299c]
[98]
Meng, X.; Yu, C.; Zhao, P. An efficient and recyclable heterogeneous catalytic system for the synthesis of 1,2,4-triazoles using air as the oxidant. RSC Advances, 2014, 4, 8612-8616.
[http://dx.doi.org/10.1039/c3ra47029f]
[99]
Wang, Y.; Meng, X.; Chen, G.; Zhao, P. Direct synthesis of quinazolinones by heterogeneous Cu(OH)X/OMS-2 catalyst under oxygen. Catal. Commun., 2018, 104, 106-111.
[http://dx.doi.org/10.1016/j.catcom.2017.10.024]
[100]
Vaghei, R.G.; Alavinia, S.; Sarmast, N. Fe3O4@SiO2@propyl‐ANDSA: a new catalyst for the synthesis of tetrazoloquinazolines. Appl. Organomet. Chem., 2018, 32, e4038.
[http://dx.doi.org/10.1002/aoc.4038]
[101]
Hassankhani, A.; Mosaddegh, E. An efficient synthesis of tetrahydrotetrazolo[1,5-a]quinazoline derivatives by a three-component reaction of 5-aminotetrazole, arylaldehydes, and dimedone. Sci. Iran., 2015, 22, 942-947.
[102]
Zeng, L.Y.; Cai, C. Iodine catalyzed one-pot multicomponent synthesis of a library of compounds containing tetrazolo[1,5-a]pyrimidine core. J. Comb. Chem., 2010, 12(1), 35-40.
[http://dx.doi.org/10.1021/cc9000983] [PMID: 19950908]
[103]
Eidi, E.; Kassaee, M.Z.; Nasresfahani, M.Z.; Cummings, P.T. Synthesis of quinazolines over recyclable Fe3O4@SiO2‐PrNH2‐Fe3+ nanoparticles: a green, efficient, and solvent‐free protocol. Appl. Organomet. Chem., 2018, 32, e4573.
[http://dx.doi.org/10.1002/aoc.4573]
[104]
Chen, C-Y.; He, F.; Tang, G.; Yuan, H.; Li, N.; Wang, J.; Faessler, R. Synthesis of quinazolines via an iron-catalyzed oxidative amination of N-H ketimines. J. Org. Chem., 2018, 83(4), 2395-2401.
[http://dx.doi.org/10.1021/acs.joc.7b02943] [PMID: 29341614]
[105]
Gopalaiah, K.; Tiwarip, A.; Choudharyp, R.; Mahiya, K. Straightforward access to 3,4‐dihydro‐2H‐1,2,4‐benzothiadiazine 1,1‐dioxides and quinazolines via iron‐catalyzed aerobic oxidative condensation of amines. ChemistrySelect, 2019, 4, 5200-5205.
[http://dx.doi.org/10.1002/slct.201900850]
[106]
Wang, Z.; Chen, C.; Wang, Z.; Weng, J.; Wang, X.; Ma, J.; Sun, L. Synthesis method for medical intermediate quinazoline derivative. CN105153045A, September 25,. 2015.
[107]
Giordani, A.; Mandelli, S.; Verpilio, I.; Zanzola, S.; Tarchino, F.; Caselli, G.; Piepoli, T.; Mazzari, S.; Makovec, F.; Rovati, L.C. 6-1H-imidazoquinazoline and quinolines derivatives, new potent analgesics and antiinflammatory agents. WO2008014822, A1, Februray 02,. 2009.
[108]
Giordani, A.; Lanza, M.; Caselli, G.; Mandelli, S.; Zanzola, S.; Makovec, F.; Lucio, C. 6-1h-imidazo-quinazoline and quinolines derivatives, new mao inhibitors and imidazoline receptor ligands. WO2009152868, A1. December 23,. 2009.
[109]
Parua, S.; Sikari, R.; Sinha, S.; Chakraborty, G.; Mondal, R.; Paul, N.D. Accessing polysubstituted quinazolines via nickel catalyzed acceptorless dehydrogenative coupling. J. Org. Chem., 2018, 83(18), 11154-11166.
[http://dx.doi.org/10.1021/acs.joc.8b01479] [PMID: 30091595]
[110]
Parua, S.; Das, S.; Sikari, R.; Sinha, S.; Paul, N.D. One-pot cascade synthesis of quinazolin-4(3H)-ones via nickel-catalyzed dehydrogenative coupling of o-aminobenzamides with alcohols. J. Org. Chem., 2017, 82(14), 7165-7175.
[http://dx.doi.org/10.1021/acs.joc.7b00643] [PMID: 28653839]
[111]
Parua, S.; Sikari, R.; Sinha, S.; Das, S.; Chakraborty, G.; Paul, N.D. A nickel catalyzed acceptorless dehydrogenative approach to quinolines. Org. Biomol. Chem., 2018, 16(2), 274-284.
[http://dx.doi.org/10.1039/C7OB02670F] [PMID: 29242865]
[112]
Chakraborty, G.; Sikari, R.; Das, S.; Mondal, R.; Sinha, S.; Banerjee, S.; Paul, N.D. Dehydrogenative synthesis of quinolines, 2-aminoquinolines, and quinazolines using singlet diradical Ni(II)-catalysts. J. Org. Chem., 2019, 84(5), 2626-2641.
[http://dx.doi.org/10.1021/acs.joc.8b03070] [PMID: 30685972]
[113]
Stiefel, E.I.; Waters, J.H.; Billig, E.; Gray, H.B. The myth of nickel(III) and nickel(IV) in planar complexes. J. Am. Chem. Soc., 1965, 87, 3016-3017.
[http://dx.doi.org/10.1021/ja01091a047]
[114]
Chaudhuri, P.; Verani, C.N.; Bill, E.; Bothe, E.; Weyhermüller, T.; Wieghardt, K. Electronic structure of bis(o-iminobenzosemiquinonato)metal complexes (Cu, Ni, Pd). The art of establishing physical oxidation states in transition-metal complexes containing radical ligands. J. Am. Chem. Soc., 2001, 123(10), 2213-2223.
[http://dx.doi.org/10.1021/ja003831d] [PMID: 11456867]
[115]
Sikari, R.; Sinha, S.; Jash, U.; Das, S.; Brandão, P.; de Bruin, B.; Paul, N.D. Deprotonation induced ligand oxidation in a Ni(II) complex of a redox noninnocent N(1)-(2-aminophenyl)benzene-1,2-diamine and its use in catalytic alcohol oxidation. Inorg. Chem., 2016, 55(12), 6114-6123.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00646] [PMID: 27267427]
[116]
Sikari, R.; Sinha, S.; Chakraborty, G.; Das, S.; van Leest, N.P.; Paul, N.D. C−N Cross‐coupling reactions under mild conditions using singlet di‐radical nickel(II)‐complexes as catalyst: N‐arylation and quinazoline synthesis. Adv. Synth. Catal., 2019, 361, 4342-4353.
[http://dx.doi.org/10.1002/adsc.201900545]
[117]
Wang, C.; Li, S.; Liu, H.; Jiang, Y.; Fu, H. Copper-catalyzed synthesis of quinazoline derivatives via Ullmann-type coupling and aerobic oxidation. J. Org. Chem., 2010, 75(22), 7936-7938.
[http://dx.doi.org/10.1021/jo101685d] [PMID: 20964407]
[118]
McGowan, M.A.; McAvoy, C.Z.; Buchwald, S.L. Palladium-catalyzed N-monoarylation of amidines and a one-pot synthesis of quinazoline derivatives. Org. Lett., 2012, 14(14), 3800-3803.
[http://dx.doi.org/10.1021/ol301700y] [PMID: 22765354]
[119]
Malakar, C.C.; Baskakova, A.; Conrad, J.; Beifuss, U. Copper-catalyzed synthesis of quinazolines in water starting from o-bromobenzylbromides and benzamidines. Chemistry, 2012, 18(29), 8882-8885.
[http://dx.doi.org/10.1002/chem.201200583] [PMID: 22730204]
[120]
Song, T.; Ren, P.; Ma, Z.; Xiao, J.; Yang, Y. Highly dispersed single-phase Ni2P nanoparticles on N,P-codoped porous carbon for efficient synthesis of N-heterocycles. ACS Sustain. Chem. Eng., 2020, 8, 267-277.
[http://dx.doi.org/10.1021/acssuschemeng.9b05298]
[121]
Siddiki, S.M.A.H.; Kon, K.; Touchy, A.S.; Shimizu, K-I. Direct synthesis of quinazolinones by acceptorless dehydrogenative coupling of o-aminobenzamide and alcohols by heterogeneous Pt catalysts. Catal. Sci. Technol., 2014, 4, 1716-1719.
[http://dx.doi.org/10.1039/C4CY00092G]
[122]
Guan, Q.; Sun, Q.; Wen, L.; Zha, Z.; Yang, Y.; Wang, Z. The synthesis of benzimidazoles via a recycled palladium catalysed hydrogen transfer under mild conditions. Org. Biomol. Chem., 2018, 16(12), 2088-2096.
[http://dx.doi.org/10.1039/C8OB00323H] [PMID: 29508876]
[123]
Bera, A.; Sk, M.; Singh, K.; Banerjee, D. Nickel-catalysed dehydrogenative coupling of aromatic diamines with alcohols: selective synthesis of substituted benzimidazoles and quinoxalines. Chem. Commun. (Camb.), 2019, 55(42), 5958-5961.
[http://dx.doi.org/10.1039/C9CC02319D] [PMID: 31050346]
[124]
Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper(II)-catalyzed oxidative cross-coupling of anilines, primary alkyl amines, and sodium azide using TBHP: a route to 2-substituted benzimidazoles. J. Org. Chem., 2016, 81(8), 3227-3234.
[http://dx.doi.org/10.1021/acs.joc.6b00186] [PMID: 26991254]
[125]
Liang, E.; Wu, Y.; Chen, J.; Xiong, W.; Zhao, J.; Yao, X.; Tang, X. Copper-catalyzed aerobic oxidative cyclization protocol for the synthesis of quinazolines via amination of C(sp3)-H bonds of methylazaarenes. Tetrahedron, 2019. 75130783.
[http://dx.doi.org/10.1016/j.tet.2019.130783]
[126]
Dai, C.; Deng, S.; Zhu, Q.; Tang, X. Synthesis of pyrrolo[1,2-α]quinoxalines via copper or iron-catalyzed aerobic oxidative carboamination of sp3C–H bonds. RSC Advances, 2017, 7, 44132-44135.
[http://dx.doi.org/10.1039/C7RA09214H]
[127]
Liang, E.; Wang, J.; Wu, Y.; Huang, L.; Yao, X.; Tang, X. Direct alkenylation of 2‐methylquinolines with aldehydes through synergistic catalysis of 1,3‐dimethylbarbituric acid and HOAc. Adv. Synth. Catal., 2019, 361, 3619-3623.
[http://dx.doi.org/10.1002/adsc.201900351]
[128]
Chen, D.; Huang, L.; Yang, J.; Ma, J.; Zheng, Y.; Luo, Y.; Shen, J.; Wu, C.; Feng, X. Copper-catalyzed C–N coupling/C–H functionalization: a tandem approach to azole-fused quinazoline derivatives. Tetrahedron Lett., 2018, 59, 2005-2009.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.020]
[129]
Chen, D.; Shen, G.; Bao, W. An efficient cascade synthesis of various 2H-1,4-benzoxazin-3-(4H)-ones from o-halophenols and 2-halo-amides catalyzed by CuI. Org. Biomol. Chem., 2009, 7(19), 4067-4073.
[http://dx.doi.org/10.1039/b906210f] [PMID: 19763313]
[130]
Chen, D.; Wang, Z.J.; Bao, W. Copper-catalyzed cascade syntheses of 2H-benzo[b][1,4]thiazin-3(4H)-ones and quinoxalin-2(1H)-ones through capturing S and N atom respectively from AcSH and TsNH(2). J. Org. Chem., 2010, 75(16), 5768-5771.
[http://dx.doi.org/10.1021/jo101253a] [PMID: 20666413]
[131]
Chen, D.B.; Bao, W.L. An efficient domino synthesis of quinoxalin‐2(1H)‐ones via an SNAr/coupling/demesylation reaction catalyzed by copper(I) as key step. Adv. Synth. Catal., 2010, 352, 955-960.
[http://dx.doi.org/10.1002/adsc.200900859]
[132]
Sang, P.; Yu, M.; Tu, H.; Zou, J.; Zhang, Y. Highly regioselective synthesis of fused seven-membered rings through copper-catalyzed cross-coupling. Chem. Commun. (Camb.), 2013, 49(7), 701-703.
[http://dx.doi.org/10.1039/C2CC37891D] [PMID: 23223387]
[133]
Nandwana, N.K.; Singh, R.P.; Patel, O.P.S.; Dhiman, S.; Saini, H.K.; Jha, P.N.; Kumar, A. Design and synthesis of imidazo/benzimidazo[1,2-c]quinazoline derivatives and evaluation of their antimicrobial activity. ACS Omega, 2018, 3(11), 16338-16346.
[http://dx.doi.org/10.1021/acsomega.8b01592] [PMID: 31458269]
[134]
Yoo, J.M.; Dao, P.D.Q.; Cho, C.S. Copper‐catalyzed C‒N coupling and cyclization of 2‐(2‐bromophenyl)‐1H‐indoles with primary amides leading to indolo[1,2‐c]quinazolines. Bull. Korean Chem. Soc., 2018, 39, 1105-1108.
[http://dx.doi.org/10.1002/bkcs.11545]
[135]
Rohini, R.; Shanker, K.; Reddy, P.M.; Sekhar, V.C.; Ravinder, V. 6-substituted indolo[1,2-c]quinazolines as new antimicrobial agents. Arch. Pharm. (Weinheim), 2009, 342(9), 533-540.
[http://dx.doi.org/10.1002/ardp.200900068] [PMID: 19598289]
[136]
Rohini, R.; Muralidhar Reddy, P.; Shanker, K.; Hu, A.; Ravinder, V. Antimicrobial study of newly synthesized 6-substituted indolo[1,2-c]quinazolines. Eur. J. Med. Chem., 2010, 45(3), 1200-1205.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.038] [PMID: 20005020]
[137]
Hao, W-J.; Wang, J-Q.; Xu, X-P.; Zhang, S-L.; Wang, S-Y.; Ji, S-J. I2/O2-promoted domino reactions of isatins or 3-hydroxyindolin-2-one derivatives with enaminones. J. Org. Chem., 2013, 78(24), 12362-12373.
[http://dx.doi.org/10.1021/jo401773j] [PMID: 24295532]
[138]
Wang, X.; Wang, S-Y.; Ji, S-J. Isocyanide-based multicomponent reactions: catalyst-free stereoselective construction of polycyclic spiroindolines. Org. Lett., 2013, 15(8), 1954-1957.
[http://dx.doi.org/10.1021/ol400606c] [PMID: 23565712]
[139]
Hao, W-J.; Wang, S-Y.; Ji, S-J. Iodine-catalyzed cascade formal [3+3] cycloaddition reaction of indolyl alcohol derivatives with enaminones: constructions of functionalized spirodihydrocarbolines. ACS Catal., 2013, 3, 2501-2504.
[http://dx.doi.org/10.1021/cs400703u]
[140]
Zi, Y.; Cai, Z-J.; Wang, S-Y.; Ji, S-J. Synthesis of isatins by I2/TBHP mediated oxidation of indoles. Org. Lett., 2014, 16(11), 3094-3097.
[http://dx.doi.org/10.1021/ol501203q] [PMID: 24850466]
[141]
Xu, M-M.; Cao, W-B.; Xu, X-P.; Ji, S-J. Efficient synthesis of 2-arylquinazolin-4-amines via a copper-catalyzed diazidation and ring expansion cascade of 2-arylindoles. Chem. Commun. (Camb.), 2018, 54(89), 12602-12605.
[http://dx.doi.org/10.1039/C8CC07721E] [PMID: 30346460]
[142]
Zhang, H.; Pu, W.; Xiong, T.; Li, Y.; Zhou, X.; Sun, K.; Liu, Q.; Zhang, Q. Copper-catalyzed intermolecular aminocyanation and diamination of alkenes. Angew. Chem. Int. Ed. Engl., 2013, 52(9), 2529-2533.
[http://dx.doi.org/10.1002/anie.201209142] [PMID: 23355412]
[143]
Zhou, H.; Jian, W.; Qian, B.; Ye, C.; Li, D.; Zhou, J.; Bao, H. Copper-catalyzed ligand-free diazidation of olefins with TMSN3 in CH3CN or in H2O. Org. Lett., 2017, 19(22), 6120-6123.
[http://dx.doi.org/10.1021/acs.orglett.7b02982] [PMID: 29090941]
[144]
Ouyang, X-H.; Song, R-J.; Liu, Y.; Hu, M.; Li, J-H. Copper-catalyzed radical [2 + 2 + 1] annulation of benzene-linked 1,n-enynes with azide: fused pyrroline compounds. Org. Lett., 2015, 17(24), 6038-6041.
[http://dx.doi.org/10.1021/acs.orglett.5b03040] [PMID: 26645949]
[145]
Zhang, Y.; Dong, X.; Wu, Y.; Li, G.; Lu, H. Visible-light-induced intramolecular C(sp2)-H amination and aziridination of azidoformates via a triplet nitrene pathway. Org. Lett., 2018, 20(16), 4838-4842.
[http://dx.doi.org/10.1021/acs.orglett.8b01980] [PMID: 30091932]
[146]
Ning, Y.; Ji, Q.; Liao, P.; Anderson, E.A.; Bi, X. silver-catalyzed stereoselective aminosulfonylation of alkynes. Angew. Chem. Int. Ed. Engl., 2017, 56(44), 13805-13808.
[http://dx.doi.org/10.1002/anie.201705122] [PMID: 28627090]
[147]
Cao, G-J.; Chen, Z-K.; Song, J-Y.; Xu, J-F.; Miao, M-Z.; Ren, H-J. Oxidant‐mediated nitrogenation and recyclization of imidazo[1,2‐α]pyridines with sodium azide: synthesis of 4H‐pyrido[1,2‐α][1,3,5]triazin‐4‐ones. Adv. Synth. Catal., 2018, 360, 881-886.
[http://dx.doi.org/10.1002/adsc.201701480]
[148]
Potuganti, G.R.; Indukuri, D.R.; Alla, M. An efficient one-pot multicomponent synthesis of tetracyclic quinazolino[4,3-b]quinazolines by sequential C–N bond formation and copper-mediated aerobic oxidative cyclization. Synlett, 2018, 29, 1717-1722.
[http://dx.doi.org/10.1055/s-0036-1591578]
[149]
Guo, S.; Wang, F.; Tao, L.; Zhang, X.; Fan, X. Copper(II)-mediated aerobic oxidation of benzylimidates: synthesis of primary α-ketoamides. J. Org. Chem., 2018, 83, 3889-3896.
[http://dx.doi.org/10.1021/acs.joc.8b00231] [PMID: 29513984]
[150]
Blackman, A.J.; Hambley, T.W.; Picker, K.; Taylor, W.C.; Thirasasana, N. Hinckdentine-a: a novel alkaloid from the marine bryozoan hincksinoflustra denticulate. Tetrahedron Lett., 1987, 28, 5561-5562.
[http://dx.doi.org/10.1016/S0040-4039(00)96781-9]
[151]
Li, X.; Huang, L.; Chen, H.; Wu, W.; Huang, H.; Jiang, H. Copper-catalyzed oxidative [2+2+1] cycloaddition: regioselective synthesis of 1,3-oxazoles from internal alkynes and nitriles. Chem. Sci. (Camb.), 2012, 3, 3463-3467.
[http://dx.doi.org/10.1039/c2sc21041j]
[152]
Huang, H.; Ji, X.; Wu, W.; Jiang, H. A cascade approach to fused indolizinones through Lewis acid-copper(I) relay catalysis. Chem. Commun. (Camb.), 2013, 49(32), 3351-3353.
[http://dx.doi.org/10.1039/c3cc40643a] [PMID: 23493748]
[153]
Wang, X.; He, D.; Huang, Y.; Fan, Q.; Wu, W.; Jiang, H. Copper-catalyzed synthesis of substituted quinazolines from benzonitriles and 2-ethynyl-anilines via carbon-carbon bond cleavage using molecular oxygen. J. Org. Chem., 2018, 83(10), 5458-5466.
[http://dx.doi.org/10.1021/acs.joc.8b00378] [PMID: 29687708]
[154]
Satish, G.; Polu, A.; Kota, L.; Ilangovan, A. Copper-catalyzed oxidative amination of methanol to access quinazolines. Org. Biomol. Chem., 2019, 17(19), 4774-4782.
[http://dx.doi.org/10.1039/C9OB00392D] [PMID: 31033980]
[155]
Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Selective iodine-catalyzed intermolecular oxidative amination of C(sp3)-H bonds with ortho-carbonyl-substituted anilines to give quinazolines. Angew. Chem. Int. Ed. Engl., 2012, 51(32), 8077-8081.
[http://dx.doi.org/10.1002/anie.201203880] [PMID: 22865568]
[156]
Ilangovan, A.; Satish, G. Copper-mediated selective C-H activation and cross-dehydrogenative C-N coupling of 2′-aminoacetophenones. Org. Lett., 2013, 15(22), 5726-5729.
[http://dx.doi.org/10.1021/ol402750r] [PMID: 24191737]
[157]
Ilangovan, A.; Satish, G. Direct amidation of 2′-aminoacetophenones using I2-TBHP: a unimolecular domino approach toward isatin and iodoisatin. J. Org. Chem., 2014, 79(11), 4984-4991.
[http://dx.doi.org/10.1021/jo500550d] [PMID: 24787642]
[158]
Satish, G.; Polu, A.; Ramar, T.; Ilangovan, A. Iodine-mediated C-H functionalization of sp, sp2, and sp3 carbon: a unified multisubstrate domino approach for isatin synthesis. J. Org. Chem., 2015, 80(10), 5167-5175.
[http://dx.doi.org/10.1021/acs.joc.5b00581] [PMID: 25906247]
[159]
Satish, G.; Ashok, P.; Laxman, K.; Ilangovan, A. Nickel‐catalyzed annulation of 2′‐aminochalcones: a simplistic access to 4‐styryl and 2,4‐distyrylquinolines. ChemistrySelect, 2019, 4, 1346-1349.
[http://dx.doi.org/10.1002/slct.201803199]
[160]
Rodrigues, R.; Tran, L.Q.; Darses, B.; Dauban, P.; Neuville, L. Copper‐promoted tandem three‐component access to quinazolin‐4(H)‐imines and benzimidazo[1,2‐c]quinazolines. Adv. Synth. Catal., 2019, 361, 4454-4460.
[http://dx.doi.org/10.1002/adsc.201900658]
[161]
Brasche, G.; Buchwald, S.L. C-H functionalization/C-N bond formation: copper-catalyzed synthesis of benzimidazoles from amidines. Angew. Chem. Int. Ed. Engl., 2008, 47(10), 1932-1934.
[http://dx.doi.org/10.1002/anie.200705420] [PMID: 18228236]
[162]
Subramanian, P.; Rudolf, G.C.; Kaliappan, K.P. Recent trends in copper-catalyzed C-H amination routes to biologically important nitrogen scaffolds. Chem. Asian J., 2016, 11(2), 168-192.
[http://dx.doi.org/10.1002/asia.201500361] [PMID: 26353917]
[163]
Park, Y.; Kim, Y.; Chang, S. Transition metal-catalyzed C-H amination: scope, mechanism, and applications. Chem. Rev., 2017, 117(13), 9247-9301.
[http://dx.doi.org/10.1021/acs.chemrev.6b00644] [PMID: 28051855]
[164]
Tran, L.Q.; Li, J.; Neuville, L. Copper-catalyzed domino three-component approach for the assembly of 2-aminated benzimidazoles and quinazolines. J. Org. Chem., 2015, 80(12), 6102-6108.
[http://dx.doi.org/10.1021/acs.joc.5b00614] [PMID: 26056863]
[165]
Li, J.; Neuville, L. Copper-catalyzed oxidative diamination of terminal alkynes by amidines: synthesis of 1,2,4-trisubstituted imidazoles. Org. Lett., 2013, 15(7), 1752-1755.
[http://dx.doi.org/10.1021/ol400560m] [PMID: 23528104]
[166]
Li, J.; Bénard, S.; Neuville, L.; Zhu, J. Copper catalyzed N-arylation of amidines with aryl boronic acids and one-pot synthesis of benzimidazoles by a Chan-Lam-Evans N-arylation and C-H activation/C-N bond forming process. Org. Lett., 2012, 14(23), 5980-5983.
[http://dx.doi.org/10.1021/ol3028847] [PMID: 23151245]
[167]
Li, J.; Neuville, L. Copper-catalyzed oxidative three-component synthesis of N, N′,N″-trisubstituted guanidines. Org. Lett., 2013, 15(24), 6124-6127.
[http://dx.doi.org/10.1021/ol4029622] [PMID: 24266768]
[168]
Xiao, Q.; Wang, W.H.; Liu, G.; Meng, F.K.; Chen, J.H.; Yang, Z.; Shi, Z.J. Direct imidation to construct 1H-benzo[d]imidazole through Pd(II)-catalyzed C-H activation promoted by thiourea. Chemistry, 2009, 15(30), 7292-7296.
[http://dx.doi.org/10.1002/chem.200900154] [PMID: 19551776]
[169]
Alla, S.K.; Kumar, R.K.; Sadhu, P.; Punniyamurthy, T. Iodobenzene catalyzed C-H amination of N-substituted amidines using m-chloroperbenzoic acid. Org. Lett., 2013, 15(6), 1334-1337.
[http://dx.doi.org/10.1021/ol400274f] [PMID: 23444897]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 15
Year: 2020
Published on: 26 July, 2020
Page: [1775 - 1792]
Pages: 18
DOI: 10.2174/1385272824999200726230848
Price: $65

Article Metrics

PDF: 22
HTML: 2
EPUB: 1