Application of Functionalized Nanomaterials as Effective Adsorbents for the Removal of Heavy Metals from Wastewater: A Review

Author(s): Saifeldin M. Siddeeg, Mohamed A. Tahoon*, Norah S. Alsaiari, Muhamad Shabbir, Faouzi B. Rebah

Journal Name: Current Analytical Chemistry

Volume 17 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Nanomaterials offer promising remediation techniques for water containing toxic pollutants especially heavy metals.

Methods: A complete analysis of the application of nano-adsorbents for heavy metals removal from water has been reviewed. The effect of their functionalization on the adsorption capacity, the reusability, and the surface area has also been discussed.

Results: In particular, the focus was on the applications of graphene oxide, carbon, silica, titanium dioxide, and iron oxide for water treatment. Additionally, the effect of functional groups on heavy metal selectivity has been discussed as well.

Conclusion: This article will provide environmental engineers and academicians with information related to the latest engineered nanomaterials employed for the treatment of wastewater containing toxic heavy metals.

Keywords: Adsorbents, adsorption capacity, heavy metals, isotherm method, nanomaterials, water treatment.

[1]
Siddeeg, S. A novel synthesis of TiO2/GO nanocomposite for the uptake of Pb2+ And Cd2+ from wastewater. Mater. Res. Express, 2020, 7(2)025038
[http://dx.doi.org/10.1088/2053-1591/ab7407]
[2]
Jafarnejad, M.; Asli, M.D.; Taromi, F.A.; Manoochehri, M. Synthesis of multi-functionalized Fe3O4-NH2-SH nanofiber based on chitosan for single and simultaneous adsorption of Pb(II) and Ni(II) from aqueous system. Int. J. Biol. Macromol., 2020, 148, 201-217.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.017] [PMID: 31917990]
[3]
Bassyouni, M.; Mansi, A.; Elgabry, A.; Ibrahim, B.; Kassem, O.; Alhebeshy, R. Utilization of carbon nanotubes in removal of heavy metals from wastewater: A Review of the Cnts’ potential and current challenges. Appl. Phys., A Mater. Sci. Process., 2019, 126(1), 1.
[http://dx.doi.org/10.1007/s00339-019-3211-7]
[4]
Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S. role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process Eng., 2020, 33101038
[http://dx.doi.org/10.1016/j.jwpe.2019.101038]
[5]
Wang, A.; Zhou, K.; Zhang, X.; Zhou, D.; Peng, C.; Chen, W. Arsenic removal from highly-acidic wastewater with high arsenic content by copper-chloride synergistic reduction. Chemosphere, 2020, 238124675
[http://dx.doi.org/10.1016/j.chemosphere.2019.124675] [PMID: 31524615]
[6]
Girginova, P.I.; Daniel-da-Silva, A.L.; Lopes, C.B.; Figueira, P.; Otero, M.; Amaral, V.S.; Pereira, E.; Trindade, T. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J. Colloid Interface Sci., 2010, 345(2), 234-240.
[http://dx.doi.org/10.1016/j.jcis.2010.01.087] [PMID: 20202646]
[7]
Chennaiah, J.B.; Rasheed, M.A.; Patil, D.J. Concentration of heavy metal ions in drinking water with emphasis on human health. Int. J. Plant Anim. Environ. Sci., 2014, 4(2), 205-214.
[8]
Morillo Martín, D.; Faccini, M.; García, M.; Amantia, D. Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J. Environ. Chem. Eng., 2018, 6(1), 236-245.
[http://dx.doi.org/10.1016/j.jece.2017.11.073]
[9]
Zhu, X.; Song, T.; Lv, Z.; Ji, G. High-Efficiency and low-cost α-Fe2O3 nanoparticles-coated volcanic rock For Cd(II) removal from wastewater. Process Saf. Environ. Prot., 2016, 104, 373-381.
[http://dx.doi.org/10.1016/j.psep.2016.09.019]
[10]
Razzaz, A.; Ghorban, S.; Hosayni, L.; Irani, M.; Aliabadi, M. Chitosan nanofibers functionalized by tio2 nanoparticles for the removal of heavy metal ions. J. Taiwan Inst. Chem. Eng., 2016, 58, 333-343.
[http://dx.doi.org/10.1016/j.jtice.2015.06.003]
[11]
Hasanzadeh, R.; Moghadam, P.N.; Bahri-Laleh, N.; Sillanpää, M. Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@Fe3O4 nanoparticles. J. Colloid Interface Sci., 2017, 490, 727-746.
[http://dx.doi.org/10.1016/j.jcis.2016.11.098] [PMID: 27978456]
[12]
Dubey, R.; Bajpai, J.; Bajpai, A. Chitosan-Alginate Nanoparticles (Canps) as potential nanosorbent for removal of Hg (II). Ions. Environ. Nanotechnol. Monit. Manag., 2016, 6, 32-44.
[http://dx.doi.org/10.1016/j.enmm.2016.06.008]
[13]
Borowiak-Resterna, A.; Cierpiszewski, R.; Prochaska, K. Kinetic and equilibrium studies of the removal of cadmium ions from acidic chloride solutions by hydrophobic pyridinecarboxamide extractants. J. Hazard. Mater., 2010, 179(1-3), 828-833.
[http://dx.doi.org/10.1016/j.jhazmat.2010.03.078] [PMID: 20399013]
[14]
Uluozlu, O.D.; Tuzen, M.; Mendil, D.; Soylak, M. Coprecipitation of trace elements with Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid and their determination by flame atomic absorption spectrometry. J. Hazard. Mater., 2010, 176(1-3), 1032-1037.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.144] [PMID: 20022172]
[15]
Koyuncu, I.; Akcin, N.; Akcin, G.; Fatih Mutlu, K. Comparative study of ion-exchange and flotation processes for the removal of Cu2+ And Pb2+ ions from natural waters. Rev. Anal. Chem., 2010, 29(2), 1.
[http://dx.doi.org/10.1515/REVAC.2010.29.2.93]
[16]
Stewart, D.; Burke, I.; Hughes-Berry, D.; Whittleston, R. Microbially mediated chromate reduction in soil contaminated by highly alkaline leachate from chromium containing waste. Ecol. Eng., 2010, 36(2), 211-221.
[http://dx.doi.org/10.1016/j.ecoleng.2008.12.028]
[17]
Alqadami, A.A.; Naushad, M. ALOthman, Z.A.; Alsuhybani, M.; Algamdi, M. Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment: Adsorption mechanism and modeling analysis. J. Hazard. Mater., 2020, 389121896
[http://dx.doi.org/10.1016/j.jhazmat.2019.121896] [PMID: 31879118]
[18]
Liu, J.; Chen, T-W.; Yang, Y-L.; Bai, Z-C.; Xia, L-R.; Wang, M.; Lv, X-L.; Li, L. Removal of heavy metal ions and anionic dyes from aqueous solutions using amide-functionalized cellulose-based adsorbents. Carbohydr. Polym., 2020, 230115619
[http://dx.doi.org/10.1016/j.carbpol.2019.115619] [PMID: 31887868]
[19]
Vargas, V.H.; Paveglio, R.R.; Pauletto, P.S.; Salau, N.P.G.; Dotto, L.G. Sisal fiber as an alternative and cost-effective adsorbent for the removal of methylene blue and reactive black 5 dyes from aqueous solutions. Chem. Eng. Commun., 2020, 207(4), 523-536.
[http://dx.doi.org/10.1080/00986445.2019.1605362]
[20]
Theodore, L.; Ricci, F. Mass Transfer Operations for the Practicing Engineer; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011.
[21]
Baseri, H.; Tizro, S. Treatment of nickel ions from contaminated water by magnetite based nanocomposite adsorbents: Effects of thermodynamic and kinetic parameters and modeling with Langmuir and Freundlich isotherms. Process Saf. Environ. Prot., 2017, 109, 465-477.
[http://dx.doi.org/10.1016/j.psep.2017.04.022]
[22]
Matouq, M.; Jildeh, N.; Qtaishat, M.; Hindiyeh, M.; Syouf, M.Q.A. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chem. Eng., 2015, 3, 775-784.
[http://dx.doi.org/10.1016/j.jece.2015.03.027]
[23]
Putro, J.N.; Santoso, S.P.; Ismadji, S.; Ju, Y.H. Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose-Bentonite nanocomposite: Improvement on extended Langmuir isotherm model. Microporous Mesoporous Mater., 2017, 246, 166-177.
[http://dx.doi.org/10.1016/j.micromeso.2017.03.032]
[24]
Tan, X.; Fan, Q.; Wang, X.; Grambow, B. Eu(III) sorption to TiO2 (anatase and rutile): Batch, XPS, and EXAFS studies. Environ. Sci. Technol., 2009, 43(9), 3115-3121.
[http://dx.doi.org/10.1021/es803431c] [PMID: 19534122]
[25]
Potgieter, J.; Potgieter-Vermaak, S.; Kalibantonga, P. Heavy metals removal from solution by palygorskite clay. Miner. Eng., 2006, 19(5), 463-470.
[http://dx.doi.org/10.1016/j.mineng.2005.07.004]
[26]
Ahmad, S.Z.N.; Wan Salleh, W.N.; Ismail, A.F.; Yusof, N.; Mohd Yusop, M.Z.; Aziz, F. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 2020, 248126008
[http://dx.doi.org/10.1016/j.chemosphere.2020.126008] [PMID: 32006836]
[27]
Hong, J.; Xie, J.; Mirshahghassemi, S. Lead, J. Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles. RSC Advances, 2020, 10(6), 3266-3276.
[http://dx.doi.org/10.1039/C9RA10104G]
[28]
Choong, C.E.; Wong, K.T.; Jang, S.B.; Nah, I.W.; Choi, J.; Ibrahim, S.; Yoon, Y.; Jang, M. Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: Implications for their application in water treatment. Chemosphere, 2020, 239124765
[http://dx.doi.org/10.1016/j.chemosphere.2019.124765] [PMID: 31520981]
[29]
Mohammadi Nodeh, M.K.; Gabris, M.A.; Rashidi Nodeh, H.; Esmaeili Bidhendi, M. Efficient removal of arsenic(III) from aqueous media using magnetic polyaniline-doped strontium-titanium nanocomposite. Environ. Sci. Pollut. Res. Int., 2018, 25(17), 16864-16874.
[http://dx.doi.org/10.1007/s11356-018-1870-0] [PMID: 29619640]
[30]
Gebru, K.A.; Das, C. Removal of Pb (II) and Cu (II) ions from wastewater using composite electrospun cellulose acetate/titanium oxide (TiO2) adsorbent. J. Water Process Eng., 2017, 16, 1-13.
[http://dx.doi.org/10.1016/j.jwpe.2016.11.008]
[31]
Seema, K.M.; Mamba, B.B.; Njuguna, J.; Bakhtizin, R.Z.; Mishra, A.K. Removal of lead (II) from aqeouos waste using (CD-PCL-TiO2) bio-nanocomposites. Int. J. Biol. Macromol., 2018, 109, 136-142.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.046] [PMID: 29233712]
[32]
Mahmoud, M.E.; Abou Ali, S.A.A.; Elweshahy, S.M.T. Microwave functionalization of titanium oxide nanoparticles with chitosan nanolayer for instantaneous microwave sorption of Cu(II) and Cd(II) from water. Int. J. Biol. Macromol., 2018, 111, 393-399.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.014] [PMID: 29309870]
[33]
Abdollahi, B.; Shakeri, A.; Aber, S.; Bonab, M.S. Simultaneous photodegradation of acid orange 7 and removal of Pb 2+ from polluted water using reusable clinoptilolite-TiO2 nanocomposite. Res. Chem. Intermed., 2018, 44(3), 1505-1521.
[http://dx.doi.org/10.1007/s11164-017-3181-3]
[34]
Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J., 2018, 336, 386-396.
[http://dx.doi.org/10.1016/j.cej.2017.12.029]
[35]
Mahmoud, M.E.; Saad, E.A.; El-Khatib, A.M.; Soliman, M.A.; Allam, E.A. Adsorptive removal of radioactive isotopes of cobalt and zinc from water and radioactive wastewater using TiO2/Ag2O nanoadsorbents. Prog. Nucl. Energy, 2018, 106, 51-63.
[http://dx.doi.org/10.1016/j.pnucene.2018.02.021]
[36]
Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng., 2016, 20164964828
[http://dx.doi.org/10.1155/2016/4964828]
[37]
Siddeeg, M.S.A.; Tahoon, M.; Ben Rebah, F. Simultaneous removal of calconcarboxylic acid, NH4+ and PO43- from pharmaceutical effluent using iron oxide-biochar nanocomposite loaded with Pseudomonas putida. Processes (Basel), 2019, 7(11), 800.
[http://dx.doi.org/10.3390/pr7110800]
[38]
Siddeeg, S.M.; Tahoon, M.A.; Mnif, W.; Ben Rebah, F. Iron Oxide/Chitosan magnetic nanocomposite immobilized manganese peroxidase for decolorization of textile wastewater. Processes (Basel), 2020, 8(1), 5.
[http://dx.doi.org/10.3390/pr8010005]
[39]
Wang, S.; Jiao, Q.; Shi, Q.; Zhu, H.; Feng, T.; Lu, Q.; Feng, C.; Li, H.; Shi, D.; Zhao, Y. Synthesis of porous nitrogen-doped graphene decorated by γ-Fe2O3 nanorings for enhancing microwave absorbing performance. Ceram. Int., 2020, 46(1), 1002-1010.
[http://dx.doi.org/10.1016/j.ceramint.2019.09.064]
[40]
Cvelbar, U.; Chen, Z.; Sunkara, M.K.; Mozetič, M. Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small, 2008, 4(10), 1610-1614.
[http://dx.doi.org/10.1002/smll.200800278] [PMID: 18770506]
[41]
Zhong, J.; Cao, C. Nearly monodisperse hollow Fe2O3 nanoovals: Synthesis, magnetic property and applications in photocatalysis and gas sensors. Sens. Actuators B Chem., 2010, 145(2), 651-656.
[http://dx.doi.org/10.1016/j.snb.2010.01.016]
[42]
Iida, H.; Nakanishi, T.; Osaka, T. Surface modification of γ-Fe2O3 nanoparticles with aminopropylsilyl groups and interparticle linkage with α, ω-dicarboxylic acids. Electrochim. Acta, 2005, 51(5), 855-859.
[http://dx.doi.org/10.1016/j.electacta.2005.04.056]
[43]
De Velasco-Maldonado, P.S.; Hernández-Montoya, V.; Montes-Morán, M.A.; Vázquez, N.A-R.; Pérez-Cruz, M.A. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment. Appl. Surf. Sci., 2018, 434, 1193-1199.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.023]
[44]
Pandey, L.M.; Pattanayek, S.K. Properties of competitively adsorbed BSA and fibrinogen from their mixture on mixed and hybrid surfaces. Appl. Surf. Sci., 2013, 264, 832-837.
[http://dx.doi.org/10.1016/j.apsusc.2012.10.150]
[45]
Liu, J-F.; Zhao, Z-S.; Jiang, G-B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol., 2008, 42(18), 6949-6954.
[http://dx.doi.org/10.1021/es800924c] [PMID: 18853814]
[46]
CHANG. J.; ZHONG, Z.; Hong, X.; Zhong, Y.; Rizhi, C., Fabrication of poly (γ-glutamic acid)-coated Fe3O4 magnetic nanoparticles and their application in heavy metal removal. Chin. J. Chem. Eng., 2013, 21(11), 1244-1250.
[http://dx.doi.org/10.1016/S1004-9541(13)60629-1]
[47]
Norouzian Baghani, A.; Mahvi, A.H.; Gholami, M.; Rastkari, N.; Delikhoon, M. One-Pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr (VI) and Ni (II) ions from aqueous solution: kinetic, isotherm and thermodynamic studies. J. Environ. Health Sci. Eng., 2016, 14(1), 11.
[http://dx.doi.org/10.1186/s40201-016-0252-0] [PMID: 27462402]
[48]
Huang, S-H.; Chen, D-H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater., 2009, 163(1), 174-179.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.075] [PMID: 18657903]
[49]
Nonkumwong, J.; Ananta, S.; Srisombat, L. Effective removal of lead (II) from wastewater by amine-functionalized magnesium ferrite nanoparticles. RSC Advances, 2016, 6(53), 47382-47393.
[http://dx.doi.org/10.1039/C6RA07680G]
[50]
Bao, S.; Tang, L.; Li, K.; Ning, P.; Peng, J.; Guo, H.; Zhu, T.; Liu, Y. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent. J. Colloid Interface Sci., 2016, 462, 235-242.
[http://dx.doi.org/10.1016/j.jcis.2015.10.011] [PMID: 26458121]
[51]
Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D.; Haasch, R. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res., 2008, 42(3), 633-642.
[http://dx.doi.org/10.1016/j.watres.2007.08.014] [PMID: 17822735]
[52]
Chen, K.L.; Mylon, S.E.; Elimelech, M. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir, 2007, 23(11), 5920-5928.
[http://dx.doi.org/10.1021/la063744k] [PMID: 17469860]
[53]
Zhang, J.; Thurber, A.; Hanna, C.; Punnoose, A. Highly shape-selective synthesis, silica coating, self-assembly, and magnetic hydrogen sensing of hematite nanoparticles. Langmuir, 2010, 26(7), 5273-5278.
[http://dx.doi.org/10.1021/la903544a] [PMID: 20000651]
[54]
Mukherjee, D.; Ghosh, S.; Majumdar, S.; Annapurna, K. Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J. Environ. Chem. Eng., 2016, 4(1), 639-650.
[http://dx.doi.org/10.1016/j.jece.2015.12.010]
[55]
Chen, Y-H.; Li, F-A. Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci., 2010, 347(2), 277-281.
[http://dx.doi.org/10.1016/j.jcis.2010.03.050] [PMID: 20430397]
[56]
Wang, J-C.; Ren, J.; Yao, H-C.; Zhang, L.; Wang, J-S.; Zang, S-Q.; Han, L-F.; Li, Z-J. Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. J. Hazard. Mater., 2016, 311, 11-19.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.055] [PMID: 26954471]
[57]
Liang, M.; Wang, D.; Zhu, Y.; Zhu, Z.; Li, Y.; Huang, C. Nano-hematite bagasse composite (n-HBC) for the removal of Pb (II) from dilute aqueous solutions. J. Water Process Eng., 2018, 21, 69-76.
[http://dx.doi.org/10.1016/j.jwpe.2017.11.014]
[58]
Teja, A.S.; Koh, P-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater., 2009, 55(1-2), 22-45.
[http://dx.doi.org/10.1016/j.pcrysgrow.2008.08.003]
[59]
Caparrós, C.; Benelmekki, M.; Martins, P.; Xuriguera, E.; Silva, C.J.; Martinez, L.M.; Lanceros-Méndez, S. Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification. Mater. Chem. Phys., 2012, 135(2-3), 510-517.
[http://dx.doi.org/10.1016/j.matchemphys.2012.05.016]
[60]
Deka, S.; Saxena, V.; Hasan, A.; Chandra, P.; Pandey, L.M. Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater. Sci. Eng. C, 2018, 92, 932-941.
[http://dx.doi.org/10.1016/j.msec.2018.07.042] [PMID: 30184823]
[61]
Rajput, S.; Singh, L.P.; Pittman, C.U., Jr; Mohan, D. Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). J. Colloid Interface Sci., 2017, 492, 176-190.
[http://dx.doi.org/10.1016/j.jcis.2016.11.095] [PMID: 28088081]
[62]
Jiang, W.; Pelaez, M.; Dionysiou, D.D.; Entezari, M.H.; Tsoutsou, D.; O’Shea, K. Chromium (VI) removal by maghemite nanoparticles. Chem. Eng. J., 2013, 222, 527-533.
[http://dx.doi.org/10.1016/j.cej.2013.02.049]
[63]
Ren, G.; Wang, X.; Zhang, Z.; Zhong, B.; Yang, L.; Xu, D.; Yang, X. Facile synthesis of maghemite nanoparticle from waste green vitriol as adsorbent for adsorption of arsenite. J. Mol. Liq., 2018, 259, 32-39.
[http://dx.doi.org/10.1016/j.molliq.2018.02.132]
[64]
Feitoza, N.C.; Gonçalves, T.D.; Mesquita, J.J.; Menegucci, J.S.; Santos, M-K.M.; Chaker, J.A.; Cunha, R.B.; Medeiros, A.M.; Rubim, J.C.; Sousa, M.H. Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater. J. Hazard. Mater., 2014, 264, 153-160.
[http://dx.doi.org/10.1016/j.jhazmat.2013.11.022] [PMID: 24295766]
[65]
Seraj, S.; Mirzayi, B.; Nematollahzadeh, A. Engineered maghemite nanoparticles with polyrhodanine for efficient removal of Cr (VI) from water. Environ. Nanotechnol. Monit. Manag., 2018, 10, 94-103.
[http://dx.doi.org/10.1016/j.enmm.2018.05.009]
[66]
Sebastian, A.; Nangia, A.; Prasad, M. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. J. Clean. Prod., 2018, 174, 355-366.
[http://dx.doi.org/10.1016/j.jclepro.2017.10.343]
[67]
Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Simultaneous removal of Pb (II) and Cr (III) by magnetite nanoparticles using various synthesis conditions. J. Ind. Eng. Chem., 2014, 20(5), 3543-3549.
[http://dx.doi.org/10.1016/j.jiec.2013.12.047]
[68]
Koushkbaghi, S.; Zakialamdari, A.; Pishnamazi, M.; Ramandi, H.F.; Aliabadi, M.; Irani, M. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr (VI) and Pb (II) ions from aqueous solutions in adsorption and membrane processes. Chem. Eng. J., 2018, 337, 169-182.
[http://dx.doi.org/10.1016/j.cej.2017.12.075]
[69]
Wang, Y.; Zhang, Y.; Hou, C.; Liu, M. Mussel-inspired synthesis of magnetic polydopamine-chitosan nanoparticles as biosorbent for dyes and metals removal. J. Taiwan Inst. Chem. Eng., 2016, 61, 292-298.
[http://dx.doi.org/10.1016/j.jtice.2016.01.008]
[70]
Bhatti, A.A.; Oguz, M.; Yilmaz, M. One-pot synthesis of Fe3O4@ Chitosan-pSDCalix hybrid nanomaterial for the detection and removal of Hg2+ ion from aqueous media. Appl. Surf. Sci., 2018, 434, 1217-1223.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.246]
[71]
Mollahosseini, A.; Khadir, A.; Saeidian, J. Core-shell polypyrrole/Fe3O4 nanocomposite as sorbent for magnetic dispersive solid-phase extraction of Al+ 3 ions from solutions: investigation of the operational parameters. J. Water Process Eng., 2019, 29100795
[http://dx.doi.org/10.1016/j.jwpe.2019.100795]
[72]
Wang, N.; Zhou, L.; Guo, J.; Ye, Q.; Lin, J-M.; Yuan, J. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin. Appl. Surf. Sci., 2014, 305, 267-273.
[http://dx.doi.org/10.1016/j.apsusc.2014.03.054]
[73]
Siddeeg, S.M.; Amari, A.; Tahoon, M.A.; Alsaiari, N.S.; Rebah, F.B. Removal of meloxicam, piroxicam and Cd+ 2 by Fe3O4/SiO2/glycidyl methacrylate-S-SH nanocomposite loaded with laccase. Alexandria Eng. J., 2020, 59(2), 905-914.
[http://dx.doi.org/10.1016/j.aej.2020.03.018]
[74]
Zhu, K.; Duan, Y.; Wang, F.; Gao, P.; Jia, H.; Ma, C.; Wang, C. Silane-modified halloysite/Fe3O4 nanocomposites: Simultaneous removal of Cr (VI) and Sb (V) and positive effects of Cr (VI) on Sb (V) adsorption. Chem. Eng. J., 2017, 311, 236-246.
[http://dx.doi.org/10.1016/j.cej.2016.11.101]
[75]
Singh, D.; Gautam, R.K.; Kumar, R.; Shukla, B.K.; Shankar, V.; Krishna, V. Citric acid coated magnetic nanoparticles: Synthesis, characterization and application in removal of Cd (II) ions from aqueous solution. J. Water Process Eng., 2014, 4, 233-241.
[http://dx.doi.org/10.1016/j.jwpe.2014.10.005]
[76]
Song, J.; Kong, H.; Jang, J. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J. Colloid Interface Sci., 2011, 359(2), 505-511.
[http://dx.doi.org/10.1016/j.jcis.2011.04.034] [PMID: 21543080]
[77]
Meng, C.; Zhikun, W.; Qiang, L.; Chunling, L.; Shuangqing, S.; Songqing, H. Preparation of amino-functionalized Fe3O4@mSiO2 core-shell magnetic nanoparticles and their application for aqueous Fe3+ removal. J. Hazard. Mater., 2018, 341, 198-206.
[http://dx.doi.org/10.1016/j.jhazmat.2017.07.062] [PMID: 28780434]
[78]
Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. Amino-functionalized Fe(3)O(4)@SiO(2) core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci., 2010, 349(1), 293-299.
[http://dx.doi.org/10.1016/j.jcis.2010.05.010] [PMID: 20542278]
[79]
Mousavi, S.V.; Bozorgian, A.; Mokhtari, N.; Gabris, M.A.; Nodeh, H.R.; Ibrahim, W.A.W. A novel cyanopropylsilane-functionalized titanium oxide magnetic nanoparticle for the adsorption of nickel and lead ions from industrial wastewater: Equilibrium, kinetic and thermodynamic studies. Microchem. J., 2019, 145, 914-920.
[http://dx.doi.org/10.1016/j.microc.2018.11.048]
[80]
Hao, H.; Liu, G.; Wang, Y.; Shi, B.; Han, K.; Zhuang, Y.; Kong, Y. Simultaneous cationic Cu (II)‒anionic Sb (III) removal by NH2-Fe3O4-NTA core-shell magnetic nanoparticle sorbents synthesized via a facile one-pot approach. J. Hazard. Mater., 2019, 362, 246-257.
[http://dx.doi.org/10.1016/j.jhazmat.2018.08.096] [PMID: 30240999]
[81]
Ali, I.; Peng, C.; Naz, I. Removal of lead and cadmium ions by single and binary systems using phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. Chin. J. Chem. Eng., 2019, 27(4), 949-964.
[http://dx.doi.org/10.1016/j.cjche.2018.03.018]
[82]
Ghasemi, N.; Ghasemi, M.; Moazeni, S.; Ghasemi, P.; Alharbi, N.S.; Gupta, V.K.; Agarwal, S.; Burakova, I.V.; Tkachev, A.G. Zn (II) removal by amino-functionalized magnetic nanoparticles: Kinetics, isotherm, and thermodynamic aspects of adsorption. J. Ind. Eng. Chem., 2018, 62, 302-310.
[http://dx.doi.org/10.1016/j.jiec.2018.01.008]
[83]
Elfeky, S.A.; Mahmoud, S.E.; Youssef, A.F. Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J. Adv. Res., 2017, 8(4), 435-443.
[http://dx.doi.org/10.1016/j.jare.2017.06.002] [PMID: 28663825]
[84]
Adeli, M.; Yamini, Y.; Faraji, M. Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab. J. Chem., 2017, 10, S514-S521.
[http://dx.doi.org/10.1016/j.arabjc.2012.10.012]
[85]
Rajput, S.; Pittman, C.U., Jr; Mohan, D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci., 2016, 468, 334-346.
[http://dx.doi.org/10.1016/j.jcis.2015.12.008] [PMID: 26859095]
[86]
Ahmed, M.O.; Shrpip, A.; Mansoor, M. Synthesis and Characterization of New Schiff base/thiol-Functionalized Mesoporous Silica: An Efficient Sorbent for the Removal of Pb (II) from Aqueous Solutions. Processes (Basel), 2020, 8(2), 246.
[http://dx.doi.org/10.3390/pr8020246]
[87]
Li, X.; Yang, Q.; Ye, Y.; Zhang, L.; Hong, S.; Ning, N.; Tian, M. Quantifying 3D-nanosized dispersion of SiO2 in elastomer nanocomposites by 3D-scanning transmission electron microscope (STEM). Compos., Part A Appl. Sci. Manuf., 2020, 131105778
[http://dx.doi.org/10.1016/j.compositesa.2020.105778]
[88]
Palos-Barba, V.; Moreno-Martell, A.; Hernández-Morales, V.; Peza-Ledesma, C.L.; Rivera-Muñoz, E.M.; Nava, R.; Pawelec, B. SBA-16 Cage-Like porous material modified with APTES as an Adsorbent for Pb2+ Ions removal from aqueous solution. Materials (Basel), 2020, 13(4), 927.
[http://dx.doi.org/10.3390/ma13040927] [PMID: 32093053]
[89]
Mahmoud, M.E.; Fekry, N.A.; El-Latif, M.M. Nanocomposites of nanosilica-immobilized-nanopolyaniline and crosslinked nanopolyaniline for removal of heavy metals. Chem. Eng. J., 2016, 304, 679-691.
[http://dx.doi.org/10.1016/j.cej.2016.06.110]
[90]
He, Y.; Luo, L.; Liang, S.; Long, M.; Xu, H. Synthesis of mesoporous silica-calcium phosphate hybrid nanoparticles and their potential as efficient adsorbent for cadmium ions removal from aqueous solution. J. Colloid Interface Sci., 2018, 525, 126-135.
[http://dx.doi.org/10.1016/j.jcis.2018.04.037] [PMID: 29702319]
[91]
Hao, S.; Verlotta, A.; Aprea, P.; Pepe, F.; Caputo, D.; Zhu, W. Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions. Microporous Mesoporous Mater., 2016, 236, 250-259.
[http://dx.doi.org/10.1016/j.micromeso.2016.09.008]
[92]
Bagwe, R.P.; Hilliard, L.R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir, 2006, 22(9), 4357-4362.
[http://dx.doi.org/10.1021/la052797j] [PMID: 16618187]
[93]
Vojoudi, H.; Badiei, A.; Bahar, S.; Ziarani, G.M.; Faridbod, F.; Ganjali, M.R. Post-modification of nanoporous silica type SBA-15 by bis (3-triethoxysilylpropyl) tetrasulfide as an efficient adsorbent for arsenic removal. Powder Technol., 2017, 319, 271-278.
[http://dx.doi.org/10.1016/j.powtec.2017.06.028]
[94]
Bao, S.; Li, K.; Ning, P.; Peng, J.; Jin, X.; Tang, L. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms. Appl. Surf. Sci., 2017, 393, 457-466.
[http://dx.doi.org/10.1016/j.apsusc.2016.09.098]
[95]
Mousavi, S.J.; Parvini, M.; Ghorbani, M. Adsorption of heavy metals (Cu2+ and Zn2+) on novel bifunctional ordered mesoporous silica: Optimization by response surface methodology. J. Taiwan Inst. Chem. Eng., 2018, 84, 123-141.
[http://dx.doi.org/10.1016/j.jtice.2018.01.010]
[96]
Wang, S.; Wang, K.; Dai, C.; Shi, H.; Li, J. Adsorption of Pb2+ on amino-functionalized core-shell magnetic mesoporous SBA-15 silica composite. Chem. Eng. J., 2015, 262, 897-903.
[http://dx.doi.org/10.1016/j.cej.2014.10.035]
[97]
Li, G.; Zhao, Z.; Liu, J.; Jiang, G. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J. Hazard. Mater., 2011, 192(1), 277-283.
[http://dx.doi.org/10.1016/j.jhazmat.2011.05.015] [PMID: 21616588]
[98]
Anbia, M.; Kargosha, K.; Khoshbooei, S. Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48. Chem. Eng. Res. Des., 2015, 93, 779-788.
[http://dx.doi.org/10.1016/j.cherd.2014.07.018]
[99]
Naowanon, W.; Chueachot, R.; Klinsrisuk, S.; Amnuaypanich, S. Biphasic synthesis of amine-functionalized mesoporous silica nanospheres (MSN-NH2) and its application for removal of ferrous (Fe2+) and copper (Cu2+) ions. Powder Technol., 2018, 323, 548-557.
[http://dx.doi.org/10.1016/j.powtec.2016.09.014]
[100]
Da’na, E.; Sayari, A. Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: equilibrium properties. Chem. Eng. J., 2011, 166(1), 445-453.
[http://dx.doi.org/10.1016/j.cej.2010.11.016]
[101]
Dobrzyńska, J.; Dobrowolski, R.; Olchowski, R.; Zięba, E.; Barczak, M. Palladium adsorption and preconcentration onto thiol-and amine-functionalized mesoporous silicas with respect to analytical applications. Microporous Mesoporous Mater., 2019, 274, 127-137.
[http://dx.doi.org/10.1016/j.micromeso.2018.07.038]
[102]
Siddeeg, S.M.; Alsaiari, N.S.; Tahoon, M.A.; Rebah, F.B. The application of nanomaterials as electrode modifiers for the electrochemical detection of ascorbic acid. Int. J. Electrochem. Sci., 2020, 15, 3327-3346.
[http://dx.doi.org/10.20964/2020.04.13]
[103]
Wang, B.; Dou, S.; Li, W.; Gao, Y. Multifunctional reduced graphene oxide/carbon nanotubes/epoxy resin nanocomposites based on carbon nanohybrid preform. Soft Mater., 2020, 18(1), 89-100.
[http://dx.doi.org/10.1080/1539445X.2019.1688833]
[104]
DorinaáMarforio. T.; LuisaáNavacchia, M., Core-shell graphene oxide-polymer hollow fibers as water filters with enhanced performance and selectivity. Faraday Discuss., 2020.
[105]
Rajabathar, J.R.; Shukla, A.K.; Ali, A.; Al-Lohedan, H.A. Silver nanoparticle/r-graphene oxide deposited mesoporous-manganese oxide nanocomposite for pollutant removal and supercapacitor applications. Int. J. Hydrogen Energy, 2017, 42(24), 15679-15688.
[106]
Dutta, D.; Thiyagarajan, S.; Bahadur, D. SnO2 quantum dots decorated reduced graphene oxide nanocomposites for efficient water remediation. Chem. Eng. J., 2016, 297, 55-65.
[http://dx.doi.org/10.1016/j.cej.2016.03.130]
[107]
Tang, J.; Huang, Y.; Gong, Y.; Lyu, H.; Wang, Q.; Ma, J. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal. J. Hazard. Mater., 2016, 316, 151-158.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.028] [PMID: 27232726]
[108]
Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol., 2011, 45(24), 10454-10462.
[http://dx.doi.org/10.1021/es203439v] [PMID: 22070750]
[109]
Ahmed, M.; Elektorowicz, M.; Hasan, S.W.G.O. SiO2, and SnO2 nanomaterials as highly efficient adsorbents for Zn2+ from industrial wastewater-A second stage treatment to electrically enhanced membrane bioreactor. J. Water Process Eng., 2019, 31100815
[http://dx.doi.org/10.1016/j.jwpe.2019.100815]
[110]
Zhang, K.; Li, H.; Xu, X.; Yu, H. Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr (VI) from aqueous water by adsorption. Microporous Mesoporous Mater., 2018, 255, 7-14.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.037]
[111]
Awad, F.S.; AbouZeid, K.M.; El-Maaty, W.M.A.; El-Wakil, A.M.; El-Shall, M.S. Efficient removal of heavy metals from polluted water with high selectivity for mercury (II) by 2-imino-4-thiobiuret-partially reduced graphene oxide (IT-PRGO). ACS Appl. Mater. Interfaces, 2017, 9(39), 34230-34242.
[http://dx.doi.org/10.1021/acsami.7b10021] [PMID: 28880523]
[112]
Li, M.; Feng, J.; Huang, K.; Tang, S.; Liu, R.; Li, H.; Ma, F.; Meng, X. Amino group functionalized SiO2@ graphene oxide for efficient removal of Cu (II) from aqueous solutions. Chem. Eng. Res. Des., 2019, 145, 235-244.
[http://dx.doi.org/10.1016/j.cherd.2019.03.028]
[113]
Sheshmani, S.; Akhundi Nematzadeh, M.; Shokrollahzadeh, S.; Ashori, A. Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution. Int. J. Biol. Macromol., 2015, 80, 475-480.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.009] [PMID: 26187194]
[114]
Najafabadi, H.H.; Irani, M.; Rad, L.R.; Haratameh, A.H.; Haririan, I. Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Advances, 2015, 5(21), 16532-16539.
[http://dx.doi.org/10.1039/C5RA01500F]
[115]
Wan, S.; He, F.; Wu, J.; Wan, W.; Gu, Y.; Gao, B. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J. Hazard. Mater., 2016, 314, 32-40.
[http://dx.doi.org/10.1016/j.jhazmat.2016.04.014] [PMID: 27107233]
[116]
Carpio, I.E.M.; Mangadlao, J.D.; Nguyen, H.N.; Advincula, R.C.; Rodrigues, D.F. Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon, 2014, 77, 289-301.
[http://dx.doi.org/10.1016/j.carbon.2014.05.032]
[117]
Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans., 2013, 42(16), 5682-5689.
[http://dx.doi.org/10.1039/c3dt33097d] [PMID: 23443993]
[118]
Lingamdinne, L.P.; Koduru, J.R.; Choi, Y-L.; Chang, Y-Y.; Yang, J-K. Studies on removal of Pb (II) and Cr (III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy, 2016, 165, 64-72.
[http://dx.doi.org/10.1016/j.hydromet.2015.11.005]
[119]
Li, N.; Yue, Q.; Gao, B.; Xu, X.; Kan, Y.; Zhao, P. Magnetic graphene oxide functionalized by poly dimethyl diallyl ammonium chloride for efficient removal of Cr (VI). J. Taiwan Inst. Chem. Eng., 2018, 91, 499-506.
[http://dx.doi.org/10.1016/j.jtice.2018.05.028]
[120]
Rosillo‐Lopez, M.; Salzmann, C.G. Detailed investigation into the preparation of graphene oxide by dichromate oxidation. ChemistrySelect, 2018, 3(24), 6972-6978.
[http://dx.doi.org/10.1002/slct.201801594]
[121]
Anuar, N.S.; Bachok, N.; Turkyilmazoglu, M.; Arifin, N.M.; Rosali, H. Analytical and stability analysis of MHD flow past a nonlinearly deforming vertical surface in Carbon Nanotubes; Alexandria Eng. J., 2020.
[http://dx.doi.org/10.1016/j.aej.2020.01.024]
[122]
Anuar, N.S.; Bachok, N.; Arifin, N.M.; Rosali, H. Role of multiple solutions in flow of nanofluids with carbon nanotubes over a vertical permeable moving plate. Alexandria Eng. J., 2020, 59(2), 763-773.
[http://dx.doi.org/10.1016/j.aej.2020.02.015]
[123]
Li, X.; Wang, C.; Zhang, J.; Liu, J.; Liu, B.; Chen, G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ., 2020, 711134847
[http://dx.doi.org/10.1016/j.scitotenv.2019.134847] [PMID: 31812432]
[124]
Ghorbani, M.; Seyedin, O.; Aghamohammadhassan, M. Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review. J. Environ. Manage., 2020, 254109814
[http://dx.doi.org/10.1016/j.jenvman.2019.109814] [PMID: 31726282]
[125]
Hubetska, T.; Kobylinska, N.; García, J.R. Efficient adsorption of pharmaceutical drugs from aqueous solution using a mesoporous activated carbon. Adsorption, 2020, 26(2), 251-266.
[http://dx.doi.org/10.1007/s10450-019-00143-0]
[126]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56.
[http://dx.doi.org/10.1038/354056a0]
[127]
Nayak, M.C.; Isloor, A.M.; Lakshmi, B.; Marwani, H.M.; Khan, I. Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions. Arab. J. Chem., 2020, 13(3), 4661-4672.
[http://dx.doi.org/10.1016/j.arabjc.2019.10.007]
[128]
Gusain, R.; Kumar, N.; Ray, S.S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev., 2020, 405213111
[http://dx.doi.org/10.1016/j.ccr.2019.213111]
[129]
Guo, L.; Liu, Y.; Dou, J.; Huang, Q.; Lei, Y.; Chen, J.; Wen, Y.; Li, Y.; Zhang, X.; Wei, Y. Surface modification of carbon nanotubes with polyethyleneimine through “mussel inspired chemistry” and “Mannich reaction” for adsorptive removal of copper ions from aqueous solution. J. Environ. Chem. Eng., 2020, 8(3)103721
[http://dx.doi.org/10.1016/j.jece.2020.103721]
[130]
Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere, 2018, 195, 351-364.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.061 PMID: 29272803]
[131]
Mubarak, N.M.; Thines, R.K.; Sajuni, N.R.; Abdullah, E.C.; Sahu, J.N.; Ganesan, P.; Jayakumar, N.S. Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes. Korean J. Chem. Eng., 2014, 31(9), 1582-1591.
[http://dx.doi.org/10.1007/s11814-014-0101-8]
[132]
Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. J. Environ. Sci. (China), 2016, 45, 143-155.
[http://dx.doi.org/10.1016/j.jes.2015.12.025] [PMID: 27372128]
[133]
Mubarak, N.; Sahu, J.; Abdullah, E.; Jayakumar, N.; Ganesan, P. Novel microwave-assisted multiwall carbon nanotubes enhancing Cu (II) adsorption capacity in water. J. Taiwan Inst. Chem. Eng., 2015, 53, 140-152.
[http://dx.doi.org/10.1016/j.jtice.2015.02.016]
[134]
Mubarak, N.; Sahu, J.; Abdullah, E.; Jayakumar, N.; Ganesan, P. Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn (II) from wastewater. Res. Chem. Intermed., 2016, 42(4), 3257-3281.
[http://dx.doi.org/10.1007/s11164-015-2209-9]
[135]
Mubarak, N.; Sahu, J.; Abdullah, E.; Jayakumar, N.; Ganesan, P. Microwave assisted multiwall carbon nanotubes enhancing Cd (II) adsorption capacity in aqueous media. J. Ind. Eng. Chem., 2015, 24, 24-33.
[http://dx.doi.org/10.1016/j.jiec.2014.09.005]
[136]
Bhanjana, G.; Dilbaghi, N.; Kim, K-H.; Kumar, S. Carbon nanotubes as sorbent material for removal of cadmium. J. Mol. Liq., 2017, 242, 966-970.
[http://dx.doi.org/10.1016/j.molliq.2017.07.072]
[137]
Alijani, H.; Shariatinia, Z. Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe2O3 as a precursor. Chemosphere, 2017, 171, 502-511.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.106 PMID: 28038422]
[138]
Mubarak, N.; Ruthiraan, M.; Sahu, J.; Abdullah, E.; Jayakumar, N.; Sajuni, N.; Tan, J. Adsorption and kinetic study on Sn 2+ removal using modified carbon nanotube and magnetic biochar. Int. J. Nanosci., 2013, 12(06)1350044
[http://dx.doi.org/10.1142/S0219581X13500440]
[139]
Ruthiraan, M.; Mubarak, N.M.; Thines, R.K.; Abdullah, E.C.; Sahu, J.N.; Jayakumar, N.S.; Ganesan, P. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd 2+ ions from wastewater. Korean J. Chem. Eng., 2015, 32(3), 446-457.
[http://dx.doi.org/10.1007/s11814-014-0260-7]
[140]
Hayati, B.; Maleki, A.; Najafi, F.; Daraei, H.; Gharibi, F.; McKay, G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J. Hazard. Mater., 2017, 336, 146-157.
[http://dx.doi.org/10.1016/j.jhazmat.2017.02.059] [PMID: 28494302]
[141]
Xie, Y.; Huang, Q.; Liu, M.; Wang, K.; Wan, Q.; Deng, F.; Lu, L.; Zhang, X.; Wei, Y. Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Advances, 2015, 5(84), 68430-68438.
[http://dx.doi.org/10.1039/C5RA08908E]
[142]
Sambaza, S.S.; Masheane, M.L.; Malinga, S.P.; Nxumalo, E.N.; Mhlanga, S.D. Polyethyleneimine-carbon nanotube polymeric nanocomposite adsorbents for the removal of Cr6+ from water. Phys. Chem. Earth Parts ABC, 2017, 100, 236-246.
[http://dx.doi.org/10.1016/j.pce.2016.08.002]
[143]
Behbahani, A.; Eghbali, H.; Ardjmand, M.; Noufal, M.M.; Williamson, H.C.; Sayar, O. A novel bio-compatible sorbent based on carbon nanostructure modified by porphyrin for heavy metal separation from industrial wastewaters. J. Environ. Chem. Eng., 2016, 4(1), 398-404.
[http://dx.doi.org/10.1016/j.jece.2015.11.034]
[144]
Liu, D.; Deng, S.; Maimaiti, A.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. As(III) and As(V) adsorption on nanocomposite of hydrated zirconium oxide coated carbon nanotubes. J. Colloid Interface Sci., 2018, 511, 277-284.
[http://dx.doi.org/10.1016/j.jcis.2017.10.004] [PMID: 29031147]
[145]
Hadavifar, M.; Bahramifar, N.; Younesi, H.; Rastakhiz, M.; Li, Q.; Yu, J.; Eftekhari, E. Removal of mercury (II) and cadmium (II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes. J. Taiwan Inst. Chem. Eng., 2016, 67, 397-405.
[http://dx.doi.org/10.1016/j.jtice.2016.08.029]
[146]
Kandah, M.I.; Meunier, J-L. Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater., 2007, 146(1-2), 283-288.
[http://dx.doi.org/10.1016/j.jhazmat.2006.12.019] [PMID: 17196328]
[147]
Zhang, X.; Huang, Q.; Liu, M.; Tian, J.; Zeng, G.; Li, Z.; Wang, K.; Zhang, Q.; Wan, Q.; Deng, F. Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl. Surf. Sci., 2015, 343, 19-27.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.081]
[148]
Zhou, Y.; He, Y.; Xiang, Y.; Meng, S.; Liu, X.; Yu, J.; Yang, J.; Zhang, J.; Qin, P.; Luo, L. Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous solutions by oxidized multiwalled carbon nanotube. Sci. Total Environ., 2019, 646, 29-36.
[http://dx.doi.org/10.1016/j.scitotenv.2018.07.267] [PMID: 30041045]
[149]
Kam, C.S.; Leung, T.L.; Liu, F.; Djurišić, A.B.; Xie, M.H.; Chan, W-K.; Zhou, Y.; Shih, K. Lead removal from water-dependence on the form of carbon and surface functionalization. RSC Advances, 2018, 8(33), 18355-18362.
[http://dx.doi.org/10.1039/C8RA02264J]
[150]
Yang, K.; Lou, Z.; Fu, R.; Zhou, J.; Xu, J.; Baig, S.A.; Xu, X. Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb (II) removal: Comparison and mechanism study. J. Mol. Liq., 2018, 260, 149-158.
[http://dx.doi.org/10.1016/j.molliq.2018.03.082]
[151]
Kettum, W.; Tran, T.T.V.; Kongparakul, S.; Reubroycharoen, P.; Guan, G.; Chanlek, N.; Samart, C. Heavy metal sequestration with a boronic acid-functionalized carbon-based adsorbent. J. Environ. Chem. Eng., 2018, 6(1), 1147-1154.
[http://dx.doi.org/10.1016/j.jece.2018.01.043]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2021
Published on: 19 July, 2020
Page: [4 - 22]
Pages: 19
DOI: 10.2174/1573411016999200719231712
Price: $65

Article Metrics

PDF: 29
HTML: 1