Development of N,N-disulfo-1,1,3,3-tetramethylguanidinium Chlorometallates as Heterogeneous Catalysts for One Pot Synthesis of 1,2-dihydro-1- aryl-3H-naphth[1, 2-e][1,3]oxazin-3-one Derivatives

Author(s): Arup K. Dutta, Kabita Boruah, Ruli Borah*

Journal Name: Current Organocatalysis

Volume 8 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Four members of N,N-disulfo-1,1,3,3-tetramethylguanidinium chlorometallates [DSTMG]n[X], where n= 1 or 2; X= FeCl4 - , Zn2Cl6 2-, NiCl4 2-, MnCl4 2- were synthesized as solid Brønsted-Lewis acidic compounds and studied the catalytic activity with the most acidic salt for threecomponent synthesis of 1,2-dihydro-1-aryl-3H-naphth[1,2-e][1,3]oxazin-3-ones.

Methods: N,N-disulfo-1,1,3,3-tetramethylguanidinium chlorometallates of the four transition metal cations such as Fe(III), Zn(II), Ni(II) and Mn(II) were prepared after treatment of the parent ionic liquid N,N-disulfo-1,1,3,3-tetramethylguanidinium chloride [DSTMG][Cl] with the respective metal chlorides in different mole fractions at 75 ºC. The synthesis of 1,2-dihydro-1-aryl-3H-naphth[1,2- e][1,3]oxazin-3-ones was carried out via three-component reaction of 2-naphthol, aromatic aldehydes and urea under neat condition at 90 ºC using 7 mol% of the [DSTMG][FeCl4] catalyst.

Results: The characterization of synthesized chlorometallates was done using spectroscopic and other analytical techniques, including thermogravimetric analysis and Hammett acidity studies. Among the four salts, the salt of Fe(III) ion was observed as the strong Brønsted acidic hydrophobic salt and thus chosen for the catalytic study.

Conclusion: A new type of chlorometallates of guanidinium cation with composition [DSTMG]n[X], where X= FeCl4 - /Zn2Cl6 2-/ NiCl4 2-/ MnCl4 2- and n= 1 or 2 were developed as –SO3H functionalized solid acids with varied thermal stability (150-250 ºC) and physisorbed water (0-20%) as observed from the thermogravimetric study. From them, the most Brønsted acidic Fe(III) salt was employed as an efficient recyclable heterogeneous catalyst for the one-pot synthesis of 1,2-dihydro-1-aryl-3Hnaphth[ 1,2-e][1,3]oxazin-3-ones in neat condition.

Keywords: Tetramethylguanidinium, chlorometallates, brønsted-Lewis acidic, -SO3H functionalized, naphth[1, 2- e][1, 3]oxazin-3-one, heterogeneous catalyst.

[1]
Estager, J.; Holbrey, J.D.; Swadźba-Kwaśny, M. Halometallate ionic liquids--revisited. Chem. Soc. Rev., 2014, 43(3), 847-886. [http://dx.doi.org/10.1039/C3CS60310E ]. [PMID: 24189615].
[2]
Namboodiri, V.V.; Varma, R.S. Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their use as catalysts in the solvent-free tetrahydropyranylation of alcohols and phenols. Chem. Commun. (Camb.), 2002, (4), 342-343. [http://dx.doi.org/10.1039/b110565e ]. [PMID: 12120065].
[3]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150. [http://dx.doi.org/10.1039/B006677J ]. [PMID: 18197338].
[4]
Welton, T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084. [http://dx.doi.org/10.1021/cr980032t ]. [PMID: 11849019].
[5]
Fuller, J.; Carlin, R.T.; De Long, H.C. Haworth, D. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J. Chem. Soc. Chem. Commun., 1994, (3), 299-300. [http://dx.doi.org/10.1039/c39940000299].
[6]
Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, (13), 965-967. [http://dx.doi.org/10.1039/c39920000965].
[7]
Bonhôte, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35(5), 1168-1178. [http://dx.doi.org/10.1021/ic951325x ]. [PMID: 11666305].
[8]
Gogoi, P.; Dutta, A.K.; Sarma, P.; Borah, R. Development of Brønsted–Lewis acidic solid catalytic system of 3-methyl-1-sulfonic acid imidazolium transition metal chlorides for the preparation of bis (indolyl) methanes. Appl. Catal. A, 2015, 492, 133-139. [http://dx.doi.org/10.1016/j.apcata.2014.12.013].
[9]
Saikia, S.; Gogoi, P.; Dutta, A.K.; Sarma, P.; Borah, R. Design of multifaceted acidic 1,3-disulfoimidazolium chlorometallate ionic systems as heterogeneous catalysts for the preparation of β-amino carbonyl compounds. J. Mol. Catal. Chem., 2016, 416, 63-72. [http://dx.doi.org/10.1016/j.molcata.2016.02.007].
[10]
Dutta, A.K.; Gogoi, P.; Borah, R. Diethyl disulfo ammonium chlorometallates as heterogeneous Brønsted–Lewis acidic catalysts for one‐pot synthesis of 14‐aryl‐7‐(N‐phenyl)‐14H‐dibenzo [a, j] acridines. Appl. Organomet. Chem., 2018, 32(1), 3900-3909.
[http://dx.doi.org/ 10.1002/aoc.3900]
[11]
Kore, R.; Berton, P.; Kelley, S.P.; Aduri, P.; Katti, S.S.; Rogers, R.D. Group IIIA halometallate ionic liquids: Speciation and applications in catalysis. ACS Catal., 2017, 7(10), 7014-7028. [http://dx.doi.org/10.1021/acscatal.7b01793].
[12]
Oliveira, E.D.; Torres, J.D.; Silva, C.C.; Luz, A.A.; Bakuzis, P.; Prado, A.G. Tetramethylguanidine covalently bonded onto silica gel as catalyst for the addition of nitromethane to cyclopentenone. J. Braz. Chem. Soc., 2006, 17(5), 994-999. [http://dx.doi.org/10.1590/S0103-50532006000500026].
[13]
Ishikawa, T. Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts; John Wiley & Sons Ltd: Chichester, UK, 2009. [http://dx.doi.org/10.1002/9780470740859]
[14]
Dworkin, A.; Naumann, R.; Seigfred, C.; Karty, J.M.; Mo, Y. Y-aromaticity: why is the trimethylenemethane dication more stable than the butadienyl dication? J. Org. Chem., 2005, 70(19), 7605-7616. [http://dx.doi.org/10.1021/jo0508090 ]. [PMID: 16149789].
[15]
Ndiaye, M.; Samb, A.; Diop, L.; Cattey, H.; Pourchet, S.; Plasseraud, L. Synthesis, characterization, and thermal properties of N,N,N′,N′-tetramethylguanidiniumtribromido -cadmate(II) exhibiting an unusual coordination geometry. Main Group Met. Chem., 2017, 40(5-6), 137-143. [http://dx.doi.org/10.1515/mgmc-2017-0028].
[16]
Patel, M.; McHugh, R.J., Jr; Cordova, B.C.; Klabe, R.M.; Erickson-Viitanen, S.; Trainor, G.L.; Ko, S.S. Synthesis and evaluation of benzoxazinones as HIV-1 reverse transcriptase inhibitors. Analogs of Efavirenz (SUSTIVA). Bioorg. Med. Chem. Lett., 1999, 9(22), 3221-3224. [http://dx.doi.org/10.1016/S0960-894X(99)00565-X ]. [PMID: 10576692].
[17]
Latif, N.; Mishriky, N.; Assad, F.M. Carbonyl and thiocarbonyl compounds. XIX. Intramolecular cyclization of (2-nitroetheny1) aryl N-arylcarbamates: synthesis of newer series of 3,4-dihydro-2H-1, 3-oxazin-2-ones and their antimicrobial activities. Aust. J. Chem., 1982, 35(5), 1037-1043. [http://dx.doi.org/10.1071/CH9821037].
[18]
Fayed, A.A.; Bahashwan, S.A.; Yousif, M.N.M.; El Shafey, H.M.; Amr, A.E.; Yousif, N.M.; Shadid, K.A. Synthesis and antiproliferative activity of some newly synthesized pyrazolopyridine derivatives. Russ. J. Gen. Chem., 2019, 89(6), 1209-1217. [http://dx.doi.org/10.1134/S1070363219060173].
[19]
Hunnur, R.; Kamble, R.; Dorababu, A.; Kumar, B.S.; Bathula, C. TiCl4: An efficient catalyst for one-pot synthesis of 1, 2-dihydro-1-aryl-naphtho-[1, 2-e][1, 3] oxazin-3-one derivatives and their drug score analysis. Arab. J. Chem., 2017, 10, 1760-1764. [http://dx.doi.org/10.1016/j.arabjc.2013.06.028].
[20]
El-Tombary, A.A. Synthesis, anti-inflammatory, and ulcerogenicity studies of novel substituted and fused pyrazolo [3, 4-d] pyrimidin-4-ones. Sci. Pharm., 2013, 81(2), 393-422. [http://dx.doi.org/10.3797/scipharm.1211-21 ]. [PMID: 23833710].
[21]
Rao, G.D.; Kaushik, M.P.; Halve, A.K. An efficient synthesis of naphtha [1, 2-e] oxazinone and 14-substituted-14H-dibenzo [a, j] xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solvent-free conditions. Tetrahedron Lett., 2012, 53(22), 2741-2744. [http://dx.doi.org/10.1016/j.tetlet.2012.03.085].
[22]
Szatmári, I.; Hetényi, A.; Lázár, L.; Fülöp, F. Transformation reactions of the betti base analog aminonaphthols. J. Heterocycl. Chem., 2004, 41(3), 367-373. [http://dx.doi.org/10.1002/jhet.5570410310].
[23]
Cimarelli, C.; Palmieri, G.; Volpini, E. A facile synthesis of 3, 4-dialkyl-3, 4-dihydro-2 H-1, 3-benzoxazin-2-ones and naphthoxazin-2-ones and their reactions with organolithium and Grignard reagents preparation of N-[1-(2′-hydroxyphenyl) alkyl] amides. Can. J. Chem., 2004, 82(8), 1314-1321. [http://dx.doi.org/10.1139/v04-100].
[24]
Shakibaei, G.I.; Khavasi, H.R.; Mirzaei, P.; Bazgir, A. A three‐component, one‐pot synthesis of oxazinoquinolin‐3‐one derivatives. J. Heterocycl. Chem., 2008, 45(5), 1481-1484. [http://dx.doi.org/10.1002/jhet.5570450538].
[25]
Arundhathi, K.; Sudhakar, K.; Sastry, B.S.; Yadav, J.S. A novel three-component one-pot reaction involving β-naphthol, aldehydes, and urea promoted by TMSCl/NaI. J. Heterocycl. Chem., 2010, 47, 272.
[26]
Lei, M.; Ma, L.; Hu, L. Highly chemoselective condensation of β-naphthol, aldehyde, and urea catalyzed by thiamine hydrochloride. Synth. Commun., 2011, 41(22), 3424-3432. [http://dx.doi.org/10.1080/00397911.2010.518278].
[27]
Nemati, F.; Beyzai, A. A facile one-pot solvent-free synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-ones catalyzed by wet cyanuric chloride. J. Chem., 2012, 2013, 1-4.
[28]
Chaskar, A.; Vyavhare, V.; Padalkar, V.; Phatangare, K.; Deokar, H. An environmentally benign one-pot synthesis of 1, 2-dihydro-1-aryl-3 H-naphth [1, 2-e][1, 3] oxazin-3-one derivatives catalysed by phosphomolybdic acid. J. Serb. Chem. Soc., 2011, 76(1), 21-26. [http://dx.doi.org/10.2298/JSC100410016C].
[29]
Ahangar, H.A.; Mahdavinia, G.H.; Marjani, K.; Hafezian, A. A one-pot synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-one derivatives catalyzed by perchloric acid supported on ilica (HClO4/SiO2) in the absence of solvent. J. Iran. Chem. Soc., 2010, 7(3), 770-774. [http://dx.doi.org/10.1007/BF03246067].
[30]
Zolfigol, M.A.; Safaiee, M.; Afsharnadery, F.; Bahrami-Nejad, N.; Baghery, S.; Salehzadeh, S.; Maleki, F. Silica vanadic acid [SiO2–VO(OH)2] as an efficient heterogeneous catalyst for the synthesis of 1, 2-dihydro-1-aryl-3 H-naphth [1, 2-e][1, 3] oxazin-3-one and 2, 4, 6-triarylpyridine derivatives via anomeric based oxidation. RSC Advances, 2015, 5(122), 100546-100559. [http://dx.doi.org/10.1039/C5RA21392D].
[31]
Zhu, X.; Lee, Y.R. RuCl2 (PPh3)3 -Catalyzed facile one-pot synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-ones and 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-thiones. Bull. Korean Chem. Soc., 2012, 33(11), 3831-3834. [http://dx.doi.org/10.5012/bkcs.2012.33.11.3831].
[32]
Kantevari, S.; Vuppalapati, S.V.; Bantu, R.; Nagarapu, L. An efficient one‐pot three component synthesis of 1, 2‐dihydro‐1‐arylnaphtho [1, 2‐e][1, 3] oxazine‐3‐ones using montmorillonite K10 under solvent free conditions. J. Heterocycl. Chem., 2010, 47(2), 313-317. [http://dx.doi.org/10.1002/jhet.312].
[33]
Nikna, K.; Abolpour, P. Synthesis of naphthoxazinone derivatives using silica-bonded S-sulfonic acid as catalyst under solvent-free conditions. J. Chem. Sci., 2015, 127(7), 1315-1320. [http://dx.doi.org/10.1007/s12039-015-0895-x].
[34]
Kumar, A.; Gupta, M.K.; Kumar, M. Micelle promoted supramolecular carbohydrate scaffold-catalyzed multicomponent synthesis of 1, 2-dihydro-1-aryl-3 H-naphth [1, 2-e][1, 3] oxazin-3-one and amidoalkylnaphthols derivatives in aqueous medium. RSC Advances, 2012, 2(19), 7371-7376. [http://dx.doi.org/10.1039/c2ra20848b].
[35]
Kumar, A.; Saxena, A.; Dewan, M.; De, A.; Mozumdar, S. Recyclable nanoparticulate copper mediated synthesis of naphthoxazinones in PEG-400: a green approach. Tetrahedron Lett., 2011, 52(38), 4835-4839. [http://dx.doi.org/10.1016/j.tetlet.2011.07.016].
[36]
Dong, F.; Li-fang, Y.; Jin-ming, Y. Synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-one catalyzed by pyridinium-based ionic liquid. Res. Chem. Intermed., 2013, 39(6), 2505-2512. [http://dx.doi.org/10.1007/s11164-012-0776-6].
[37]
Dabiri, M.; Delbari, A.S.; Bazgir, A. A simple and environmenttally benign method for the synthesis of naphthoxazin-3-one derivatives. Heterocycles, 2007, 71(3), 543-548. [http://dx.doi.org/10.3987/COM-06-10946].
[38]
Dutta, A.K.; Gogoi, P.; Saikia, S.; Borah, R.N. N-disulfo-1,1,3,3-tetramethylguanidinium carboxylate ionic liquids as reusable homogeneous catalysts for multicomponent synthesis of tetrahydrobenzo [a] xanthene and tetrahydrobenzo [a] acridine derivatives. J. Mol. Liq., 2017, 225, 585-591. [http://dx.doi.org/10.1016/j.molliq.2016.11.112].
[39]
Volkov, S.V.; Evtushenko, N.P.; Yatsimirskii, K.B. Spectra of combination scattering and the structure of chloride complexes of 3d metals in molten salts. Theor. Exp. Chem., 1977, 12(1), 85-88. [http://dx.doi.org/10.1007/BF00524936].
[40]
Yatsimirskii, K.B. Spectroscopic studies on coordination compounds formed in molten salts. Pure Appl. Chem., 1977, 49(1), 115-124. [http://dx.doi.org/10.1351/pac197749010115].
[41]
Allen, E.A.; Wilkinson, W. The vibrational spectra of some four co-ordinate complexes of palladium and nickel with various phosphine ligands. Spectro. Chimic. Acta. A, 1974, 30(6), 1219-1224. [http://dx.doi.org/10.1016/0584-8539(74)80105-4].
[42]
Wang, L.; Lu, B.; Zhu, A.; Sun, H.; Shen, Q. Development of Fe(III)-containing ether-functionalized imidazolium ionic liquids for aryl Grignard cross-coupling of alkyl halides. Chin. Sci. Bull., 2013, 58(30), 3624-3629. [http://dx.doi.org/10.1007/s11434-013-5838-7].
[43]
Yan, C.; Wang, L.; Gao, H.; Sun, H.; Shen, Q. An efficient and recyclable iron (III)-containing imidazolium salt catalyst for cross-coupling of aryl Grignard reagents with alkyl halides. Chin. Sci. Bull., 2012, 57(16), 1953-1958. [http://dx.doi.org/10.1007/s11434-011-4660-3].
[44]
Wang, H.; Yan, R.; Li, Z.; Zhang, X.; Zhang, S. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly (ethylene terephthalate). Catal. Commun., 2010, 11(8), 763-767. [http://dx.doi.org/10.1016/j.catcom.2010.02.011].
[45]
Kirillov, S.A.; Voyiatzis, G.A.; Musiyenko, I.S.; Photiadis, G.M.; Pavlatou, E.A. Ionic interactions in molten complex chlorides from vibrational dephasing. J. Chem. Phys., 2001, 114(8), 3683-3691. [http://dx.doi.org/10.1063/1.1340031].
[46]
Babushkina, O.B.; Volkov, S.V. Raman spectroscopy of the heteronuclear complexes in the ZnCl2 CdCl2 Li, K/Cl and AlCl3 MgCl2 Li, K/Cl melts. J. Mol. Liq., 1999, 83(1-3), 131-140. [http://dx.doi.org/10.1016/S0167-7322(99)00080-X].
[47]
Yannopoulos, S.N.; Kalampounias, A.G.; Chrissanthopoulos, A.; Papatheodorou, G.N. Temperature induced changes on the structure and the dynamics of the “tetrahedral” glasses and melts of ZnCl2 and ZnBr2. J. Chem. Phys., 2003, 118(7), 3197-3214. [http://dx.doi.org/10.1063/1.1537246].
[48]
Estager, J.; Nockemann, P.; Seddon, K.R.; Swadźba-Kwaśny, M.; Tyrrell, S. Validation of speciation techniques: a study of chlorozincate(II) ionic liquids. Inorg. Chem., 2011, 50(11), 5258-5271. [http://dx.doi.org/10.1021/ic200586u ]. [PMID: 21545101].
[49]
Herminghaus, S. Roughness-induced non-wetting. Europhys. Lett., 2000, 52(2), 165-170. [http://dx.doi.org/10.1209/epl/i2000-00418-8].
[50]
Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40, 546-551. [http://dx.doi.org/10.1039/tf9444000546].
[51]
Devashankar, S.; Mariappan, L.; Sureshkumar, P.; Rathnakumari, M. Growth and characterization of tetramethyl ammonium tetrachloro zincate II: A ferroic crystal. J. Cryst. Growth, 2009, 311(17), 4207-4212. [http://dx.doi.org/10.1016/j.jcrysgro.2009.06.056].
[52]
Kumar, A.; Kumar, M.; Verma, S.K.; Alvi, P.A.; Jasrotia, D.S. Single crystal growth, X-ray structure analysis, optical band gap, raman spectra, strain tensor and photoluminscence properties in [HgCl4]-[R]+ and [ZnCl4]-[R]+(R= 2-amino-5-chloropyridine) hybrid materials. J. Fundam. Appl. Sci., 2015, 7(3), 422-435. [http://dx.doi.org/10.4314/jfas.v7i3.9].
[53]
Khokhryakov, A.A.; Mikhaleva, M.V.; Paivin, A.S. Electronic absorption spectra of nickel dichloride and nickel oxide solutions in the 2CsCl-NaCl and KCl-NaCl metls. Russ. J. Inorg. Chem., 2006, 51(8), 1311-1314. [http://dx.doi.org/10.1134/S0036023606080195].
[54]
Bouma, R.J.; Teuben, J.H.; Beukema, W.R.; Bansemer, R.L.; Huffman, J.C.; Caulton, K.G. Identification of the zinc reduction product of VCl3. 3THF as [V2Cl3(THF)6]. 2. Inorg. Chem., 1984, 23(17), 2715-2718. [Zn2Cl6]. [http://dx.doi.org/10.1021/ic00185a033].
[55]
Goodgame, M.; Cotton, F.A. Preparation, and magnetic and spectral studies of some cobalt(II) complexes of benzimidazole. J. Am. Chem. Soc., 1962, 84(9), 1543-1548. [http://dx.doi.org/10.1021/ja00868a007].
[56]
Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull., 1968, 3(1), 37-46. [http://dx.doi.org/10.1016/0025-5408(68)90023-8].
[57]
Davis, E. A.; Mott, N. Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. 1970, 22(179), 0903-0922.
[58]
Thomazeau, C.; Olivier-Bourbigou, H.; Magna, L.; Luts, S.; Gilbert, B. Determination of an acidic scale in room temperature ionic liquids. J. Am. Chem. Soc., 2003, 125(18), 5264-5265. [http://dx.doi.org/10.1021/ja0297382 ]. [PMID: 12720424].
[59]
Reddy, K.N.; Ramanaiah, S.; Reddy, N.A.K. Chitosan catalyzed one-pot three-component conventional synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-ones. Int. J. Res. Rev., 2019, 6(6), 85-93.
[60]
Ghomi, J.S.; Zahedi, S.; Ghasemzadeh, M.A. AgI nanoparticles as a remarkable catalyst in the synthesis of (amidoalkyl) naphthol and oxazine derivatives: an eco-friendly approach. Monatsh. Chem., 2014, 145(7), 1191-1199. [http://dx.doi.org/10.1007/s00706-014-1184-y].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 8
ISSUE: 2
Year: 2021
Published on: 20 July, 2020
Page: [172 - 186]
Pages: 15
DOI: 10.2174/2213337207999200721012534
Price: $25

Article Metrics

PDF: 394
HTML: 1