Matrix Metalloproteinases (MMPs) in Targeted Drug Delivery: Synthesis of a Potent and Highly Selective Inhibitor against Matrix Metalloproteinase- 7

Author(s): Ling-Li Wang, Bing Zhang, Ming-Hua Zheng*, Yu-Zhong Xie, Chang-Jiang Wang, Jing-Yi Jin*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 27 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that play a key role in both physiological and pathological tissue degradation. MMPs have reportedly shown great potentials in the degradation of the Extracellular Matrix (ECM), have shown great potentials in targeting bioactive and imaging agents in cancer treatment. MMPs could provoke Epithelial to Mesenchymal Transition (EMT) of cancer cells and manipulate their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Therefore, targeting and particularly inhibiting MMPs within the tumor microenvironment is an effective strategy for cancer treatment. Based on this idea, different MMP inhibitors (MMPIs) have been developed to manipulate the tumor microenvironment towards conditions appropriate for the actions of antitumor agents. Studies are ongoing to improve the selectivity and specificity of MMPIs. Structural optimization has facilitated the discovery of selective inhibitors of the MMPs. However, so far no selective inhibitor for MMP-7 has been proposed.

Aims: This study aims to comprehensively review the potentials and advances in applications of MMPs particularly MMP-7 in targeted cancer treatment approaches with the main focus on targeted drug delivery. Different targeting strategies for manipulating and inhibiting MMPs for the treatment of cancer are discussed. MMPs are upregulated at all stages of expression in cancers. Different MMP subtypes have shown significant targeting applicability at the genetic, protein, and activity levels in both physiological and pathophysiological conditions in a variety of cancers. The expression of MMPs significantly increases at advanced cancer stages, which can be used for controlled release in cancers in advance stages.

Methods: Moreover, this study presents the synthesis and characteristics of a new and highly selective inhibitor against MMP-7 and discusses its applications in targeted drug delivery systems for therapeutics and diagnostics modalities.

Results: Our findings showed that the structure of the inhibitor P3’ side chains play the crucial role in developing an optimized MMP-7 inhibitor with high selectivity and significant degradation activities against ECM.

Conclusion: Optimized NDC can serve as a highly potent and selective inhibitor against MMP-7 following screening and optimization of the P3’ side chains, with a Ki of 38.6 nM and an inhibitory selectivity of 575 of MMP-7 over MMP-1.

Keywords: Matrix metalloproteinases (MMPs), MMP-7, MMP inhibitors (MMPIs), Cancer treatment, Targeted drug delivery, Inhibitor.

[1]
Isaacson, K.J.; Martin, J.M.; Subrahmanyam, N.B.; Ghandehari, H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J. Control. Release, 2017, 259, 62-75.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.034] [PMID: 28153760]
[2]
Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis., 2015, 2(1), 26-34.
[http://dx.doi.org/10.1016/j.gendis.2014.12.002] [PMID: 26097889]
[3]
Jacob, A.; Prekeris, R. The regulation of MMP targeting to invadopodia during cancer metastasis. Front. Cell Dev. Biol., 2015, 3, 4.
[http://dx.doi.org/10.3389/fcell.2015.00004] [PMID: 25699257]
[4]
Yao, Q.; Kou, L.; Tu, Y.; Zhu, L. MMP-Responsive ‘smart’ drug delivery and tumor targeting. Trends Pharmacol. Sci., 2018, 39(8), 766-781.
[http://dx.doi.org/10.1016/j.tips.2018.06.003] [PMID: 30032745]
[5]
Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol., 2012, 196(4), 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[6]
Jackson, H.W.; Defamie, V.; Waterhouse, P.; Khokha, R. TIMPs: versatile extracellular regulators in cancer. Nat. Rev. Cancer, 2017, 17(1), 38-53.
[http://dx.doi.org/10.1038/nrc.2016.115] [PMID: 27932800]
[7]
Milia-Argeiti, E.; Huet, E.; Labropoulou, V.T.; Mourah, S.; Fenichel, P.; Karamanos, N.K.; Menashi, S.; Theocharis, A.D. Imbalance of MMP-2 and MMP-9 expression versus TIMP-1 and TIMP-2 reflects increased invasiveness of human testicular germ cell tumours. Int. J. Androl., 2012, 35(6), 835-844.
[http://dx.doi.org/10.1111/j.1365-2605.2012.01289.x] [PMID: 22712465]
[8]
Huang, S.H.; Law, C.H.; Kuo, P.H.; Hu, R.Y.; Yang, C.C.; Chung, T.W.; Li, J.M.; Lin, L.H.; Liu, Y.C.; Liao, E.C.; Tsai, Y.T.; Wei, Y.S.; Lin, C.C.; Chang, C.W.; Chou, H.C.; Wang, W.C.; Chang, M.D.T.; Wang, L.H.; Kung, H.J.; Chan, H.L.; Lyu, P.C. MMP-13 is involved in oral cancer cell metastasis. Oncotarget, 2016, 7(13), 17144-17161.
[http://dx.doi.org/10.18632/oncotarget.7942] [PMID: 26958809]
[9]
Vosseler, S.; Lederle, W.; Airola, K.; Obermueller, E.; Fusenig, N.E.; Mueller, M.M. Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. Int. J. Cancer, 2009, 125(10), 2296-2306.
[http://dx.doi.org/10.1002/ijc.24589] [PMID: 19610062]
[10]
Klein, G.; Vellenga, E.; Fraaije, M.W.; Kamps, W.A.; de Bont, E.S.J.M. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol., 2004, 50(2), 87-100.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.001] [PMID: 15157658]
[11]
Piperigkou, Z.; Manou, D.; Karamanou, K.; Theocharis, A.D. Strategies to target matrix metalloproteinases as therapeutic approach in cancer. In:Methods in Molecular Biology; Humana Press Inc.: Totowa, 2018, Vol. 1731, pp. 325-348.
[12]
Tauro, M.; McGuire, J.; Lynch, C.C. New approaches to selectively target cancer-associated matrix metalloproteinase activity. Cancer Metastasis Rev., 2014, 33(4), 1043-1057.
[http://dx.doi.org/10.1007/s10555-014-9530-4] [PMID: 25325988]
[13]
Barbouri, D.; Afratis, N.; Gialeli, C.; Vynios, D.H.; Theocharis, A.D.; Karamanos, N.K. Syndecans as modulators and potential pharmacological targets in cancer progression. Front. Oncol., 2014, 4, 4.
[http://dx.doi.org/10.3389/fonc.2014.00004] [PMID: 24551591]
[14]
Nuti, E.; Tuccinardi, T.; Rossello, A. Matrix metalloproteinase inhibitors: new challenges in the era of post broad-spectrum inhibitors. Curr. Pharm. Des., 2007, 13(20), 2087-2100.
[http://dx.doi.org/10.2174/138161207781039706] [PMID: 17627541]
[15]
Tauro, M.; Shay, G.; Sansil, S.S.; Laghezza, A.; Tortorella, P.; Neuger, A.M.; Soliman, H.; Lynch, C.C.; Lynch, C.C. Bone-seeking matrix metalloproteinase-2 inhibitors prevent bone metastatic breast cancer growth. Mol. Cancer Ther., 2017, 16(3), 494-505.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0315-T] [PMID: 28069877]
[16]
Fingleton, B. Matrix metalloproteinases as valid clinical targets. Curr. Pharm. Des., 2007, 13(3), 333-346.
[http://dx.doi.org/10.2174/138161207779313551] [PMID: 17313364]
[17]
Dechaphunkul, A.; Phukaoloun, M.; Kanjanapradit, K.; Graham, K.; Ghosh, S.; Santos, C.; Mackey, J.R. Prognostic significance of tissue inhibitor of metalloproteinase-1 in breast cancer. Int. J. Breast Cancer, 2012, 2012290854
[http://dx.doi.org/10.1155/2012/290854] [PMID: 22988515]
[18]
Levin, M.; Udi, Y.; Solomonov, I.; Sagi, I. Next generation matrix metalloproteinase inhibitors - Novel strategies bring new prospects. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11 Pt A), 1927-1939.
[http://dx.doi.org/10.1016/j.bbamcr.2017.06.009] [PMID: 28636874]
[19]
Rodríguez, D.; Morrison, C.J.; Overall, C.M. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta, 2010, 1803(1), 39-54.
[http://dx.doi.org/10.1016/j.bbamcr.2009.09.015] [PMID: 19800373]
[20]
Kalia, M. Personalized oncology: recent advances and future challenges. Metabolism, 2013, 62(Suppl. 1), S11-S14.
[http://dx.doi.org/10.1016/j.metabol.2012.08.016] [PMID: 22999010]
[21]
Taghipour-Sheshdeh, A.; Nemati-Zargaran, F.; Zarepour, N.; Tahmasebi, P.; Saki, N.; Tabatabaiefar, M.A.; Mohammadi-Asl, J.; Hashemzadeh-Chaleshtori, M. A novel pathogenic variant in the MARVELD2 gene causes autosomal recessive non-syndromic hearing loss in an Iranian family. Genomics, 2019, 111(4), 840-848.
[http://dx.doi.org/10.1016/j.ygeno.2018.05.008] [PMID: 29752989]
[22]
Soheila, N.; Nastaran, R.; Maryam, S.; Nader, S. The diagnostic value of the p53 tumor marker as a prognostic factor in patients with squamous cell carcinoma of the larynx. Biomed. Pharmacol. J., 2015, 8, 9-14.
[http://dx.doi.org/10.13005/bpj/549]
[23]
Maskos, K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie, 2005, 87(3-4), 249-263.
[http://dx.doi.org/10.1016/j.biochi.2004.11.019] [PMID: 15781312]
[24]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[25]
Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer, 2002, 2(3), 161-174.
[http://dx.doi.org/10.1038/nrc745] [PMID: 11990853]
[26]
Verma, R.P.; Hansch, C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg. Med. Chem., 2007, 15(6), 2223-2268.
[http://dx.doi.org/10.1016/j.bmc.2007.01.011] [PMID: 17275314]
[27]
Menshikov, M.; Elizarova, E.; Plakida, K.; Timofeeva, A.; Khaspekov, G.; Beabealashvilli, R.; Bobik, A.; Tkachuk, V. Urokinase upregulates matrix metalloproteinase-9 expression in THP-1 monocytes via gene transcription and protein synthesis. Biochem. J., 2002, 367(Pt 3), 833-839.
[http://dx.doi.org/10.1042/bj20020663] [PMID: 12117412]
[28]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[29]
Marchenko, G.N.; Ratnikov, B.I.; Rozanov, D.V.; Godzik, A.; Deryugina, E.I.; Strongin, A.Y. Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem. J., 2001, 356(Pt 3), 705-718.
[http://dx.doi.org/10.1042/bj3560705] [PMID: 11389678]
[30]
Zhong, Y.; Lu, Y-T.; Sun, Y.; Shi, Z-H.; Li, N-G.; Tang, Y-P.; Duan, J-A. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin. Drug Discov., 2018, 13(1), 75-87.
[http://dx.doi.org/10.1080/17460441.2018.1398732] [PMID: 29088927]
[31]
Vihinen, P.; Kähäri, V-M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer, 2002, 99(2), 157-166.
[http://dx.doi.org/10.1002/ijc.10329] [PMID: 11979428]
[32]
Georgiadis, D.; Yiotakis, A. Specific targeting of metzincin family members with small-molecule inhibitors: progress toward a multifarious challenge. Bioorg. Med. Chem., 2008, 16(19), 8781-8794.
[http://dx.doi.org/10.1016/j.bmc.2008.08.058] [PMID: 18790648]
[33]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17, 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[34]
Xie, B.; Lin, W.; Ye, J.; Wang, X.; Zhang, B.; Xiong, S.; Li, H.; Tan, G. DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. J. Exp. Clin. Cancer Res., 2015, 34, 101.
[http://dx.doi.org/10.1186/s13046-015-0218-6] [PMID: 26362312]
[35]
Keles, D.; Arslan, B.; Terzi, C.; Tekmen, I.; Dursun, E.; Altungoz, O.; Oktay, G. Expression and activity levels of matrix metalloproteinase-7 and in situ localization of caseinolytic activity in colorectal cancer. Clin. Biochem., 2014, 47(13-14), 1265-1271.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.06.004] [PMID: 24930385]
[36]
Hirte, H.; Vergote, I.B.; Jeffrey, J.R.; Grimshaw, R.N.; Coppieters, S.; Schwartz, B.; Tu, D.; Sadura, A.; Brundage, M.; Seymour, L. A phase III randomized trial of BAY 12-9566 (tanomastat) as maintenance therapy in patients with advanced ovarian cancer responsive to primary surgery and paclitaxel/platinum containing chemotherapy: a National Cancer Institute of Canada Clinical Trials Group Study. Gynecol. Oncol., 2006, 102(2), 300-308.
[http://dx.doi.org/10.1016/j.ygyno.2005.12.020] [PMID: 16442153]
[37]
Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim. Biophys. Acta, 2010, 1803(1), 20-28.
[http://dx.doi.org/10.1016/j.bbamcr.2009.04.003] [PMID: 19374923]
[38]
Piperigkou, Z.; Mohr, B.; Karamanos, N.; Götte, M. Shed proteoglycans in tumor stroma. Cell Tissue Res., 2016, 365(3), 643-655.
[http://dx.doi.org/10.1007/s00441-016-2452-4] [PMID: 27365088]
[39]
Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer, 2006, 6(5), 392-401.
[http://dx.doi.org/10.1038/nrc1877] [PMID: 16572188]
[40]
Bhowmick, N.A.; Neilson, E.G.; Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature, 2004, 432(7015), 332-337.
[http://dx.doi.org/10.1038/nature03096] [PMID: 15549095]
[41]
Huang, S.; Shao, K.; Liu, Y.; Kuang, Y.; Li, J.; An, S.; Guo, Y.; Ma, H.; Jiang, C. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano, 2013, 7(3), 2860-2871.
[http://dx.doi.org/10.1021/nn400548g] [PMID: 23451830]
[42]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[43]
Augustin, S.; Berard, M.; Kellaf, S.; Peyri, N.; Fauvel-Lafève, F.; Legrand, C.; He, L.; Crépin, M. Matrix metalloproteinases are involved in both type I (apoptosis) and type II (autophagy) cell death induced by sodium phenylacetate in MDA-MB-231 breast tumour cells. Anticancer Res., 2009, 29(4), 1335-1343.
[PMID: 19414384]
[44]
Blavier, L.; Lazaryev, A.; Shi, X.H.; Dorey, F.J.; Shackleford, G.M.; DeClerck, Y.A. Stromelysin-1 (MMP-3) is a target and a regulator of Wnt1-induced epithelial-mesenchymal transition (EMT). Cancer Biol. Ther., 2010, 10(2), 198-208.
[http://dx.doi.org/10.4161/cbt.10.2.12193] [PMID: 20534975]
[45]
Bourboulia, D.; Stetler-Stevenson, W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin. Cancer Biol., 2010, 20(3), 161-168.
[http://dx.doi.org/10.1016/j.semcancer.2010.05.002] [PMID: 20470890]
[46]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[47]
Hu, Q.; Sun, W.; Wang, C.; Gu, Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev., 2016, 98, 19-34.
[http://dx.doi.org/10.1016/j.addr.2015.10.022] [PMID: 26546751]
[48]
Jin, S.; Ye, K. Nanoparticle-mediated drug delivery and gene therapy. Biotechnol. Prog., 2007, 23(1), 32-41.
[http://dx.doi.org/10.1021/bp060348j] [PMID: 17269667]
[49]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[50]
Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov., 2014, 13(11), 813-827.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[51]
Blum, A.P.; Kammeyer, J.K.; Rush, A.M.; Callmann, C.E.; Hahn, M.E.; Gianneschi, N.C. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc., 2015, 137(6), 2140-2154.
[http://dx.doi.org/10.1021/ja510147n] [PMID: 25474531]
[52]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[53]
Geethika, B.; Sathak, S.S.M.; Vishal, L.A.; Lakshmi, Green synthesis of silver nanoparticles from heartwood extracts-family of fabaceae Drug Invention Today, 10, , 3210-3213.
[54]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[55]
Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev., 2013, 65(1), 104-120.
[http://dx.doi.org/10.1016/j.addr.2012.10.003] [PMID: 23088863]
[56]
Yadollahpour, A.; Rashidi, S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient. J. Chem., 2015, 31, 25-30.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.03]
[57]
Torchilin, V.; Tu, Y.; Zhu, L. Matrix Metalloproteinase-Sensitive Nanocarriers. In:Smart Pharmaceutical Nanocarriers; Imperial College Press: London, 2016, pp. 83-116.
[http://dx.doi.org/10.1142/p1014]
[58]
Turk, B.E.; Huang, L.L.; Piro, E.T.; Cantley, L.C. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol., 2001, 19(7), 661-667.
[http://dx.doi.org/10.1038/90273] [PMID: 11433279]
[59]
Kos, B.; Vásquez, J.L.; Miklavčič, D.; Hermann, G.G.G.; Gehl, J. Investigation of the mechanisms of action behind Electromotive Drug Administration (EMDA). PeerJ, 2016, 4e2309
[http://dx.doi.org/10.7717/peerj.2309] [PMID: 27635313]
[60]
Yadollahpour, A. Magnetic nanoparticles in medicine: A review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[61]
Rezaee, Z.; Yadollahpour, A.; Bayati, V.; Negad Dehbashi, F. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study. Int. J. Nanomedicine, 2017, 12, 1431-1439.
[http://dx.doi.org/10.2147/IJN.S128996] [PMID: 28260889]
[62]
Neuberger, T.; Schöpf, B.; Hofmann, H.; Hofmann, M.; Von Rechenberg, B. superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater., 2005, 293, 483-496.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.064]
[63]
Figueira, R.C.S.; Gomes, L.R.; Neto, J.S.; Silva, F.C.; Silva, I.D.C.G.; Sogayar, M.C. Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer, 2009, 9, 20.
[http://dx.doi.org/10.1186/1471-2407-9-20] [PMID: 19144199]
[64]
Baumann, P.; Zigrino, P.; Mauch, C.; Breitkreutz, D.; Nischt, R. Membrane-type 1 matrix metalloproteinase-mediated progelatinase A activation in non-tumorigenic and tumorigenic human keratinocytes. Br. J. Cancer, 2000, 83(10), 1387-1393.
[http://dx.doi.org/10.1054/bjoc.2000.1454] [PMID: 11044366]
[65]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[66]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278(1), 16-27.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07919.x] [PMID: 21087457]
[67]
Kuhlmann, K.F.D.; van Till, J.W.O.; Boermeester, M.A.; de Reuver, P.R.; Tzvetanova, I.D.; Offerhaus, G.J.A.; Ten Kate, F.J.W.; Busch, O.R.C.; van Gulik, T.M.; Gouma, D.J.; Crawford, H.C. Evaluation of matrix metalloproteinase 7 in plasma and pancreatic juice as a biomarker for pancreatic cancer. Cancer Epidemiol. Biomarkers Prev., 2007, 16(5), 886-891.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0779] [PMID: 17507610]
[68]
Jiang, W.; Zhang, Y.; Kane, K.T.; Collins, M.A.; Simeone, D.M.; di Magliano, M.P.; Nguyen, K.T. CD44 regulates pancreatic cancer invasion through MT1-MMP. Mol. Cancer Res., 2015, 13(1), 9-15.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0076] [PMID: 25566991]
[69]
Tian, M.; Cui, Y.Z.; Song, G.H.; Zong, M.J.; Zhou, X.Y.; Chen, Y.; Han, J.X. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer, 2008, 8, 241.
[http://dx.doi.org/10.1186/1471-2407-8-241] [PMID: 18706098]
[70]
Gong, L.; Wu, D.; Zou, J.; Chen, J.; Chen, L.; Chen, Y.; Ni, C.; Yuan, H. Prognostic impact of serum and tissue MMP-9 in non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget, 2016, 7(14), 18458-18468.
[http://dx.doi.org/10.18632/oncotarget.7607] [PMID: 26918342]
[71]
Suzuki, M.; Iizasa, T.; Fujisawa, T.; Baba, M.; Yamaguchi, Y.; Kimura, H.; Suzuki, H. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in non-small-cell lung cancer. Invasion Metastasis, 1998-1999, 18(3), 134-141.
[http://dx.doi.org/10.1159/000024506] [PMID: 10474026]
[72]
Liu, D.; Nakano, J.; Ishikawa, S.; Yokomise, H.; Ueno, M.; Kadota, K.; Urushihara, M.; Huang, C.L. Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer, 2007, 58(3), 384-391.
[http://dx.doi.org/10.1016/j.lungcan.2007.07.005] [PMID: 17728005]
[73]
Ii, M.; Yamamoto, H.; Adachi, Y.; Maruyama, Y.; Shinomura, Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp. Biol. Med. (Maywood), 2006, 231(1), 20-27.
[http://dx.doi.org/10.1177/153537020623100103] [PMID: 16380641]
[74]
Zitka, O.; Kukacka, J.; Krizkova, S.; Huska, D.; Adam, V.; Masarik, M.; Prusa, R.; Kizek, R. Matrix metalloproteinases. Curr. Med. Chem., 2010, 17(31), 3751-3768.
[http://dx.doi.org/10.2174/092986710793213724] [PMID: 20846107]
[75]
Konstantinopoulos, P. Karamouzis, M.; Papatsoris, A.; Papavassiliou, A. Matrix Metalloproteinase inhibitors as anticancer agents. Int. J. Biochem. Cell Biol., 2008, 40, 1156-1168.
[http://dx.doi.org/10.1016/j.biocel.2007.11.007]
[76]
Crawford, H.C.; Scoggins, C.R.; Washington, M.K.; Matrisian, L.M.; Leach, S.D. Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J. Clin. Invest., 2002, 109(11), 1437-1444.
[http://dx.doi.org/10.1172/JCI0215051] [PMID: 12045257]
[77]
Park, H-D.; Kang, E-S.; Kim, J-W.; Lee, K-T.; Lee, K.H.; Park, Y.S.; Park, J-O.; Lee, J.; Heo, J.S.; Choi, S.H.; Choi, D.W.; Kim, S.; Lee, J.K.; Lee, S-Y. Serum CA19-9, cathepsin D, and matrix metalloproteinase-7 as a diagnostic panel for pancreatic ductal adenocarcinoma. Proteomics, 2012, 12(23-24), 3590-3597.
[http://dx.doi.org/10.1002/pmic.201200101] [PMID: 23065739]
[78]
El Demery, M.; Demirdjian-Sarkissian, G.; Thezenas, S.; Jacot, W.; Laghzali, Y.; Darbouret, B.; Culine, S.; Rebillard, X.; Lamy, P-J. Serum Matrix Metalloproteinase-7 is an independent prognostic biomarker in advanced bladder cancer. Clin. Transl. Med., 2014, 3, 31.
[http://dx.doi.org/10.1186/s40169-014-0031-4] [PMID: 25984271]
[79]
Overall, C.M.; Kleifeld, O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer, 2006, 6(3), 227-239.
[http://dx.doi.org/10.1038/nrc1821] [PMID: 16498445]
[80]
Overall, C.M.; Kleifeld, O. Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br. J. Cancer, 2006, 94(7), 941-946.
[http://dx.doi.org/10.1038/sj.bjc.6603043] [PMID: 16538215]
[81]
Hu, J.; Van den Steen, P.E.; Sang, Q-X.A.; Opdenakker, G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Discov., 2007, 6(6), 480-498.
[http://dx.doi.org/10.1038/nrd2308] [PMID: 17541420]
[82]
Giaccone, G.; Shepherd, F.; Debruyne, C.; Hirsh, V.; Smylie, M.; Rubin, S.; Martins, H.; Lamont, A.; Krzakowski, M.; Zee, B. Final results of a double-blind placebo-controlled study of adjuvant marimastat in small cell lung cancer (sclc) patients responding to standard therapy. Eur. J. Cancer, 2001, 37, S152.
[http://dx.doi.org/10.1016/S0959-8049(01)81047-9]
[83]
Steward, W.P. Marimastat (BB2516): current status of development. Cancer Chemother. Pharmacol., 1999, 43(Suppl.), S56-S60.
[http://dx.doi.org/10.1007/s002800051099] [PMID: 10357560]
[84]
Holmbeck, K.; Bianco, P.; Caterina, J.; Yamada, S.; Kromer, M.; Kuznetsov, S.A.; Mankani, M.; Robey, P.G.; Poole, A.R.; Pidoux, I.; Ward, J.M.; Birkedal-Hansen, H. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell, 1999, 99(1), 81-92.
[http://dx.doi.org/10.1016/S0092-8674(00)80064-1] [PMID: 10520996]
[85]
Hutchinson, J.W.; Tierney, G.M.; Parsons, S.L.; Davis, T.R. Dupuytren’s disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J. Bone Joint Surg. Br., 1998, 80(5), 907-908.
[http://dx.doi.org/10.1302/0301-620X.80B5.0800907] [PMID: 9768907]
[86]
Pirard, B. Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov. Today, 2007, 12(15-16), 640-646.
[http://dx.doi.org/10.1016/j.drudis.2007.06.003] [PMID: 17706545]
[87]
Devel, L.; Czarny, B.; Beau, F.; Georgiadis, D.; Stura, E.; Dive, V. Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie, 2010, 92(11), 1501-1508.
[http://dx.doi.org/10.1016/j.biochi.2010.07.017] [PMID: 20696203]
[88]
Sela-Passwell, N.; Rosenblum, G.; Shoham, T.; Sagi, I. Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition? Biochim. Biophys. Acta, 2010, 1803(1), 29-38.
[http://dx.doi.org/10.1016/j.bbamcr.2009.04.010] [PMID: 19406173]
[89]
Choi, J.Y.; Fuerst, R.; Knapinska, A.M.; Taylor, A.B.; Smith, L.; Cao, X.; Hart, P.J.; Fields, G.B.; Roush, W.R. Structure-based design and synthesis of potent and selective matrix metalloproteinase 13 inhibitors. J. Med. Chem., 2017, 60(13), 5816-5825.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00514] [PMID: 28653849]
[90]
Nara, H.; Kaieda, A.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective matrix metalloproteinase (mmp)-13 inhibitors with a 1,2,4-triazol-3-yl moiety as a zinc binding group using a structure-based design approach. J. Med. Chem., 2017, 60(2), 608-626.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01007] [PMID: 279669]
[91]
Pirard, B.; Matter, H. Matrix metalloproteinase target family landscape: a chemometrical approach to ligand selectivity based on protein binding site analysis. J. Med. Chem., 2006, 49(1), 51-69.
[http://dx.doi.org/10.1021/jm050363f] [PMID: 16392792]
[92]
Li, M-H.; Zhang, Y-F.; Tian, H-R.; Zheng, M-H.; Yang, M-Y.; Fang, H-L.; Xie, Y-Z.; Jin, J-Y. Nitro-Based Selective Inhibitors against Matrix Metalloproteinase-7 over Matrix Metalloproteinase-1. RSC Advances, 2015, 5, 104725-104732.
[http://dx.doi.org/10.1039/C5RA22271K]
[93]
Ding, D.; Lichtenwalter, K.; Pi, H.; Mobashery, S.; Chang, M. Characterization of a selective inhibitor for matrix metalloproteinase-8 (mmp-8). MedChemComm, 2014, 5, 1381-1383.
[http://dx.doi.org/10.1039/C4MD00172A]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 27
Year: 2020
Page: [2459 - 2471]
Pages: 13
DOI: 10.2174/1568026620666200722104928
Price: $65

Article Metrics

PDF: 29
HTML: 4
EPUB: 2
PRC: 2