Current Challenges and Implications of Proteogenomic Approaches in Prostate Cancer

Author(s): Nidhi Shukla, Narmadhaa Siva, Babita Malik, Prashanth Suravajhala*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 22 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

In the recent past, next-generation sequencing (NGS) approaches have heralded the omics era. With NGS data burgeoning, there arose a need to disseminate the omic data better. Proteogenomics has been vividly used for characterising the functions of candidate genes and is applied in ascertaining various diseased phenotypes, including cancers. However, not much is known about the role and application of proteogenomics, especially Prostate Cancer (PCa). In this review, we outline the need for proteogenomic approaches, their applications and their role in PCa.

Keywords: Prostate Cancer, Next-Generation sequencing, Genomics, Proteomics, Proteogenomics, Transcriptomics, Phosphoproteomics.

[1]
Ruggles, K.V.; Krug, K.; Wang, X.; Clauser, K.R.; Wang, J.; Payne, S.H.; Fenyö, D.; Zhang, B.; Mani, D.R. Methods, tools and current perspectives in proteogenomics. Mol. Cell. Proteomics, 2017, 16(6), 959-981.
[http://dx.doi.org/10.1074/mcp.MR117.000024] [PMID: 28456751]
[2]
Tyers, M.; Mann, M. From genomics to proteomics. Nature, 2003, 422(6928), 193-197.
[http://dx.doi.org/10.1038/nature01510] [PMID: 12634792]
[3]
Hernandez-Valladares, M.; Vaudel, M.; Selheim, F.; Berven, F.; Bruserud, Ø. Proteogenomics approaches for studying cancer biology and their potential in the identification of acute myeloid leukemia biomarkers. Expert Rev. Proteomics, 2017, 14(8), 649-663.
[http://dx.doi.org/10.1080/14789450.2017.1352474] [PMID: 28693350]
[4]
Menschaert, G.; Fenyö, D. Proteogenomics from a bioinformatics angle: A growing field. Mass Spectrom. Rev., 2017, 36(5), 584-599.
[http://dx.doi.org/10.1002/mas.21483] [PMID: 26670565]
[5]
Ansong, C.; Purvine, S.O.; Adkins, J.N.; Lipton, M.S.; Smith, R.D. Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief. Funct. Genomics Proteomics, 2008, 7(1), 50-62.
[6]
Sheynkman, G.M.; Shortreed, M.R.; Cesnik, A.J.; Smith, L.M. Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2016, 9(1), 521-545.
[http://dx.doi.org/10.1146/annurev-anchem-071015-041722] [PMID: 27049631]
[7]
Barbieri, R.; Guryev, V.; Brandsma, C.A.; Suits, F.; Bischoff, R.; Horvatovich, P. Proteogenomics: key driver for clinical discovery and personalized medicine. Adv. Exp. Med. Biol., 2016, 926, 21-47.
[8]
Kim, M.S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Madugundu, A.K.; Kelkar, D.S.; Isserlin, R.; Jain, S.; Thomas, J.K.; Muthusamy, B.; Leal-Rojas, P.; Kumar, P.; Sahasrabuddhe, N.A.; Balakrishnan, L.; Advani, J.; George, B.; Renuse, S.; Selvan, L.D.N.; Patil, A.H.; Nanjappa, V.; Radhakrishnan, A.; Prasad, S.; Subbannayya, T.; Raju, R.; Kumar, M.; Sreenivasamurthy, S.K.; Marimuthu, A.; Sathe, G.J.; Chavan, S.; Datta, K.K.; Subbannayya, Y.; Sahu, A.; Yelamanchi, S.D.; Jayaram, S.; Rajagopalan, P.; Sharma, J.; Murthy, K.R.; Syed, N.; Goel, R.; Khan, A.A.; Ahmad, S.; Dey, G.; Mudgal, K.; Chatterjee, A.; Huang, T.C.; Zhong, J.; Wu, X.; Shaw, P.G.; Freed, D.; Zahari, M.S.; Mukherjee, K.K.; Shankar, S.; Mahadevan, A.; Lam, H.; Mitchell, C.J.; Shankar, S.K.; Satishchandra, P.; Schroeder, J.T.; Sirdeshmukh, R.; Maitra, A.; Leach, S.D.; Drake, C.G.; Halushka, M.K.; Prasad, T.S.K.; Hruban, R.H.; Kerr, C.L.; Bader, G.D.; Iacobuzio-Donahue, C.A.; Gowda, H.; Pandey, A. A draft map of the human proteome. Nature, 2014, 509(7502), 575-581.
[http://dx.doi.org/10.1038/nature13302] [PMID: 24870542]
[9]
Zhang, B.; Whiteaker, J.R.; Hoofnagle, A.N.; Baird, G.S.; Rodland, K.D.; Paulovich, A.G. Clinical potential of mass spectrometry-based proteogenomics. Nat. Rev. Clin. Oncol., 2019, 16(4), 256-268.
[http://dx.doi.org/10.1038/s41571-018-0135-7] [PMID: 30487530]
[10]
Boja, E.S.; Rodriguez, H. Proteogenomic convergence for understanding cancer pathways and networks. Clin. Proteomics, 2014, 11(1), 22.
[http://dx.doi.org/10.1186/1559-0275-11-22] [PMID: 24994965]
[11]
Safonova, Y.; Pevzner, P.A. De novo inference of diversity genes and analysis of non-canonical v(dd)j recombination in immunoglobulins. Front. Immunol., 2019, 10, 987.
[http://dx.doi.org/10.3389/fimmu.2019.00987] [PMID: 31134072]
[12]
Sigdel, T.K.; Sarwal, M.M. The proteogenomic path towards biomarker discovery. Pediatr. Transplant., 2008, 12(7), 737-747.
[http://dx.doi.org/10.1111/j.1399-3046.2008.01018.x] [PMID: 18764911]
[13]
Dinger, M.E.; Pang, K.C.; Mercer, T.R.; Mattick, J.S. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLOS Comput. Biol., 2008, 4(11), e1000176
[http://dx.doi.org/10.1371/journal.pcbi.1000176] [PMID: 19043537]
[14]
Storz, G.; Wolf, Y.I.; Ramamurthi, K.S. Small proteins can no longer be ignored. Annu. Rev. Biochem., 2014, 83, 753-777.
[http://dx.doi.org/10.1146/annurev-biochem-070611-102400] [PMID: 24606146]
[15]
Yang, X.; Tschaplinski, T.J.; Hurst, G.B.; Jawdy, S.; Abraham, P.E.; Lankford, P.K.; Adams, R.M.; Shah, M.B.; Hettich, R.L.; Lindquist, E.; Kalluri, U.C.; Gunter, L.E.; Pennacchio, C.; Tuskan, G.A. Discovery and annotation of small proteins using genomics, proteomics, and computational approaches. Genome Res., 2011, 21(4), 634-641.
[http://dx.doi.org/10.1101/gr.109280.110] [PMID: 21367939]
[16]
Slavoff, S.A.; Mitchell, A.J.; Schwaid, A.G.; Cabili, M.N.; Ma, J.; Levin, J.Z.; Karger, A.D.; Budnik, B.A.; Rinn, J.L.; Saghatelian, A. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat. Chem. Biol., 2013, 9(1), 59-64.
[http://dx.doi.org/10.1038/nchembio.1120] [PMID: 23160002]
[17]
Li, J.; Su, Z.; Ma, Z.Q.; Slebos, R.J.C.; Halvey, P.; Tabb, D.L.; Liebler, D.C.; Pao, W.; Zhang, B. A bioinformatics workflow for variant peptide detection in shotgun proteomics. Mol. Cell. Proteomics, 2011, 10(5), 006536
[http://dx.doi.org/10.1074/mcp.M110.006536] [PMID: 21389108]
[18]
Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M.C.; Zimmerman, L.J.; Shaddox, K.F.; Kim, S.; Davies, S.R.; Wang, S.; Wang, P.; Kinsinger, C.R.; Rivers, R.C.; Rodriguez, H.; Townsend, R.R.; Ellis, M.J.C.; Carr, S.A.; Tabb, D.L.; Coffey, R.J.; Slebos, R.J.C.; Liebler, D.C.; Gillette, M.A.; Klauser, K.R.; Kuhn, E.; Mani, D.R.; Mertins, P.; Ketchum, K.A.; Paulovich, A.G.; Whiteaker, J.R.; Edwards, N.J.; McGarvey, P.B.; Madhavan, S.; Chan, D.; Pandey, A.; Shih, I.M.; Zhang, H.; Zhang, Z.; Zhu, H.; Whiteley, G.A.; Skates, S.J.; White, F.M.; Levine, D.A.; Boja, E.S.; Hiltke, T.; Mesri, M.; Shaw, K.M.; Stein, S.E.; Fenyo, D.; Liu, T.; McDermott, J.E.; Payne, S.H.; Rodland, K.D.; Smith, R.D.; Rudnick, P.; Snyder, M.; Zhao, Y.; Chen, X.; Ransohoff, D.F.; Hoofnagle, A.N.; Sanders, M.E.; Wang, Y.; Ding, L. NCI CPTAC. Proteogenomic characterization of human colon and rectal cancer. Nature, 2014, 513(7518), 382-387.
[http://dx.doi.org/10.1038/nature13438] [PMID: 25043054]
[19]
Edwards, N.J. Novel peptide identification from tandem mass spectra using ESTs and sequence database compression. Mol. Syst. Biol., 2007, 3, 102.
[http://dx.doi.org/10.1038/msb4100142] [PMID: 17437027]
[20]
Li, J.; Liu, C. Coding or noncoding, the converging concepts of RNAs. Front. Genet., 2019, 10, 496.
[http://dx.doi.org/10.3389/fgene.2019.00496] [PMID: 31178900]
[21]
Kung, J.T.Y.; Colognori, D.; Lee, J.T. Long noncoding RNAs: Past, present, and future. Genetics, 2013, 193(3), 651-669.
[22]
Prensner, J.R.; Chinnaiyan, A.M. The emergence of lncRNAs in cancer biology. Cancer Discov., 2011, 1(5), 391-407.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0209] [PMID: 22096659]
[23]
Suravajhala, P.; Kogelman, L.J.A.; Mazzoni, G.; Kadarmideen, H.N. Potential role of lncRNA cyp2c91-protein interactions on diseases of the immune system. Front. Genet., 2015, 6, 255.
[http://dx.doi.org/10.3389/fgene.2015.00255] [PMID: 26284111]
[24]
Arsène-Ploetze, F.; Bertin, P.N.; Carapito, C. Proteomic tools to decipher microbial community structure and functioning. Environ. Sci. Pollut. Res. Int., 2015, 22(18), 13599-13612.
[http://dx.doi.org/10.1007/s11356-014-3898-0] [PMID: 25475614]
[25]
Delmotte, N.; Knief, C.; Chaffron, S.; Innerebner, G.; Roschitzki, B.; Schlapbach, R.; Von Mering, C.; Vorholt, J.A. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16428-16433.
[http://dx.doi.org/10.1073/pnas.0905240106]
[26]
Schiebenhoefer, H.; Van Den Bossche, T.; Fuchs, S.; Renard, B.Y.; Muth, T.; Martens, L. Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis. Expert Rev. Proteomics, 2019, 16(5), 375-390.
[http://dx.doi.org/10.1080/14789450.2019.1609944] [PMID: 31002542]
[27]
Tang, J.; Wang, Y.; Fu, J.; Zhou, Y.; Luo, Y.; Zhang, Y.; Li, B.; Yang, Q.; Xue, W.; Lou, Y.; Qiu, Y.; Zhu, F. A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies. Brief. Bioinform., 2019.
[http://dx.doi.org/10.1093/bib/bbz061] [PMID: 31197323]
[28]
Nishimura, T.; Nakamura, H. Developments for personalized medicine of lung cancer subtypes: mass spectrometry-based clinical proteogenomic analysis of oncogenic mutations. Adv. Exp. Med. Biol., 2016, 926, 115-137.
[29]
Staal, J.A.; Pei, Y.; Rood, B.R. A proteogenomic approach to understanding MYC function in metastatic medulloblastoma tumors. Int. J. Mol. Sci., 2016, 17(10), E1744
[http://dx.doi.org/10.3390/ijms17101744] [PMID: 27775567]
[30]
Offit, K. Personalized medicine: new genomics, old lessons. Hum. Genet., 2011, 130(1), 3-14.
[http://dx.doi.org/10.1007/s00439-011-1028-3] [PMID: 21706342]
[31]
De Angelis, G.; Rittenhouse, H.G.; Mikolajczyk, S.D.; Blair Shamel, L.; Semjonow, A. twenty years of psa: from prostate antigen to tumor marker. Rev. Urol., 2007, 9(3), 113-123.
[PMID: 17934568]
[32]
Lin, W.; Cao, D.; Shen, K. Prognostic significance of preoperative serum CEA in primary mucinous ovarian carcinoma: a retrospective cohort study. Cancer Manag. Res., 2018, 10, 6913-6920.
[http://dx.doi.org/10.2147/CMAR.S186258] [PMID: 30588097]
[33]
Zwakman, N.; van de Laar, R.; Van Gorp, T.; Zusterzeel, P.L.M.; Snijders, M.P.M.L.; Ferreira, I.; Massuger, L.F.A.G.; Kruitwagen, R.F.P.M. Perioperative changes in serum CA125 levels: a prognostic factor for disease-specific survival in patients with ovarian cancer. J. Gynecol. Oncol., 2017, 28(1), e7
[http://dx.doi.org/10.3802/jgo.2017.28.e7] [PMID: 27670261]
[34]
He, Y.; Mohamedali, A.; Huang, C.; Baker, M.S.; Nice, E.C. Oncoproteomics: Current status and future opportunities. Clin. Chim. Acta, 2019, 495, 611-624.
[http://dx.doi.org/10.1016/j.cca.2019.06.006] [PMID: 31176645]
[35]
Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.), 2015, 19(1A), A68-A77.
[http://dx.doi.org/10.5114/wo.2014.47136] [PMID: 25691825]
[36]
Devabhaktuni, A.; Elias, J.E. Application of de novo sequencing to large-scale complex proteomics data sets. J. Proteome Res., 2016, 15(3), 732-742.
[http://dx.doi.org/10.1021/acs.jproteome.5b00861] [PMID: 26743026]
[37]
Yadav, M.; Jhunjhunwala, S.; Phung, Q.T.; Lupardus, P.; Tanguay, J.; Bumbaca, S.; Franci, C.; Cheung, T.K.; Fritsche, J.; Weinschenk, T.; Modrusan, Z.; Mellman, I.; Lill, J.R.; Delamarre, L. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 2014, 515(7528), 572-576.
[http://dx.doi.org/10.1038/nature14001] [PMID: 25428506]
[38]
Wang, X.; Slebos, R.J.C.; Wang, D.; Halvey, P.J.; Tabb, D.L.; Liebler, D.C.; Zhang, B. Protein identification using customized protein sequence databases derived from RNA-Seq data. J. Proteome Res., 2012, 11(2), 1009-1017.
[http://dx.doi.org/10.1021/pr200766z] [PMID: 22103967]
[39]
Lee, M.; Lee, K.; Yu, N.; Jang, I.; Choi, I.; Kim, P. EunJang, Y.; Kim, B.; Kim, S.; Lee, B.; Kang, J.; Lee, S. ChimerDB 3.0: An enhanced database for fusion genes from cancer transcriptome and literature data mining. Nucleic Acids Res., 2017, 45(Database issue), D784-D789.
[40]
Jagtap, P.D.; Johnson, J.E.; Onsongo, G.; Sadler, F.W.; Murray, K.; Wang, Y.; Shenykman, G.M.; Bandhakavi, S.; Smith, L.M.; Griffin, T.J. Flexible and accessible workflows for improved proteogenomic analysis using the Galaxy framework. J. Proteome Res., 2014, 13(12), 5898-5908.
[http://dx.doi.org/10.1021/pr500812t] [PMID: 25301683]
[41]
Kumar, D.; Dash, D. Proteogenomic tools and approaches to explore protein coding landscapes of eukaryotic genomes. Adv. Exp. Med. Biol., 2016, 926, 1-10.
[http://dx.doi.org/10.1007/978-3-319-42316-6_1]
[42]
Castellana, N.E.; Shen, Z.; He, Y.; Walley, J.W.; Cassidy, C.J.; Briggs, S.P.; Bafna, V. An automated proteogenomic method uses mass spectrometry to reveal novel genes in Zea mays. Mol. Cell. Proteomics, 2014, 13(1), 157-167.
[http://dx.doi.org/10.1074/mcp.M113.031260] [PMID: 24142994]
[43]
Risk, B.A.; Spitzer, W.J.; Giddings, M.C. Peppy: proteogenomic search software. J. Proteome Res., 2013, 12(6), 3019-3025.
[http://dx.doi.org/10.1021/pr400208w] [PMID: 23614390]
[44]
Ghali, F.; Krishna, R.; Perkins, S.; Collins, A.; Xia, D.; Wastling, J.; Jones, A.R. ProteoAnnotator--open source proteogenomics annotation software supporting PSI standards. Proteomics, 2014, 14(23-24), 2731-2741.
[http://dx.doi.org/10.1002/pmic.201400265] [PMID: 25297486]
[45]
Krasnov, G.S.; Dmitriev, A.A.; Kudryavtseva, A.V.; Shargunov, A.V.; Karpov, D.S.; Uroshlev, L.A.; Melnikova, N.V.; Blinov, V.M.; Poverennaya, E.V.; Archakov, A.I.; Lisitsa, A.V.; Ponomarenko, E.A. PPLine: An automated pipeline for SNP, SAP, and splice variant detection in the context of proteogenomics. J. Proteome Res., 2015, 14(9), 3729-3737.
[http://dx.doi.org/10.1021/acs.jproteome.5b00490] [PMID: 26147802]
[46]
Wang, X.; Zhang, B.; Wren, J. customProDB: an R package to generate customized protein databases from RNA-Seq data for proteomics search. Bioinformatics, 2013, 29(24), 3235-3237.
[http://dx.doi.org/10.1093/bioinformatics/btt543] [PMID: 24058055]
[47]
Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14), 1754-1760.
[http://dx.doi.org/10.1093/bioinformatics/btp324] [PMID: 19451168]
[48]
Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 2012, 9(4), 357-359.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[49]
Langmead, B. Aligning short sequencing reads with bowtie. Curr. Protoc. Bioinformatics, 2010, 11(11), 7.
[http://dx.doi.org/10.1002/0471250953.bi1107s32]
[50]
Crappé, J.; Ndah, E.; Koch, A.; Steyaert, S.; Gawron, D.; De Keulenaer, S.; De Meester, E.; De Meyer, T.; Van Criekinge, W.; Van Damme, P.; Menschaert, G. PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration. Nucleic Acids Res., 2015, 43(5), e29
[http://dx.doi.org/10.1093/nar/gku1283] [PMID: 25510491]
[51]
Zickmann, F.; Renard, B.Y. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms. Bioinformatics, 2015, 31(12), 106-115.
[http://dx.doi.org/10.1093/bioinformatics/btv236]
[52]
Shi, Z.; Wang, J.; Zhang, B. NetGestalt: integrating multidimensional omics data over biological networks. Nat. Methods, 2013, 10(7), 597-598.
[http://dx.doi.org/10.1038/nmeth.2517] [PMID: 23807191]
[53]
Wang, J.; Duncan, D.; Shi, Z.; Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res., , 2013, 41(Web Server issue ), W77 -83.
[http://dx.doi.org/10.1093/nar/gkt439] [PMID: 23703215]
[54]
Yang, C.Y.; Chang, C.H.; Yu, Y.L.; Lin, T.C.E.; Lee, S.A.; Yen, C.C.; Yang, J.M.; Lai, J.M.; Hong, Y.R.; Tseng, T.L.; Chao, K.M.; Huang, C.Y.F. PhosphoPOINT: A comprehensive human kinase interactome and phospho-protein database. Bioinformatics, 2008, 24(16), 14-20.
[http://dx.doi.org/10.1093/bioinformatics/btn297]
[55]
Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc., 2016, 11(12), 2301-2319.
[http://dx.doi.org/10.1038/nprot.2016.136] [PMID: 27809316]
[56]
Reimand, J.; Bader, G.D. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol. Syst. Biol., 2013, 9, 637.
[http://dx.doi.org/10.1038/msb.2012.68] [PMID: 23340843]
[57]
Röst, H.L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.C.; Gutenbrunner, P.; Kenar, E.; Liang, X.; Nahnsen, S.; Nilse, L.; Pfeuffer, J.; Rosenberger, G.; Rurik, M.; Schmitt, U.; Veit, J.; Walzer, M.; Wojnar, D.; Wolski, W.E.; Schilling, O.; Choudhary, J.S.; Malmström, L.; Aebersold, R.; Reinert, K.; Kohlbacher, O.; Open, M.S. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods, 2016, 13(9), 741-748.
[http://dx.doi.org/10.1038/nmeth.3959] [PMID: 27575624]
[58]
Vaudel, M.; Burkhart, J.M.; Zahedi, R.P.; Oveland, E.; Berven, F.S.; Sickmann, A.; Martens, L.; Barsnes, H. PeptideShaker enables reanalysis of ms-derived proteomics data sets: to the editor. Nat. Biotechnol., 2015, 33, 22-24.
[http://dx.doi.org/10.1038/nbt.3109]
[59]
Nagaraj, S.H.; Waddell, N.; Madugundu, A.K.; Wood, S.; Jones, A.; Mandyam, R.A.; Nones, K.; Pearson, J.V.; Grimmond, S.M. PGTools: A software suite for proteogenomic data analysis and visualization. J. Proteome Res., 2015, 14(5), 2255-2266.
[http://dx.doi.org/10.1021/acs.jproteome.5b00029] [PMID: 25760677]
[60]
Shukla, H.D. Comprehensive analysis of cancer-proteogenome to identify biomarkers for the early diagnosis and prognosis of cancer. Proteomes, 2017, 5(4), E28
[http://dx.doi.org/10.3390/proteomes5040028] [PMID: 29068423]
[61]
Rudnick, P.A.; Markey, S.P.; Roth, J.; Mirokhin, Y.; Yan, X.; Tchekhovskoi, D.V.; Edwards, N.J.; Thangudu, R.R.; Ketchum, K.A.; Kinsinger, C.R.; Mesri, M.; Rodriguez, H.; Stein, S.E. A description of the clinical proteomic tumor analysis consortium (cptac) common data analysis pipeline. J. Proteome Res., 2016, 15(3), 1023-1032.
[http://dx.doi.org/10.1021/acs.jproteome.5b01091] [PMID: 26860878]
[62]
Wu, P.; Heins, Z.J.; Muller, J.T.; Katsnelson, L.; de Bruijn, I.; Abeshouse, A.A.; Schultz, N.; Fenyö, D.; Gao, J. Integration and analysis of cptac proteomics data in the context of cancer genomics in the cbioportal. Mol. Cell. Proteomics, 2019, 18(9), 1893-1898.
[http://dx.doi.org/10.1074/mcp.TIR119.001673] [PMID: 31308250]
[63]
Vasaikar, S.; Huang, C.; Wang, X.; Petyuk, V.A.; Savage, S.R.; Wen, B.; Dou, Y.; Zhang, Y.; Shi, Z.; Arshad, O.A.; Gritsenko, M.A.; Zimmerman, L.J.; McDermott, J.E.; Clauss, T.R.; Moore, R.J.; Zhao, R.; Monroe, M.E.; Wang, Y.T.; Chambers, M.C.; Slebos, R.J.C.; Lau, K.S.; Mo, Q.; Ding, L.; Ellis, M.; Thiagarajan, M.; Kinsinger, C.R.; Rodriguez, H.; Smith, R.D.; Rodland, K.D.; Liebler, D.C.; Liu, T.; Zhang, B.; Ellis, M.J.C.; Bavarva, J.; Borucki, M.; Elburn, K.; Hannick, L.; Vatanian, N.; Payne, S.H.; Carr, S.A.; Clauser, K.R.; Gillette, M.A.; Kuhn, E.; Mani, D.R.; Cai, S.; Ketchum, K.A.; Thangudu, R.R.; Whiteley, G.A.; Paulovich, A.; Whiteaker, J.; Edward, N.J.; Madhavan, S.; McGarvey, P.B.; Chan, D.W.; Shih, I.M.; Zhang, H.; Zhang, Z.; Zhu, H.; Skates, S.J.; White, F.M.; Mertins, P.; Pandey, A.; Slebos, R.J.C.; Boja, E.; Hiltke, T.; Mesri, M.; Rivers, R.C.; Stein, S.E.; Fenyo, D.; Ruggles, K.; Levine, D.A.; Oberti, M.; Rudnick, P.A.; Snyder, M.; Tabb, D.L.; Zhao, Y.; Chen, X.; Ransohoff, D.F.; Hoofnagle, A.; Sanders, M.E.; Wang, Y.; Davies, S.R.; Townsend, R.R.; Watson, M. Clinical proteomic tumor analysis consortium. proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell, 2019, 177(4), 1035-1049.e19.
[http://dx.doi.org/10.1016/j.cell.2019.03.030] [PMID: 31031003]
[64]
Mertins, P.; Mani, D.R.; Ruggles, K.V.; Gillette, M.A.; Clauser, K.R.; Wang, P.; Wang, X.; Qiao, J.W.; Cao, S.; Petralia, F.; Kawaler, E.; Mundt, F.; Krug, K.; Tu, Z.; Lei, J.T.; Gatza, M.L.; Wilkerson, M.; Perou, C.M.; Yellapantula, V.; Huang, K.L.; Lin, C.; McLellan, M.D.; Yan, P.; Davies, S.R.; Townsend, R.R.; Skates, S.J.; Wang, J.; Zhang, B.; Kinsinger, C.R.; Mesri, M.; Rodriguez, H.; Ding, L.; Paulovich, A.G.; Fenyö, D.; Ellis, M.J.; Carr, S.A. NCI CPTAC. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016, 534(7605), 55-62.
[http://dx.doi.org/10.1038/nature18003] [PMID: 27251275]
[65]
Zhang, H.; Liu, T.; Zhang, Z.; Payne, S.H.; Zhang, B.; McDermott, J.E.; Zhou, J.Y.; Petyuk, V.A.; Chen, L.; Ray, D.; Sun, S.; Yang, F.; Chen, L.; Wang, J.; Shah, P.; Cha, S.W.; Aiyetan, P.; Woo, S.; Tian, Y.; Gritsenko, M.A.; Clauss, T.R.; Choi, C.; Monroe, M.E.; Thomas, S.; Nie, S.; Wu, C.; Moore, R.J.; Yu, K.H.; Tabb, D.L.; Fenyö, D.; Bafna, V.; Wang, Y.; Rodriguez, H.; Boja, E.S.; Hiltke, T.; Rivers, R.C.; Sokoll, L.; Zhu, H.; Shih, I.M.; Cope, L.; Pandey, A.; Zhang, B.; Snyder, M.P.; Levine, D.A.; Smith, R.D.; Chan, D.W.; Rodland, K.D.; Carr, S.A.; Gillette, M.A.; Klauser, K.R.; Kuhn, E.; Mani, D.R.; Mertins, P.; Ketchum, K.A.; Thangudu, R.; Cai, S.; Oberti, M.; Paulovich, A.G.; Whiteaker, J.R.; Edwards, N.J.; McGarvey, P.B.; Madhavan, S.; Wang, P.; Whiteley, G.A.; Skates, S.J.; White, F.M.; Kinsinger, C.R.; Mesri, M.; Shaw, K.M.; Stein, S.E.; Fenyo, D.; Rudnick, P.; Snyder, M.; Zhao, Y.; Chen, X.; Ransohoff, D.F.; Hoofnagle, A.N.; Liebler, D.C.; Sanders, M.E.; Shi, Z.; Slebos, R.J.C.; Zimmerman, L.J.; Davies, S.R.; Ding, L.; Ellis, M.J.C.; Townsend, R.R. CPTAC investigators. integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell, 2016, 166(3), 755-765.
[http://dx.doi.org/10.1016/j.cell.2016.05.069] [PMID: 27372738]
[66]
Stewart, P.A.; Welsh, E.A.; Slebos, R.J.C.; Fang, B.; Izumi, V.; Chambers, M.; Zhang, G.; Cen, L.; Pettersson, F.; Zhang, Y.; Chen, Z.; Cheng, C.H.; Thapa, R.; Thompson, Z.; Fellows, K.M.; Francis, J.M.; Saller, J.J.; Mesa, T.; Zhang, C.; Yoder, S.; DeNicola, G.M.; Beg, A.A.; Boyle, T.A.; Teer, J.K.; Ann Chen, Y.; Koomen, J.M.; Eschrich, S.A.; Haura, E.B. Proteogenomic landscape of squamous cell lung cancer. Nat. Commun., 2019, 10(1), 3578.
[http://dx.doi.org/10.1038/s41467-019-11452-x] [PMID: 31395880]
[67]
Zhao, Q.; Laverdure, J.P.; Lanoix, J.; Durette, C.; Côté, C.; Bonneil, É.; Laumont, C.M.; Gendron, P.; Vincent, K.; Courcelles, M.; Lemieux, S.; Millar, D.G.; Ohashi, P.S.; Thibault, P.; Perreault, C. Proteogenomics uncovers a vast repertoire of shared tumor-specific antigens in ovarian cancer. Cancer Immunol. Res., 2020, 8(4), 544-555.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0541] [PMID: 32047025]
[68]
Ayala, A.G.; Ro, J.Y. Prostatic intraepithelial neoplasia: recent advances. Arch. Pathol. Lab. Med., 2007, 131(8), 1257-1266.
[PMID: 17683188]
[69]
Cuzick, J.; Thorat, M.A.; Andriole, G.; Brawley, O.W.; Brown, P.H.; Culig, Z.; Eeles, R.A.; Ford, L.G.; Hamdy, F.C.; Holmberg, L.; Ilic, D.; Key, T.J.; La Vecchia, C.; Lilja, H.; Marberger, M.; Meyskens, F.L.; Minasian, L.M.; Parker, C.; Parnes, H.L.; Perner, S.; Rittenhouse, H.; Schalken, J.; Schmid, H.P.; Schmitz-Dräger, B.J.; Schröder, F.H.; Stenzl, A.; Tombal, B.; Wilt, T.J.; Wolk, A. Prevention and early detection of prostate cancer. Lancet Oncol., 2014, 15(11), e484-e492.
[http://dx.doi.org/10.1016/S1470-2045(14)70211-6] [PMID: 25281467]
[70]
Karantanos, T.; Corn, P.G.; Thompson, T.C. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene, 2013, 32(49), 5501-5511.
[http://dx.doi.org/10.1038/onc.2013.206] [PMID: 23752182]
[71]
Arora, K.; Barbieri, C.E. Molecular subtypes of prostate cancer. Curr. Oncol. Rep., 2018, 20(8), 58.
[http://dx.doi.org/10.1007/s11912-018-0707-9] [PMID: 29858674]
[72]
Hieronymus, H.; Schultz, N.; Gopalan, A.; Carver, B.S.; Chang, M.T.; Xiao, Y.; Heguy, A.; Huberman, K.; Bernstein, M.; Assel, M.; Murali, R.; Vickers, A.; Scardino, P.T.; Sander, C.; Reuter, V.; Taylor, B.S.; Sawyers, C.L. Copy number alteration burden predicts prostate cancer relapse. Proc. Natl. Acad. Sci. USA, 2014, 111(30), 11139-11144.
[http://dx.doi.org/10.1073/pnas.1411446111]
[73]
Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A.; Auman, J.T.; Balasundaram, M.; Balu, S.; Barbieri, C.E.; Bauer, T.; Benz, C.C.; Bergeron, A.; Beroukhim, R.; Berrios, M.; Bivol, A.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Borges Dos Reis, R.; Boutros, P.C.; Bowen, J.; Bowlby, R.; Boyd, J.; Bradley, R.K.; Breggia, A.; Brimo, F.; Bristow, C.A.; Brooks, D.; Broom, B.M.; Bryce, A.H.; Bubley, G.; Burks, E.; Butterfield, Y.S.N.; Button, M.; Canes, D.; Carlotti, C.G.; Carlsen, R.; Carmel, M.; Carroll, P.R.; Carter, S.L.; Cartun, R.; Carver, B.S.; Chan, J.M.; Chang, M.T.; Chen, Y.; Cherniack, A.D.; Chevalier, S.; Chin, L.; Cho, J.; Chu, A.; Chuah, E.; Chudamani, S.; Cibulskis, K.; Ciriello, G.; Clarke, A.; Cooperberg, M.R.; Corcoran, N.M.; Costello, A.J.; Cowan, J.; Crain, D.; Curley, E.; David, K.; Demchok, J.A.; Demichelis, F.; Dhalla, N.; Dhir, R.; Doueik, A.; Drake, B.; Dvinge, H.; Dyakova, N.; Felau, I.; Ferguson, M.L.; Frazer, S.; Freedland, S.; Fu, Y.; Gabriel, S.B.; Gao, J.; Gardner, J.; Gastier-Foster, J.M.; Gehlenborg, N.; Gerken, M.; Gerstein, M.B.; Getz, G.; Godwin, A.K.; Gopalan, A.; Graefen, M.; Graim, K.; Gribbin, T.; Guin, R.; Gupta, M.; Hadjipanayis, A.; Haider, S.; Hamel, L.; Hayes, D.N.; Heiman, D.I.; Hess, J.; Hoadley, K.A.; Holbrook, A.H.; Holt, R.A.; Holway, A.; Hovens, C.M.; Hoyle, A.P.; Huang, M.; Hutter, C.M.; Ittmann, M.; Iype, L.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Juhl, H.; Kahles, A.; Kane, C.J.; Kasaian, K.; Kerger, M.; Khurana, E.; Kim, J.; Klein, R.J.; Kucherlapati, R.; Lacombe, L.; Ladanyi, M.; Lai, P.H.; Laird, P.W.; Lander, E.S.; Latour, M.; Lawrence, M.S.; Lau, K.; Lebien, T.; Lee, D.; Lee, S.; Van Lehmann, K.; Leraas, K.M.; Leshchiner, I.; Leung, R.; Libertino, J.A.; Lichtenberg, T.M.; Lin, P.; Linehan, W.M.; Ling, S.; Lippman, S.M.; Liu, J.; Liu, W.; Lochovsky, L.; Loda, M.; Logothetis, C.; Lolla, L.; Longacre, T.; Lu, Y.; Luo, J.; Ma, Y.; Mahadeshwar, H.S.; Mallery, D.; Mariamidze, A.; Marra, M.A.; Mayo, M.; McCall, S.; McKercher, G.; Meng, S.; Mes-Masson, A.M.; Merino, M.J.; Meyerson, M.; Mieczkowski, P.A.; Mills, G.B.; Shaw, K.R.M.; Minner, S.; Moinzadeh, A.; Moore, R.A.; Morris, S.; Morrison, C.; Mose, L.E.; Mungall, A.J.; Murray, B.A.; Myers, J.B.; Naresh, R.; Nelson, J.; Nelson, M.A.; Nelson, P.S.; Newton, Y.; Noble, M.S.; Noushmehr, H.; Nykter, M.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Paulauskis, J.; Penny, R.; Perou, C.M.; Piché, A.; Pihl, T.; Pinto, P.A.; Prandi, D.; Protopopov, A.; Ramirez, N.C.; Rao, A.; Rathmell, W.K.; Rätsch, G.; Ren, X.; Reuter, V.E.; Reynolds, S.M.; Rhie, S.K.; Rieger-Christ, K.; Roach, J.; Robertson, A.G.; Robinson, B.; Rubin, M.A.; Saad, F.; Sadeghi, S.; Saksena, G.; Saller, C.; Salner, A.; Sanchez-Vega, F.; Sander, C.; Sandusky, G.; Sauter, G.; Sboner, A.; Scardino, P.T.; Scarlata, E.; Schein, J.E.; Schlomm, T.; Schmidt, L.S.; Schultz, N.; Schumacher, S.E.; Seidman, J.; Neder, L.; Seth, S.; Sharp, A.; Shelton, C.; Shelton, T.; Shen, H.; Shen, R.; Sherman, M.; Sheth, M.; Shi, Y.; Shih, J.; Shmulevich, I.; Simko, J.; Simon, R.; Simons, J.V.; Sipahimalani, P.; Skelly, T.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sorcini, A.; Sougnez, C.; Stepa, S.; Stewart, C.; Stewart, J.; Stuart, J.M.; Sullivan, T.B.; Sun, C.; Sun, H.; Tam, A.; Tan, D.; Tang, J.; Tarnuzzer, R.; Tarvin, K.; Taylor, B.S.; Teebagy, P.; Tenggara, I.; Têtu, B.; Tewari, A.; Thiessen, N.; Thompson, T.; Thorne, L.B.; Tirapelli, D.P.; Tomlins, S.A.; Trevisan, F.A.; Troncoso, P.; True, L.D.; Tsourlakis, M.C.; Tyekucheva, S.; Van Allen, E.; Van Den Berg, D.J.; Veluvolu, U.; Verhaak, R.; Vocke, C.D.; Voet, D.; Wan, Y.; Wang, Q.; Wang, W.; Wang, Z.; Weinhold, N.; Weinstein, J.N.; Weisenberger, D.J.; Wilkerson, M.D.; Wise, L.; Witte, J.; Wu, C.C.; Wu, J.; Wu, Y.; Xu, A.W.; Yadav, S.S.; Yang, L.; Yang, L.; Yau, C.; Ye, H.; Yena, P.; Zeng, T.; Zenklusen, J.C.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, W.; Zhong, Y.; Zhu, K.; Zmuda, E. Cancer genome atlas research network. the molecular taxonomy of primary prostate cancer. Cell, 2015, 163(4), 1011-1025.
[http://dx.doi.org/10.1016/j.cell.2015.10.025] [PMID: 26544944]
[74]
Jerónimo, C.; Bastian, P.J.; Bjartell, A.; Carbone, G.M.; Catto, J.W.F.; Clark, S.J.; Henrique, R.; Nelson, W.G.; Shariat, S.F. Epigenetics in prostate cancer: biologic and clinical relevance. Eur. Urol., 2011, 60(4), 753-766.
[http://dx.doi.org/10.1016/j.eururo.2011.06.035] [PMID: 21719191]
[75]
Berger, M.F.; Lawrence, M.S.; Demichelis, F.; Drier, Y.; Cibulskis, K.; Sivachenko, A.Y.; Sboner, A.; Esgueva, R.; Pflueger, D.; Sougnez, C.; Onofrio, R.; Carter, S.L.; Park, K.; Habegger, L.; Ambrogio, L.; Fennell, T.; Parkin, M.; Saksena, G.; Voet, D.; Ramos, A.H.; Pugh, T.J.; Wilkinson, J.; Fisher, S.; Winckler, W.; Mahan, S.; Ardlie, K.; Baldwin, J.; Simons, J.W.; Kitabayashi, N.; MacDonald, T.Y.; Kantoff, P.W.; Chin, L.; Gabriel, S.B.; Gerstein, M.B.; Golub, T.R.; Meyerson, M.; Tewari, A.; Lander, E.S.; Getz, G.; Rubin, M.A.; Garraway, L.A. The genomic complexity of primary human prostate cancer. Nature, 2011, 470(7333), 214-220.
[http://dx.doi.org/10.1038/nature09744] [PMID: 21307934]
[76]
Barbieri, C.E.; Baca, S.C.; Lawrence, M.S.; Demichelis, F.; Blattner, M.; Theurillat, J.P.; White, T.A.; Stojanov, P.; Van Allen, E.; Stransky, N.; Nickerson, E.; Chae, S.S.; Boysen, G.; Auclair, D.; Onofrio, R.C.; Park, K.; Kitabayashi, N.; MacDonald, T.Y.; Sheikh, K.; Vuong, T.; Guiducci, C.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Saksena, G.; Voet, D.; Hussain, W.M.; Ramos, A.H.; Winckler, W.; Redman, M.C.; Ardlie, K.; Tewari, A.K.; Mosquera, J.M.; Rupp, N.; Wild, P.J.; Moch, H.; Morrissey, C.; Nelson, P.S.; Kantoff, P.W.; Gabriel, S.B.; Golub, T.R.; Meyerson, M.; Lander, E.S.; Getz, G.; Rubin, M.A.; Garraway, L.A. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet., 2012, 44(6), 685-689.
[http://dx.doi.org/10.1038/ng.2279] [PMID: 22610119]
[77]
Frank, S.; Nelson, P.; Vasioukhin, V. Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000 Res.,, 2018 , 7(F1000 Faculty Rev ), 1173..
[http://dx.doi.org/10.12688/f1000research.14499.1] [PMID: 30135717]
[78]
Grasso, C.S.; Wu, Y.M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; Asangani, I.A.; Ateeq, B.; Chun, S.Y.; Siddiqui, J.; Sam, L.; Anstett, M.; Mehra, R.; Prensner, J.R.; Palanisamy, N.; Ryslik, G.A.; Vandin, F.; Raphael, B.J.; Kunju, L.P.; Rhodes, D.R.; Pienta, K.J.; Chinnaiyan, A.M.; Tomlins, S.A. The mutational landscape of lethal castration-resistant prostate cancer. Nature, 2012, 487(7406), 239-243.
[http://dx.doi.org/10.1038/nature11125] [PMID: 22722839]
[79]
Shtivelman, E.; Beer, T.M.; Evans, C.P. Molecular pathways and targets in prostate cancer. Oncotarget, 2014, 5(17), 7217-7259.
[http://dx.doi.org/10.18632/oncotarget.2406] [PMID: 25277175]
[80]
Tomlins, S.A.; Rhodes, D.R.; Perner, S.; Dhanasekaran, S.M.; Mehra, R.; Sun, X.W.; Varambally, S.; Cao, X.; Tchinda, J.; Kuefer, R.; Lee, C.; Montie, J.E.; Shah, R.B.; Pienta, K.J.; Rubin, M.A.; Chinnaiyan, A.M. Recurrent fusion of tmprss2 and ets transcription factor genes in prostate cancer. Science, 2005, 310(5748), 644-648.
[http://dx.doi.org/10.1126/science.1117679]
[81]
Fraser, M.; Sabelnykova, V.Y.; Yamaguchi, T.N.; Heisler, L.E.; Livingstone, J.; Huang, V.; Shiah, Y.J.; Yousif, F.; Lin, X.; Masella, A.P.; Fox, N.S.; Xie, M.; Prokopec, S.D.; Berlin, A.; Lalonde, E.; Ahmed, M.; Trudel, D.; Luo, X.; Beck, T.A.; Meng, A.; Zhang, J.; D’Costa, A.; Denroche, R.E.; Kong, H.; Espiritu, S.M.G.; Chua, M.L.K.; Wong, A.; Chong, T.; Sam, M.; Johns, J.; Timms, L.; Buchner, N.B.; Orain, M.; Picard, V.; Hovington, H.; Murison, A.; Kron, K.; Harding, N.J.; P’ng, C.; Houlahan, K.E.; Chu, K.C.; Lo, B.; Nguyen, F.; Li, C.H.; Sun, R.X.; de Borja, R.; Cooper, C.I.; Hopkins, J.F.; Govind, S.K.; Fung, C.; Waggott, D.; Green, J.; Haider, S.; Chan-Seng-Yue, M.A.; Jung, E.; Wang, Z.; Bergeron, A.; Dal Pra, A.; Lacombe, L.; Collins, C.C.; Sahinalp, C.; Lupien, M.; Fleshner, N.E.; He, H.H.; Fradet, Y.; Tetu, B.; van der Kwast, T.; McPherson, J.D.; Bristow, R.G.; Boutros, P.C. Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 2017, 541(7637), 359-364.
[http://dx.doi.org/10.1038/nature20788] [PMID: 28068672]
[82]
van Dessel, L.F.; van Riet, J.; Smits, M.; Zhu, Y.; Hamberg, P.; van der Heijden, M.S.; Bergman, A.M.; van Oort, I.M.; de Wit, R.; Voest, E.E.; Steeghs, N.; Yamaguchi, T.N.; Livingstone, J.; Boutros, P.C.; Martens, J.W.M.; Sleijfer, S.; Cuppen, E.; Zwart, W.; van de Werken, H.J.G.; Mehra, N.; Lolkema, M.P. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat. Commun., 2019, 10(1), 5251.
[http://dx.doi.org/10.1038/s41467-019-13084-7] [PMID: 31748536]
[83]
Gan, Y.; Li, Y.; Long, Z.; Lee, A.R.; Xie, N.; Lovnicki, J.M.; Tang, Y.; Chen, X.; Huang, J.; Dong, X. Roles of alternative rna splicing of the bif-1 gene by srrm4 during the development of treatment-induced neuroendocrine prostate cancer. EBioMedicine, 2018, 31, 267-275.
[http://dx.doi.org/10.1016/j.ebiom.2018.05.002] [PMID: 29759485]
[84]
Flores-Morales, A.; Bergmann, T.B.; Lavallee, C.; Batth, T.S.; Lin, D.; Lerdrup, M.; Friis, S.; Bartels, A.; Kristensen, G.; Krzyzanowska, A.; Xue, H.; Fazli, L.; Hansen, K.H.; Røder, M.A.; Brasso, K.; Moreira, J.M.; Bjartell, A.; Wang, Y.; Olsen, J.V.; Collins, C.C.; Iglesias-Gato, D. Proteogenomic characterization of patient-derived xenografts highlights the role of rest in neuroendocrine differentiation of castration-resistant prostate cancer. Clin. Cancer Res., 2019, 25(2), 595-608.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0729] [PMID: 30274982]
[85]
Armenia, J.; Wankowicz, S.A.M.; Liu, D.; Gao, J.; Kundra, R.; Reznik, E.; Chatila, W.K.; Chakravarty, D.; Han, G.C.; Coleman, I.; Montgomery, B.; Pritchard, C.; Morrissey, C.; Barbieri, C.E.; Beltran, H.; Sboner, A.; Zafeiriou, Z.; Miranda, S.; Bielski, C.M.; Penson, A.V.; Tolonen, C.; Huang, F.W.; Robinson, D.; Wu, Y.M.; Lonigro, R.; Garraway, L.A.; Demichelis, F.; Kantoff, P.W.; Taplin, M.E.; Abida, W.; Taylor, B.S.; Scher, H.I.; Nelson, P.S.; de Bono, J.S.; Rubin, M.A.; Sawyers, C.L.; Chinnaiyan, A.M.; Schultz, N.; Van Allen, E.M. PCF/SU2C International prostate cancer dream team. the long tail of oncogenic drivers in prostate cancer. Nat. Genet., 2018, 50(5), 645-651.
[http://dx.doi.org/10.1038/s41588-018-0078-z] [PMID: 29610475]
[86]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[87]
Latonen, L.; Afyounian, E.; Jylhä, A.; Nättinen, J.; Aapola, U.; Annala, M.; Kivinummi, K.K.; Tammela, T.T.L.; Beuerman, R.W.; Uusitalo, H.; Nykter, M.; Visakorpi, T. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat. Commun., 2018, 9(1), 1176.
[http://dx.doi.org/10.1038/s41467-018-03573-6] [PMID: 29563510]
[88]
Charmpi, K.; Guo, T.; Zhong, Q.; Wagner, U.; Sun, R.; Toussaint, N.C.; Fritz, C.E.; Yuan, C.; Chen, H.; Rupp, N.J.; Christiansen, A.; Rutishauser, D.; Rüschoff, J.H.; Fankhauser, C.; Saba, K.; Poyet, C.; Hermanns, T.; Oehl, K.; Moore, A.L.; Beisel, C.; Calzone, L.; Martignetti, L.; Zhang, Q.; Zhu, Y.; Martínez, M.R.; Manica, M.; Haffner, M.C.; Aebersold, R.; Wild, P.J.; Beyer, A. Proteogenomic heterogeneity of localized human prostate cancer progression. bioRxiv, 2020. (In press).
[89]
Drake, J.M.; Paull, E.O.; Graham, N.A.; Lee, J.K.; Smith, B.A.; Titz, B.; Stoyanova, T.; Faltermeier, C.M.; Uzunangelov, V.; Carlin, D.E.; Fleming, D.T.; Wong, C.K.; Newton, Y.; Sudha, S.; Vashisht, A.A.; Huang, J.; Wohlschlegel, J.A.; Graeber, T.G.; Witte, O.N.; Stuart, J.M. Phosphoproteome integration reveals patient-specific networks in prostate cancer. Cell, 2016, 166(4), 1041-1054.
[http://dx.doi.org/10.1016/j.cell.2016.07.007] [PMID: 27499020]
[90]
Drake, J.M.; Graham, N.A.; Lee, J.K.; Stoyanova, T.; Faltermeier, C.M.; Sud, S.; Titz, B.; Huang, J.; Pienta, K.J.; Graeber, T.G.; Witte, O.N. Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets. Proc. Natl. Acad. Sci. USA, 2013, 110(49), E4762-E4769.
[http://dx.doi.org/10.1073/pnas.1319948110]
[91]
Sinha, A.; Huang, V.; Livingstone, J.; Wang, J.; Fox, N.S.; Kurganovs, N.; Ignatchenko, V.; Fritsch, K.; Donmez, N.; Heisler, L.E.; Shiah, Y.J.; Yao, C.Q.; Alfaro, J.A.; Volik, S.; Lapuk, A.; Fraser, M.; Kron, K.; Murison, A.; Lupien, M.; Sahinalp, C.; Collins, C.C.; Tetu, B.; Masoomian, M.; Berman, D.M.; van der Kwast, T.; Bristow, R.G.; Kislinger, T.; Boutros, P.C. The proteogenomic landscape of curable prostate cancer. Cancer Cell, 2019, 35(3), 414-427.
[http://dx.doi.org/10.1016/j.ccell.2019.02.005] [PMID: 30889379]
[92]
Kwon, O.K.; Jeon, J.M.I.; Sung, E.; Na, A.Y.; Kim, S.J.; Lee, S. Comparative secretome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteomics. Cancer Genomics Proteomics, 2018, 15(4), 279-290.
[http://dx.doi.org/10.21873/cgp.20086] [PMID: 29976633]
[93]
Latonen, L.; Nykter, M.; Visakorpi, T. Proteomics of prostate cancer - revealing how cancer cells master their messy genomes. Oncoscience, 2018, 5(7-8), 216-217.
[http://dx.doi.org/10.18632/oncoscience.453] [PMID: 30234142]
[94]
Anamika, K.; Verma, S.; Jere, A.; Desai, A. Transcriptomic profiling using next generation sequencing - advances, advantages, and challenges;, InTechOpen: London, . 2016. .
[http://dx.doi.org/10.5772/61789]
[95]
Carleton, N.M.; Lee, G.; Madabhushi, A.; Veltri, R.W. Advances in the computational and molecular understanding of the prostate cancer cell nucleus. J. Cell. Biochem., 2018, 119(9), 7127-7142.
[http://dx.doi.org/10.1002/jcb.27156] [PMID: 29923622]
[96]
Jackson, D.H.; Banks, R.E. Banking of clinical samples for proteomic biomarker studies: a consideration of logistical issues with a focus on pre-analytical variation. Proteomics Clin. Appl., 2010, 4(3), 250-270.
[http://dx.doi.org/10.1002/prca.200900220] [PMID: 21137047]
[97]
Scher, H.I.; Morris, M.J.; Larson, S.; Heller, G. Validation and clinical utility of prostate cancer biomarkers. Nat. Rev. Clin. Oncol., 2013, 10(4), 225-234.
[http://dx.doi.org/10.1038/nrclinonc.2013.30] [PMID: 23459624]
[98]
Li, Y.; Vongsangnak, W.; Chen, L.; Shen, B. Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Med. Genomics, 2014, 7(Suppl. 1), S3.
[http://dx.doi.org/10.1186/1755-8794-7-S1-S3] [PMID: 25080090]
[99]
Ramnarine, V.R.; Kobelev, M.; Gibb, E.A.; Nouri, M.; Lin, D.; Wang, Y.; Buttyan, R.; Davicioni, E.; Zoubeidi, A.; Collins, C.C. The evolution of long noncoding rna acceptance in prostate cancer initiation, progression, and its clinical utility in disease management. Eur. Urol., 2019, 76(5), 546-559.
[100]
Boerrigter, E.; Groen, L.N.; Van Erp, N.P.; Verhaegh, G.W.; Schalken, J.A. Clinical utility of emerging biomarkers in prostate cancer liquid biopsies. Expert Rev. Mol. Diagn., 2020, 20(2), 219-230.
[http://dx.doi.org/10.1080/14737159.2019.1675515] [PMID: 31577907]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 22
Year: 2020
Page: [1968 - 1980]
Pages: 13
DOI: 10.2174/1568026620666200722112450
Price: $65

Article Metrics

PDF: 32
HTML: 7