Weak Measurements in Nano-optics

Author(s): Niladri Modak, Ankit K. Singh, Shyamal Guchhait, Athira BS, Mandira Pal, Nirmalya Ghosh*

Journal Name: Current Nanomaterials

Volume 5 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Weak measurement involves weak coupling between the system and the measuring device (pointer) enables large amplification and high precision measurement of small physical parameters. The outcome of this special measurement procedure involving nearly mutually orthogonal pre- and post-selection of states in such weakly interacting systems leads to weak value that can become exceedingly large and lie outside the eigenvalue spectrum of the measured observable. This unprecedented ability of weak value amplification of small physical parameters has been successfully exploited for various metrological applications in the optical domain and beyond. Even though it is a quantum mechanical concept, it can be understood using the classical electromagnetic theory of light and thus can be realized in classical optics.

Objective: Here, we briefly review the basic concepts of weak measurement and weak value amplification, provide illustrative examples of its implementation in various optical domains. The applications involve measuring ultra-sensitive beam deflections, high precision measurements of angular rotation, phase shift, temporal shift, frequency shift and so forth, and expand this extraordinary concept in the domain of nano-optics and plasmonics.

Methods: In order to perform weak value amplification, we have used Gaussian beam and spectral response as the pointer subsequently. The polarization state associated with the pointer is used as pre and post-selection device.

Results: We reveal the weak value amplification of sub-wavelength optical effects namely the Goos-Hänchen shift and the spin hall shift. Further, we demonstrate weak measurements using spectral line shape of resonance as a natural pointer, enabling weak value amplification beyond the conventional limit, demonstrating natural weak value amplification in plasmonic Fano resonances and so forth. The discussed concepts could have useful implications in various nano-optical systems to amplify tiny signals or effects.

Conclusion: The emerging prospects of weak value amplification towards the development of novel optical weak measurement devices for metrological applications are extensively discussed.

Keywords: Weak measurement, weak value, fano resonance, plasmonics, nano optics, beam shifts.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 21 December, 2020
Page: [191 - 213]
Pages: 23
DOI: 10.2174/2468187310999200723121713

Article Metrics

PDF: 15