Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Investigation of Targeting Relationship between Micro-Rna-22 and Vegfr3 in Lung Squamous Cell Carcinoma

Author(s): Zheng Dong, Qing-Hua Xu, Yuan-Bin Zhu, Yong-Feng Wang, Jie Xiong and Shuai Dang*

Volume 24, Issue 1, 2021

Published on: 19 July, 2020

Page: [148 - 154] Pages: 7

DOI: 10.2174/1386207323666200720012917

Price: $65

Abstract

Aim: The present study explored the clinical significance of microRNA-22 (miR-22) expression in lung squamous cell carcinoma and to explore the targeting relationship with vascular endothelial growth factor receptor 3 (VEGFR3).

Methods: A total of 49 patients with lung squamous cell carcinoma who underwent surgical treatment were selected. The expression of miR-22 was detected by fluorescence quantitative realtime PCR (qPCR), the expression of VEGFR3 was detected by Western blotting assays, and D240 labeled microlymphatic vessels density (MLVD) was detected by immunohistochemistry (IHC). Lung squamous cell carcinoma cell line SK-MES-1 was selected and the targeting relationship between miR-22 and VEGFR3 was analyzed by double luciferase reporter gene assay. Western blotting assays were used to detect the expression of vascular endothelial growth factor-D (VEGFD) and D240 in the blank control group, empty vector transfection group, miR-22 transfection group, miR-22 and VEGFR3 co-transfection group.

Results: The expression range of miR-22 in lung squamous cell carcinoma was 0.8-3.5. The expression of miR-22 in lung squamous cell carcinoma was significantly different by tumor maximum diameter, lymph node metastasis, vascular invasion and TNM stage. The expression of miR-22 was linked to survival time. There was a negative correlation between miR-22 and VEGFR3, miR-22 and MLVD. Double luciferase reporter gene assays showed that miR-22 reduced the luciferase activity of pGL3-VEGFR3-WT transfected cells. Compared with the control group, the expression of VEGF-D and D2-40 in the miR-22 transfection group was significantly decreased. However, VEGF-D and D240 in the miR-22 and VEGFR3 co-transfection group reversed the changes.

Conclusion: We assumed that the abnormal expression of miR-22 in lung squamous cell carcinoma may be involved in the development and progression of lung squamous cell carcinoma. MiR-22 negatively regulated the target gene VEGFR3 to mediate lymphangiogenesis. The expression of miR-22 may also be linked to the prognosis of the disease.

Keywords: Lung cancer, squamous cell carcinoma, microRNA-22, VEGFR3, lymphangiogenesis, prognosis.

[1]
Conti, L.; Gatt, S. Squamous-Cell Carcinoma of the Lung. N. Engl. J. Med., 2018, 379(11)e17
[http://dx.doi.org/10.1056/NEJMicm1802514] [PMID: 30207918]
[2]
Dai, Z.; Yan, H.; Wang, K.; Zhong, S.; Zhou, M.; Zheng, D.; Zhu, H. MicroRNA-22 regulates thyroid cell growth and lipid accumulation via IL6R. Front. Biosci., 2019, 24, 1350-1362.
[http://dx.doi.org/10.2741/4783] [PMID: 31136983]
[3]
Croce, C.M. microRNAs in cancer. Annu. Rev. Pathol., 2013, 9
[PMID: 24079833]
[4]
Harris. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis Cancer Cell
[5]
Hu, Z.; Chen, X.; Zhao, Y.; Tian, T.; Jin, G.; Shu, Y.; Chen, Y.; Xu, L.; Zen, K.; Zhang, C.; Shen, H. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(10), 1721-1726.
[http://dx.doi.org/10.1200/JCO.2009.24.9342] [PMID: 20194856]
[6]
Lai, Y.; Wang, X.; Zeng, T.; Xing, S.; Dai, S.; Wang, J.; Chen, S.; Li, X.; Xie, Y.; Zhu, Y.; Liu, W. Serum VEGF levels in the early diagnosis and severity assessment of non-small cell lung cancer. J. Cancer, 2018, 9(9), 1538-1547.
[http://dx.doi.org/10.7150/jca.23973] [PMID: 29760791]
[7]
Weidner, N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res. Treat., 1995, 36(2), 169-180.
[http://dx.doi.org/10.1007/BF00666038] [PMID: 8534865]
[8]
Cao, J.; Sun, L.; Li, J.; Zhou, C.; Cheng, L.; Chen, K.; Yan, B.; Qian, W.; Ma, Q.; Duan, W. A novel three-miRNA signature predicts survival in cholangiocarcinoma based on RNA-Seq data. Oncol. Rep., 2018, 40(3), 1422-1434.
[http://dx.doi.org/10.3892/or.2018.6534] [PMID: 29956786]
[9]
Li, D.Y.; Chen, W.J.; Luo, L.; Wang, Y.K.; Shang, J.; Zhang, Y.; Chen, G.; Li, S.K. Prospective lncRNA-miRNA-mRNA regulatory network of long non-coding RNA LINC00968 in non-small cell lung cancer A549 cells: A miRNA microarray and bioinformatics investigation. Int. J. Mol. Med., 2017, 40(6), 1895-1906.
[http://dx.doi.org/10.3892/ijmm.2017.3187] [PMID: 29039552]
[10]
Wang, J.; Li, Y.; Ding, M.; Zhang, H.; Xu, X.; Tang, J. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer.(Review) Int. J. Oncol., 2017, 50(2), 345-355. [Review]
[http://dx.doi.org/10.3892/ijo.2016.3811] [PMID: 28000852]
[11]
Starek, I.; Salzman, R.; Kucerova, L.; Skalova, A.; Hauer, L. Expression of VEGF-C/-D and lymphangiogenesis in salivary adenoid cystic carcinoma. Pathol. Res. Pract., 2015, 211(10), 759-765.
[http://dx.doi.org/10.1016/j.prp.2015.07.001] [PMID: 26296919]
[12]
Hamada, K.; Oike, Y.; Takakura, N.; Ito, Y.; Jussila, L.; Dumont, D.J.; Alitalo, K.; Suda, T. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood, 2000, 96(12), 3793-3800.
[http://dx.doi.org/10.1182/blood.V96.12.3793] [PMID: 11090062]
[13]
Mirshahi, P.; Toprak, S.K.; Faussat, A.M.; Dubrulle, S.; Marie, J.P.; Soria, C.; Soria, J.; Mirshahi, M. Malignant hematopoietic cells induce an increased expression of VEGFR-1 and VEGFR-3 on bone marrow endothelial cells via AKT and mTOR signalling pathways. Biochem. Biophys. Res. Commun., 2006, 349(3), 1003-1010.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.132] [PMID: 16959214]
[14]
Karroum, A.; Mirshahi, P.; Faussat, A.M.; Therwath, A.; Mirshahi, M.; Hatmi, M. Tubular network formation by adriamycin-resistant MCF-7 breast cancer cells is closely linked to MMP-9 and VEGFR-2/VEGFR-3 over-expressions. Eur. J. Pharmacol., 2012, 685(1-3), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2012.04.004] [PMID: 22542663]
[15]
Seo, M.; Choi, J.S.; Rho, C.R.; Joo, C.K.; Lee, S.K. MicroRNA miR-466 inhibits Lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J. Biomed. Sci., 2015, 22, 3.
[http://dx.doi.org/10.1186/s12929-014-0104-0] [PMID: 25573115]
[16]
Gu, Y.; Liu, H.; Kong, F.; Ye, J.; Jia, X.; Zhang, Z.; Li, N.; Yin, J.; Zheng, G.; He, Z. miR-22/KAT6B axis is a chemotherapeutic determiner via regulation of PI3k-Akt-NF-kB pathway in tongue squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 164.
[http://dx.doi.org/10.1186/s13046-018-0834-z] [PMID: 30041677]
[17]
Fan, W.; Huang, J.; Xiao, H.; Liang, Z. MicroRNA-22 is downregulated in clear cell renal cell carcinoma, and inhibits cell growth, migration and invasion by targeting PTEN. Mol. Med. Rep., 2016, 13(6), 4800-4806.
[http://dx.doi.org/10.3892/mmr.2016.5101] [PMID: 27082730]
[18]
Miyoshi, K.; Yanagi, S.; Kawahara, K.; Nishio, M.; Tsubouchi, H.; Imazu, Y.; Koshida, R.; Matsumoto, N.; Taguchi, A.; Yamashita, S.; Suzuki, A.; Nakazato, M. Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am. J. Respir. Crit. Care Med., 2013, 187(3), 262-275.
[http://dx.doi.org/10.1164/rccm.201205-0851OC] [PMID: 23239155]
[19]
Xu, X.D.; Song, X.W.; Li, Q.; Wang, G.K.; Jing, Q.; Qin, Y.W. Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J. Cell. Physiol., 2012, 227(4), 1391-1398.
[http://dx.doi.org/10.1002/jcp.22852] [PMID: 21618527]
[20]
Chen. Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol. Cell. Biochem., 2011.
[21]
Zhou, X.; Natino, D.; Zhai, X.; Gao, Z.; He, X. MicroRNA? 22 inhibits the proliferation and migration, and increases the cisplatin sensitivity, of osteosarcoma cells. Mol. Med. Rep., 2018, 17(5), 7209-7217.
[http://dx.doi.org/10.3892/mmr.2018.8790] [PMID: 29568877]
[22]
Zuo, Q.F.; Cao, L.Y.; Yu, T.; Gong, L.; Wang, L.N.; Zhao, Y.L.; Xiao, B.; Zou, Q.M. MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by directly targeting MMP14 and Snail. Cell Death Dis., 2015, 6e2000
[http://dx.doi.org/10.1038/cddis.2015.297] [PMID: 26610210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy