Quantitative Structure-activity Relationships; Studying the Toxicity of Metal Nanoparticles

Author(s): Yuting Gao, Honglin Zhai, Xilin She*, Hongzong Si*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 27 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Metal nanomaterials are widely used in various fields, including targeted therapy and diagnosis. They are extensively used in targeted drug delivery and local treatments. However, the toxicity associated with these materials could lead to severe adverse health effects.

Methods: In this study, we investigated the relationships between the toxicity and structures of metal nanoparticles by using theoretical calculations and quantitative structure-activity relationships. Twenty four physicochemical descriptors and toxicity data of 23 types of metal nanoparticles were selected as samples, and a multiple linear regression model was established to obtain a toxicity prediction equation with 5 descriptors with an R2 of 0.910. Structures of copper nanoparticles were designed based on the model, and the structure with low toxicity was searched. The multiple nonlinear regression model was used to further improve the prediction accuracy.

Results: The R2 values were 0.995 in the training set and 0.988 in the test set, which indicated that the prediction accuracy improved. Based on the result of multiple linear regression, we designed copper nanoparticles with low toxicity.

Conclusion: The study confirmed that the quantitative structure-activity relationship was a reasonable method for predicting the toxicity and designing the structures with low toxicity of metal nanoparticles.

Keywords: Metal nanoparticles, Medical applications, Targeted drug delivery, Toxicity, Density functional theory, Quantitative structure-activity relationships.

Kumar, N.; Shah, V.; Walker, V.K. Perturbation of an arctic soil microbial community by metal nanoparticles. J. Hazard. Mater., 2011, 190(1-3), 816-822.
[http://dx.doi.org/10.1016/j.jhazmat.2011.04.005] [PMID: 21546158]
Govorov, A.O.; Richardson, H.H. Generating heat with metal nanoparticles. Nano Today, 2007, 2, 30-38.
Deng, J.; Ren, P.; Deng, D.; Yu, L.; Yang, F.; Bao, X. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci., 2014, 7, 1919-1923.
Tondelier, D.; Lmimouni, K.; Vuillaume, D.; Fery, C.; Haas, G. Metal/organic/metal bistable memory devices. Appl. Phys. Lett., 2004, 85, 5763-5765.
DeVries, G.A.; Brunnbauer, M.; Hu, Y.; Jackson, A.M.; Long, B.; Neltner, B.T.; Uzun, O.; Wunsch, B.H.; Stellacci, F. Divalent metal nanoparticles. Science, 2007, 315, 358-361.
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
Ko, S.H.; Chung, J.; Hotz, N.; Nam, K.H.; Grigoropoulos, C.P. Metal nanoparticle direct inkjet printing for low-temperature 3d micro metal structure fabrication. J. Micromech. Microeng., 2010, 20125010
Rezaee, Z.; Yadollahpour, A.; Bayati, V.; Negad Dehbashi, F. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study. Int. J. Nanomedicine, 2017, 12, 1431-1439.
[http://dx.doi.org/10.2147/IJN.S128996] [PMID: 28260889]
Yadollahpour, A. Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
Yadollahpour, A.; Jalilifar, M.; Rashidi, S. A review of the feasibility and clinical applications of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Int. J. Pharm. Technol., 2016, 8, 14737-14748.
Sabella, S.; Carney, R.P.; Brunetti, V.; Malvindi, M.A.; Al-Juffali, N.; Vecchio, G.; Janes, S.M.; Bakr, O.M.; Cingolani, R.; Stellacci, F.; Pompa, P.P. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 2014, 6(12), 7052-7061.
[http://dx.doi.org/10.1039/c4nr01234h] [PMID: 24842463]
Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(5), 544-568.
[http://dx.doi.org/10.1002/wnan.103] [PMID: 20681021]
Xia, Z.; Kwon, Y.M.; Mehmood, S.; Downing, C.; Jurkschat, K.; Murray, D.W. Characterization of metal-wear nanoparticles in pseudotumor following metal-on-metal hip resurfacing. Nanomedicine (Lond.), 2011, 7(6), 674-681.
[http://dx.doi.org/10.1016/j.nano.2011.08.002] [PMID: 21856277]
Park, S.; Lee, Y.K.; Jung, M.; Kim, K.H.; Chung, N.; Ahn, E.K.; Lim, Y.; Lee, K.H. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal. Toxicol., 2007, 19(Suppl. 1), 59-65.
[http://dx.doi.org/10.1080/08958370701493282] [PMID: 17886052]
Maggiora, G.M. On outliers and activity cliffs--why QSAR often disappoints. J. Chem. Inf. Model., 2006, 46(4), 1535-1535.
[http://dx.doi.org/10.1021/ci060117s] [PMID: 16859285]
Naceiri Mrabti, N.; Elhallaoui, M. QSAR study and molecular docking of benzimidazole derivatives as potent activators of amp-activated protein kinase. J. Taibah Univ. Sci., 2017, 11, 18-39.
Soffers, A.E.; Boersma, M.G.; Vaes, W.H.; Vervoort, J.; Tyrakowska, B.; Hermens, J.L.; Rietjens, I.M. Computer-modeling-based QSARs for analyzing experimental data on biotransformation and toxicity. Toxicol. In Vitro, 2001, 15(4-5), 539-551.
Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, H.M.; Toropov, A.; Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol., 2011, 6(3), 175-178.
[http://dx.doi.org/10.1038/nnano.2011.10] [PMID: 21317892]
Roy, D.R.; Parthasarathi, R.; Maiti, B.; Subramanian, V.; Chattaraj, P.K. Electrophilicity as a possible descriptor for toxicity prediction. Bioorg. Med. Chem., 2005, 13(10), 3405-3412.
[http://dx.doi.org/10.1016/j.bmc.2005.03.011] [PMID: 15848752]
Gu, C.; Jiang, X.; Ju, X.; Yu, G.; Bian, Y. QSARs for the toxicity of polychlorinated dibenzofurans through DFT-calculated descriptors of polarizabilities, hyperpolarizabilities and hyper-order electric moments. Chemosphere, 2007, 67(7), 1325-1334.
[http://dx.doi.org/10.1016/j.chemosphere.2006.10.057] [PMID: 17184820]
Ousaa, A.; Elidrissi, B.; Ghamali, M.; Chtita, S.; Bouachrine, M.; Lakhlifi, T. Acute toxicity of halogenated phenols: combining DFT and QSAR studies. J. Comput. Methods Mol. Des., 2014, 4, 10-18.
Mpourmpakis, G.; Andriotis, A.N.; Vlachos, D.G. Identification of descriptors for the CO interaction with metal nanoparticles. Nano Lett., 2010, 10(3), 1041-1045.
[http://dx.doi.org/10.1021/nl904299c] [PMID: 20151700]
Ahmadi, M.; Mistry, H.; Roldan Cuenya, B. Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett., 2016, 7(17), 3519-3533.
[http://dx.doi.org/10.1021/acs.jpclett.6b01198] [PMID: 27530730]
Sathya, V.; Ramesh, M.; Poopal, R.K.; Dinesh, B. Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate: Gill Na+/K+-ATPase, plasma electrolytes and biochemical alterations. Fish Shellfish Immunol., 2012, 32(5), 862-868.
[http://dx.doi.org/10.1016/j.fsi.2012.02.014] [PMID: 22366066]
Alwan, S.F.; Hadi, A.A.; Shokr, A.E. Alterations in hematological parameters of fresh water fish, tilapia zillii, exposed to aluminum. J. Sci. App., 2009, 3(1), 12-19.
Mearns, A.J.; Reish, D.J.; Oshida, P.S.; Ginn, T.; Rempel-Hester, M.A.; Arthur, C.; Rutherford, N.; Pryor, R. Effects of pollution on marine organisms. Water Environ. Res., 2015, 87(10), 1718-1816.
[http://dx.doi.org/10.2175/106143015X14338845156380] [PMID: 26420104]
Chromcova, L.; Blahova, J.; Zivna, D.; Plhalova, L.; Casuscelli di Tocco, F.; Divisova, L.; Prokes, M.; Faggio, C.; Tichy, F.; Svobodova, Z. NeemAzal T/S-Toxicity to early-life stages of common carp (Cyprinus Carpio L.). Vet. Med. (Praha), 2015, 60, 23-30.
Ernst, W.R.; Garside, E.T. Lethal effects of vanadium to two life stages of brook trout salvelinus fontinalis (mitchill). Can. J. Zool., 1987, 65, 628-634.
Drastichová, J.; Svobodová, Z.; Lusková, V.; Máchová, J. Effect of cadmium on hematological indices of common carp (Cyprinus carpio L.). Bull. Environ. Contam. Toxicol., 2004, 72(4), 725-732.
[http://dx.doi.org/10.1007/s00128-004-0305-4] [PMID: 15199986]
Alam, M.K.; Maughan, O.E. The effect of malathion, diazinon, and various concentrations of zinc, copper, nickel, lead, iron, and mercury on fish. Biol. Trace Elem. Res., 1992, 34(3), 225-236.
[http://dx.doi.org/10.1007/BF02783678] [PMID: 1384613]
Yang, J.L.; Chen, L.H. Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of taiwan. J. Elem., 2018, 23, 191-199.
Ferreira, P.F.; Wolke, R.E. Acute toxicity of platinum to coho salmon (oncorhynchus kisutch). Mar. Pollut. Bull., 1979, 10, 79-83.
Gravenmier, J.J.; Johnston, D.W.; Arnold, W.R. Acute toxicity of vanadium to the threespine stickleback, Gasterosteus aculeatus. Environ. Toxicol., 2005, 20(1), 18-22.
[http://dx.doi.org/10.1002/tox.20073] [PMID: 15712322]
McKim, J.M.; Christensen, G.M.; Tucker, J.H.; Benoit, D.A.; Lewis, M.J. Effects of pollution on freshwater fish. J. Water Pollut. Control Fed., 1974, 46(6), 1540-1591.
Moore, J.W. Inorganic contaminants of surface water; springer series on environmental management; Springer New York: New York, 1991.
Verge, C.; Moreno, A.; Bravo, J.; Berna, J.L. Influence of water hardness on the bioavailability and toxicity of linear alkylbenzene sulphonate (LAS). Chemosphere, 2001, 44(8), 1749-1757.
[http://dx.doi.org/10.1016/S0045-6535(00)00574-9] [PMID: 11534906]
Shaw, T.L.; Brown, V.M. The toxicity of some forms of copper to rainbow trout. Water Res., 1974, 8, 377-382.
Nrior, R.R.; Owhonda, R.C. Comparative ecotoxicological strength of spent mobile phone batteries blackberry and nokia on bioassay evaluator nitrobacter sp. Int. J. Geogr. Environ. Manag., 2017, 3, 37-46.
Reish, D.J.; Kauwling, T.J.; Mearns, A.J.; Oshida, P.S.; Rossi, S.S.; Wilkes, F.G.; Ray, M.J. Marine and Estuarine Pollution. J. Water Pollut. Control Fed., 1977, 46(6), 1316-1340.
Buikema, A.L., Jr; Benfield, E.F.; Niederlehner, B.R. Effects of Pollution on Freshwater Invertebrates. J. Water Pollut. Control Fed., 1981, 53, 1007-1015.
Hine, C.H.; Lyons, J.; Eisenlord, G.H.; Wright, J.A.; Long, J.E. Three-month inhalation exposure study with methane sulfonylfluoride. Am. Ind. Hyg. Assoc. J., 1979, 40(11), 986-992.
[http://dx.doi.org/10.1080/15298667991430596] [PMID: 532785]
So, S.S.; Karplus, M. A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors. J. Comput. Aided Mol. Des., 1999, 13(3), 243-258.
[http://dx.doi.org/10.1023/A:1008073215919] [PMID: 10216832]
Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med., 2002, 21(11), 1539-1558.
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant., 2007, 41, 673-690.
Daubert, T.E.; Danner, R.P. Physical and thermodynamic properties of pure compounds: data compilation title. Taylor Fr. Washingt. D., 2001, C, 1998.
Domalski, E.S.; Hearing, E.D. Heat capacities and entropies of organic compounds in the condensed phase. J. Phys. Chem. Ref. Data, 1996, 25, 1-525.
Alcock, C.B.; Itkin, V.P.; Horrigan, M.K. Vapour pressure equations for the metallic elements: 298-2500k. Can. Metall. Q., 1984, 23, 309-313.
Chairuangkitti, P.; Lawanprasert, S.; Roytrakul, S.; Aueviriyavit, S.; Phummiratch, D.; Kulthong, K.; Chanvorachote, P.; Maniratanachote, R. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol. In Vitro, 2013, 27(1), 330-338.
[http://dx.doi.org/10.1016/j.tiv.2012.08.021] [PMID: 22940466]
Sayes, C.M.; Liang, F.; Hudson, J.L.; Mendez, J.; Guo, W.; Beach, J.M.; Moore, V.C.; Doyle, C.D.; West, J.L.; Billups, W.E.; Ausman, K.D.; Colvin, V.L. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett., 2006, 161(2), 135-142.
[http://dx.doi.org/10.1016/j.toxlet.2005.08.011] [PMID: 16229976]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. nanomedicine nanotechnology. Biol. Med., 2007, 3, 95-101.
Qin, L.T.; Liu, S.S.; Chen, F.; Xiao, Q.F.; Wu, Q.S. Chemometric model for predicting retention indices of constituents of essential oils. Chemosphere, 2013, 90(2), 300-305.
[http://dx.doi.org/10.1016/j.chemosphere.2012.07.010] [PMID: 22868195]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [2506 - 2517]
Pages: 12
DOI: 10.2174/1568026620666200722112113
Price: $65

Article Metrics

PDF: 15
PRC: 2