Bridging the Gap of Drug Delivery in Colon Cancer: The Role of Chitosan and Pectin Based Nanocarriers System

Author(s): Rohitas Deshmukh*

Journal Name: Current Drug Delivery

Volume 17 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Colon cancer is one of the most prevalent diseases, and traditional chemotherapy has not been proven beneficial in its treatment. It ranks second in terms of mortality due to all cancers for all ages. Lack of selectivity and poor biodistribution are the biggest challenges in developing potential therapeutic agents for the treatment of colon cancer. Nanoparticles hold enormous prospects as an effective drug delivery system. The delivery systems employing the use of polymers, such as chitosan and pectin as carrier molecules, ensure the maximum absorption of the drug, reduce unwanted side effects and also offer protection to the therapeutic agent from quick clearance or degradation, thus allowing an increased amount of the drug to reach the target tissue or cells. In this systematic review of published literature, the author aimed to assess the role of chitosan and pectin as polymer-carriers in colon targeted delivery of drugs in colon cancer therapy. This review summarizes the various studies employing the use of chitosan and pectin in colon targeted drug delivery systems.

Keywords: Colon cancer, drug carriers, carbohydrate polymers, drug delivery, chitosan, pectin.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The author declares no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The author wants to acknowledge the Institute of Pharmaceutical Research, GLA University, Mathura, India for providing necessary facilities for the compilation of this work.

REFERENCES

[1]
Patil, P.S.; Saklani, A.; Gambhire, P.; Mehta, S.; Engineer, R.; De’Souza, A.; Chopra, S.; Bal, M. Colorectal cancer in India: an audit from a tertiary center in a low prevalence area. Indian J. Surg. Oncol., 2017, 8(4), 484-490.
[http://dx.doi.org/10.1007/s13193-017-0655-0 ] [PMID: 29203978]
[2]
Luigi, M.; Gianfranco, N. New robotic technologies in cancer colon screening. Clin. Cancer Drugs, 2018, 5, 68-74.
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492 ] [PMID: 30207593]
[4]
Banerjee, A.; Pathak, S.; Subramanium, V.D. G, D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov. Today, 2017, 22(8), 1224-1232.
[http://dx.doi.org/10.1016/j.drudis.2017.05.006 ] [PMID: 28545838]
[5]
Xue, L.; Williamson, A.; Gaines, S.; Andolfi, C.; Paul-Olson, T.; Neerukonda, A.; Steinhagen, E.; Smith, R.; Cannon, L.M.; Polite, B.; Umanskiy, K.; Hyman, N. An update on colorectal cancer. Curr. Probl. Surg., 2018, 55(3), 76-116.
[http://dx.doi.org/10.1067/j.cpsurg.2018.02.003 ] [PMID: 29631699]
[6]
Aran, V.; Victorino, A.P.; Thuler, L.C.; Ferreira, C.G. Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin. Colorectal Cancer, 2016, 15(3), 195-203.
[http://dx.doi.org/10.1016/j.clcc.2016.02.008 ] [PMID: 26964802]
[7]
Pérez-Escalante, E.; Cariño-Cortés, R.; Fernández-Martínez, E.; Ortiz, M.I.; Muñoz-Pérez, V.M.; Sánchez-Crisóstomo, I.; Jiménez-Ángeles, L. Colorectal cancer: causes and evidence of chemopreventive treatments. Curr. Pharm. Biotechnol., 2018, 19(14), 1135-1155.
[http://dx.doi.org/10.2174/1389201020666181226112712 ] [PMID: 30585544]
[8]
Ades, S. Adjuvant chemotherapy for colon cancer in the elderly: moving from evidence to practice. Oncology (Williston Park), 2009, 23(2), 162-167.
[PMID: 19323297]
[9]
Lévy, E.; Piedbois, P.; Buyse, M. Meta-analysis group In C. Toxicity of fluorouracil in patients with advanced colorectal cancer: effect of administration schedule and prognostic factors. J. Clin. Oncol., 1998, 16, 3537-3541.
[10]
Son, H-S.; Lee, W.Y.; Lee, W-S.; Yun, S.H.; Chun, H.K. Compliance and effective management of the hand-foot syndrome in colon cancer patients receiving capecitabine as adjuvant chemotherapy. Yonsei Med. J., 2009, 50(6), 796-802.
[http://dx.doi.org/10.3349/ymj.2009.50.6.796 ] [PMID: 20046420]
[11]
Kaur, G.; Jain, S.; Tiwary, A.K. Recent approaches for colon drug delivery. Recent Pat. Drug Deliv. Formul., 2007, 1(3), 222-229.
[http://dx.doi.org/10.2174/187221107782331665 ] [PMID: 19075889]
[12]
Amidon, S.; Brown, J.E.; Dave, V.S. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech, 2015, 16(4), 731-741.
[http://dx.doi.org/10.1208/s12249-015-0350-9 ] [PMID: 26070545]
[13]
Belali, N.; Wathoni, N.; Muchtaridi, M. Advances in orally targeted drug delivery to colon. J. Adv. Pharm. Technol. Res., 2019, 10(3), 100-106.
[http://dx.doi.org/10.4103/japtr.JAPTR_26_19 ] [PMID: 31334090]
[14]
Chourasia, M.K.; Jain, S.K. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharmaceut Sci., 2003, 6, 33-66.
[15]
Kosaraju, S.L. Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 251-258.
[http://dx.doi.org/10.1080/10408690490478091 ] [PMID: 16047493]
[16]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H K. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics, 2020, 12(1), 68.
[http://dx.doi.org/10.3390/pharmaceutics12010068 ] [PMID: 31952340]
[17]
Mosaiab, T.; Farr, D.C.; Kiefel, M.J.; Houston, T.A. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv. Drug Deliv. Rev., 2019, 151-152, 94-129.
[http://dx.doi.org/10.1016/j.addr.2019.09.002 ] [PMID: 31513827]
[18]
Shukla, R.K.; Tiwari, A. Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr. Polym., 2012, 88, 399-416.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.021]
[19]
Philip, A.K.; Philip, B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med. J., 2010, 25(2), 79-87.
[http://dx.doi.org/10.5001/omj.2010.24 ] [PMID: 22125706]
[20]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005 ] [PMID: 20380880]
[21]
Park, J.H.; Saravanakumar, G.; Kim, K.; Kwon, I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev., 2010, 62(1), 28-41.
[http://dx.doi.org/10.1016/j.addr.2009.10.003 ] [PMID: 19874862]
[22]
Xie, X.; Li, F.; Zhang, H.; Lu, Y.; Lian, S.; Lin, H.; Gao, Y.; Jia, L. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur. J. Pharm. Sci., 2016, 83, 28-35.
[http://dx.doi.org/10.1016/j.ejps.2015.12.014 ] [PMID: 26690044]
[23]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027 ] [PMID: 20797419]
[24]
Kotelevets, L.; Chastre, E.; Desmaële, D.; Couvreur, P. Nanotechnologies for the treatment of colon cancer: from old drugs to new hope. Int. J. Pharm., 2016, 514(1), 24-40.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.005 ] [PMID: 27863668]
[25]
Cisterna, B.A.; Kamaly, N.; Choi, W.I.; Tavakkoli, A.; Farokhzad, O.C.; Vilos, C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond.), 2016, 11(18), 2443-2456.
[http://dx.doi.org/10.2217/nnm-2016-0194 ] [PMID: 27529192]
[26]
Hong, Y.; Rao, Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed. Pharmacother., 2019, 114, 108764.
[http://dx.doi.org/10.1016/j.biopha.2019.108764 ] [PMID: 30901717]
[27]
Menter, D.G.; Patterson, S.L.; Logsdon, C.D.; Kopetz, S.; Sood, A.K.; Hawk, E.T. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev. Res. (Phila.), 2014, 7(10), 973-992.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0079 ] [PMID: 25060262]
[28]
Suriyakala, P.C.; Kannika, P.N.; Satheesh, B.N.; Mohammad, G.I.; Masliza, S.B.M.S. Papain loaded solid lipid nanoparticles for colorectal cancer therapy. Curr. Cancer Ther. Rev., 2018, 14, 75-87.
[http://dx.doi.org/10.2174/1573394713666170929160933]
[29]
Rama, A.R.; Jimenez-Lopez, J.; Cabeza, L.; Jimenez-Luna, C.; Leiva, M.C.; Perazzoli, G.; Hernandez, R.; Zafra, I.; Ortiz, R.; Melguizo, C.; Prados, J. Last advances in nanocarriers-based drug delivery systems for colorectal cancer. Curr. Drug Deliv., 2016, 13(6), 830-838.
[http://dx.doi.org/10.2174/1567201813666151203232852 ] [PMID: 26634791]
[30]
Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046 ] [PMID: 26010257]
[31]
Yang, C.; Liu, H.Z.; Fu, Z.X.; Lu, W.D. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol., 2011, 11, 21.
[http://dx.doi.org/10.1186/1472-6750-11-21 ] [PMID: 21401960]
[32]
Krajewska, J.B.; Bartoszek, A.; Fichna, J. New trends in liposome-based drug delivery in colorectal cancer. Mini Rev. Med. Chem., 2019, 19(1), 3-11.
[http://dx.doi.org/10.2174/1389557518666180903150928 ] [PMID: 30179131]
[33]
Esmaelbeygi, E.; Khoei, S.; Khoee, S.; Eynali, S. Role of iron oxide core of polymeric nanoparticles in the thermosensitivity of colon cancer cell line HT-29. Int. J. Hyperthermia, 2015, 31(5), 489-497.
[http://dx.doi.org/10.3109/02656736.2015.1035766 ] [PMID: 25960148]
[34]
Lee, P.C.; Chiou, Y.C.; Wong, J.M.; Peng, C.L.; Shieh, M.J. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials, 2013, 34(34), 8756-8765.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.067 ] [PMID: 23937913]
[35]
Wu, L.; Man, C.; Wang, H.; Lu, X.; Ma, Q.; Cai, Y.; Ma, W. PEGylated multi-walled carbon nanotubes for encapsulation and sustained release of oxaliplatin. Pharm. Res., 2013, 30(2), 412-423.
[http://dx.doi.org/10.1007/s11095-012-0883-5 ] [PMID: 22992831]
[36]
Shukla, R.; Thomas, T.P.; Peters, J.L.; Desai, A.M.; Kukowska-Latallo, J.; Patri, A.K.; Kotlyar, A.; Baker, J.R. Jr. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug. Chem., 2006, 17(5), 1109-1115.
[http://dx.doi.org/10.1021/bc050348p ] [PMID: 16984117]
[37]
Castro, R.I.; Forero-Doria, O.; Guzmán, L. Perspectives of dendrimer-based nanoparticles in cancer therapy. An. Acad. Bras. Cienc., 2018, 90(2), 2331-2346.
[http://dx.doi.org/10.1590/0001-3765201820170387 ] [PMID: 30066746]
[38]
Frank, D.; Tyagi, C.; Tomar, L.; Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Penny, C.; Pillay, V. Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. Int. J. Nanomedicine, 2014, 9, 589-613.
[PMID: 24489467]
[39]
Patel, M.; Shah, T.; Amin, A. Therapeutic opportunities in colon-specific drug-delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 2007, 24(2), 147-202.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v24.i2.20 ] [PMID: 17725524]
[40]
Vandamme, T.F.; Lenourry, A.; Charrueau, C.; Chaumeil, J. The use of polysaccharides to target drugs to the colon. Carbohydr. Polym., 2002, 48, 219-231.
[http://dx.doi.org/10.1016/S0144-8617(01)00263-6]
[41]
Tran, T.T-D.; Tran, P.H-L.; Wang, Y.; Li, P.; Kong, L. Nanoparticulate drug delivery to colorectal cancer: formulation strategies and surface engineering. Curr. Pharm. Des., 2016, 22(19), 2904-2912.
[http://dx.doi.org/10.2174/1381612822666160217140932 ] [PMID: 26898738]
[42]
Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. (Indore), 2016, 4(3), 411-427.
[PMID: 27819009]
[43]
Rudzinski, W.E.; Palacios, A.; Ahmed, A.; Lane, M.A.; Aminabhavi, T.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr. Polym., 2016, 147, 323-332.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.041 ] [PMID: 27178938]
[44]
Lei, X.; Lina, D.; Cheng-Qiong, L.; Tian-Jiao, Z.; Yong, Z.; Jia-Hui, G.; Yiguang, J.; Hu-Lin, J. Chitosan and its derivatives as chemical drug delivery carriers. Curr. Org. Chem., 2018, 22, 690-707.
[http://dx.doi.org/10.2174/1385272821666170818160236]
[45]
Nam, K.S.; Kim, M.K.; Shon, Y.H. Chemopreventive effect of chitosan oligosaccharide against colon carcinogenesis. J. Microbiol. Biotechnol., 2007, 17(9), 1546-1549.
[PMID: 18062235]
[46]
Anitha, A; Sreeranganathan, M; Chennazhi, KP; Lakshmanan, V.K Jayakumar, R Corrigendum to "In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies" [Eur. J. Pharmaceut. Biopharmaceut., 2014, 88, 238-251]. 2019, 139, 44-46.
[47]
Feng, C.; Li, J.; Kong, M.; Liu, Y.; Cheng, X.J.; Li, Y.; Park, H.J.; Chen, X.G. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf. B Biointerfaces, 2015, 128, 439-447.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.042 ] [PMID: 25769283]
[48]
Wang, M.J.; Xie, Y.L.; Zheng, Q-D.; Yao, S.J. A novel, potential microflora-activated carrier for a colon-specific drug delivery system and its characteristics. Ind. Eng. Chem. Res., 2009, 48, 5276-5284.
[http://dx.doi.org/10.1021/ie801295y]
[49]
Abu-Serie, M.M.; El-Rashidy, F.H. In vitro collapsing colon cancer cells by selectivity of disulfiram-loaded charge switchable nanoparticles against cancer stem cells. Recent Pat. Anticancer Drug Discov., 2017, 12(3), 260-271.
[http://dx.doi.org/10.2174/1574892812666170424144925 ] [PMID: 28440205]
[50]
Wen, P.; Zong, M-H.; Hu, T-G.; Li, L.; Wu, H. Preparation and characterization of electrospun colon-specific delivery system for quercetin and its antiproliferative effect on cancer cells. J. Agric. Food Chem., 2018, 66(44), 11550-11559.
[http://dx.doi.org/10.1021/acs.jafc.8b02614 ] [PMID: 30148954]
[51]
Sayari, E.; Dinarvand, M.; Amini, M.; Azhdarzadeh, M.; Mollarazi, E.; Ghasemi, Z.; Atyabi, F. MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int. J. Pharm., 2014, 473(1-2), 304-315.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.041 ] [PMID: 24905777]
[52]
Smoum, R.; Rubinstein, A.; Srebnik, M. Chitosan-pentaglycine-phenylboronic acid conjugate: a potential colon-specific platform for calcitonin. Bioconjug. Chem., 2006, 17(4), 1000-1007.
[http://dx.doi.org/10.1021/bc050357y ] [PMID: 16848408]
[53]
Tan, L.; Han, S.; Ding, S.; Xiao, W.; Ding, Y.; Qian, L.; Wang, C.; Gong, W. Chitosan nanoparticle-based delivery of fused NKG2D-IL-21 gene suppresses colon cancer growth in mice. Int. J. Nanomedicine, 2017, 12, 3095-3107.
[http://dx.doi.org/10.2147/IJN.S128032 ] [PMID: 28450784]
[54]
Yu, X.; Pishko, M.V. Nanoparticle-based biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules, 2011, 12(9), 3205-3212.
[http://dx.doi.org/10.1021/bm200681m ] [PMID: 21786828]
[55]
Li, P.; Wang, Y.; Zeng, F.; Chen, L.; Peng, Z.; Kong, L.X. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr. Res., 2011, 346(6), 801-806.
[http://dx.doi.org/10.1016/j.carres.2011.01.027 ] [PMID: 21397214]
[56]
Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces, 2011, 3(2), 218-228.
[http://dx.doi.org/10.1021/am100840c ] [PMID: 21280584]
[57]
Liu, W.; Wang, F.; Zhu, Y.; Li, X.; Liu, X.; Pang, J.; Pan, W. Galactosylated chitosan-functionalized mesoporous silica nanoparticle loading by calcium leucovorin for colon cancer cell-targeted drug delivery. Molecules, 2018, 23(12), 3082.
[http://dx.doi.org/10.3390/molecules23123082 ] [PMID: 30486276]
[58]
Arafa, K.; Shamma, R.N.; El-Gazayerly, O.N.; El-Sherbiny, I.M. Facile development, characterization, and optimization of new metformin-loaded nanocarrier system for efficient colon cancer adjunct therapy. Drug Dev. Ind. Pharm., 2018, 44(7), 1158-1170.
[http://dx.doi.org/10.1080/03639045.2018.1438463 ] [PMID: 29429370]
[59]
Jain, S.K.; Jain, A.; Gupta, Y.; Ahirwar, M. Design and development of hydrogel beads for targeted drug delivery to the colon. AAPS PharmSciTech, 2007, 8(3), E56-E56.
[http://dx.doi.org/10.1208/pt0803056 ] [PMID: 17915806]
[60]
Depani, B.P.; Naik, A.A.; Nair, H.A. Preparation and evaluation of chitosan based thermoreversible gels for intraperitoneal delivery of 5-fluorouracil (5-FU). Acta Pharm., 2013, 63(4), 479-491.
[http://dx.doi.org/10.2478/acph-2013-0033 ] [PMID: 24451073]
[61]
Wang, J.; Peng, C-A. Anticancer effectiveness of polymeric drug nanocarriers on colorectal cancer cells. Annual Conference, 2011, pp. 3249-3252.
[62]
Sun, L.; Li, X.; Li, Z.; Li, Z.; Gou, M.; Qian, Z.; Peng, F. Improving antitumor activity with N-trimethyl chitosan entrapping camptothecin in colon cancer and lung cancer. J. Nanosci. Nanotechnol., 2015, 15(9), 6397-6404.
[http://dx.doi.org/10.1166/jnn.2015.10736 ] [PMID: 26716193]
[63]
Wang, Y.; Xu, H.; Wang, J.; Ge, L.; Zhu, J. Development of a thermally responsive nanogel based on chitosan-poly(N-isopropylacrylamide-co-acrylamide) for paclitaxel delivery. J. Pharm. Sci., 2014, 103(7), 2012-2021.
[http://dx.doi.org/10.1002/jps.23995 ] [PMID: 24823900]
[64]
Yuan, Z.; Yuan, Y.; Han, L.; Qiu, Y.; Huang, X.; Gao, F.; Fan, G.; Zhang, Y.; Tang, X.; He, X.; Xu, K.; Yin, P. Bufalin-loaded vitamin E succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS mixed micelles demonstrated improved antitumor activity against drug-resistant colon cancer. Int. J. Nanomedicine, 2018, 13, 7533-7548.
[http://dx.doi.org/10.2147/IJN.S170692 ] [PMID: 30532537]
[65]
Zhang, W.; Xu, P.; Zhang, H. Pectin in cancer therapy: a review. Trends Food Sci. Technol., 2015, 44, 258-271.
[http://dx.doi.org/10.1016/j.tifs.2015.04.001]
[66]
Rehman, A.; Ahmad, T.; Aadil, R.M.; Spotti, M.J.; Bakry, A.M.; Khan, I.M.; Zhao, L.; Riaz, T.; Tong, Q. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci. Technol., 2019, 90, 35-46.
[http://dx.doi.org/10.1016/j.tifs.2019.05.015]
[67]
Wicker, L.; Kim, Y.; Kim, M-J.; Thirkield, B.; Lin, Z.; Jung, J. Pectin as a bioactive polysaccharide – extracting tailored function from less. Food Hydrocoll., 2014, 42, 251-259.
[http://dx.doi.org/10.1016/j.foodhyd.2014.01.002]
[68]
Moore, M.A.; Park, C.B.; Tsuda, H. Soluble and insoluble fiber influences on cancer development. Crit. Rev. Oncol. Hematol., 1998, 27(3), 229-242.
[http://dx.doi.org/10.1016/S1040-8428(98)00006-7 ] [PMID: 9649935]
[69]
Wong, J.M.; de Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol., 2006, 40(3), 235-243.
[http://dx.doi.org/10.1097/00004836-200603000-00015 ] [PMID: 16633129]
[70]
Lupton, J.R. Is fiber protective against colon cancer? Where the research is leading us. Nutrition, 2000, 16(7-8), 558-561.
[http://dx.doi.org/10.1016/S0899-9007(00)00350-6 ] [PMID: 10906555]
[71]
Hayashi, A.; Gillen, A.C.; Lott, J.R. Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice. Altern. Med. Rev., 2000, 5(6), 546-552.
[PMID: 11134977]
[72]
Nakahara, S.; Raz, A. Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway. Cancer Metastasis Rev., 2007, 26(3-4), 605-610.
[http://dx.doi.org/10.1007/s10555-007-9095-6 ] [PMID: 17726578]
[73]
Wong, T.W.; Colombo, G.; Sonvico, F. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech, 2011, 12(1), 201-214.
[http://dx.doi.org/10.1208/s12249-010-9564-z ] [PMID: 21194013]
[74]
Günter, E.A.; Popeyko, O.V. Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydr. Polym., 2016, 147, 490-499.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.026 ] [PMID: 27178956]
[75]
Das, S.; Ng, K-Y.; Ho, P.C. Design of a pectin-based microparticle formulation using zinc ions as the cross-linking agent and glutaraldehyde as the hardening agent for colonic-specific delivery of resveratrol: in vitro and in vivo evaluations. J. Drug Target., 2011, 19(6), 446-457.
[http://dx.doi.org/10.3109/1061186X.2010.504272 ] [PMID: 20684731]
[76]
Das, S.; Ng, K.Y. Impact of glutaraldehyde on in vivo colon-specific release of resveratrol from biodegradable pectin-based formulation. J. Pharm. Sci., 2010, 99(12), 4903-4916.
[http://dx.doi.org/10.1002/jps.22212 ] [PMID: 20572052]
[77]
Izadi, Z.; Divsalar, A.; Saboury, A.A.; Sawyer, L. β-lactoglobulin-pectin nanoparticle-based oral drug delivery system for potential treatment of colon cancer. Chem. Biol. Drug Des., 2016, 88(2), 209-216.
[http://dx.doi.org/10.1111/cbdd.12748 ] [PMID: 26896377]
[78]
Ansari, M.; Sadarani, B.; Majumdar, A. Colon targeted beads loaded with pterostilbene: formulation, optimization, characterization and in vivo evaluation. Saudi Pharmaceut J., 2019, 27, 71-81.
[79]
Andishmand, H.; Tabibiazar, M.; Mohammadifar, M.A.; Hamishehkar, H. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. Int. J. Biol. Macromol., 2017, 97, 16-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.087 ] [PMID: 28064058]
[80]
Deshmukh, R.; Harwansh, R.K.; Paul, S.D.; Shukla, R. Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease. J. Drug Deliv. Sci. Technol., 2020, 55, 101495.
[http://dx.doi.org/10.1016/j.jddst.2019.101495]
[81]
Dev, R.K.; Bali, V.; Pathak, K. Novel microbially triggered colon specific delivery system of 5-fluorouracil: statistical optimization, in vitro, in vivo, cytotoxic and stability assessment. Int. J. Pharm., 2011, 411(1-2), 142-151.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.057 ] [PMID: 21463667]
[82]
Sabra, R.; Billa, N.; Roberts, C.J. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int. J. Pharm., 2019, 572, 118775.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118775 ] [PMID: 31678385]
[83]
Sabra, R.; Roberts, C.J.; Billa, N. Courier properties of modified citrus pectinate-chitosan nanoparticles in colon delivery of curcumin. Colloid Interface Sci. Commun., 2019, 32, 100192.
[http://dx.doi.org/10.1016/j.colcom.2019.100192]
[84]
Alkhader, E.; Roberts, C.J.; Rosli, R.; Yuen, K.H.; Seow, E.K.; Lee, Y.Z.; Billa, N. Pharmacokinetic and anti-colon cancer properties of curcumin-containing chitosan-pectinate composite nanoparticles. J. Biomater. Sci. Polym. Ed., 2018, 29(18), 2281-2298.
[http://dx.doi.org/10.1080/09205063.2018.1541500 ] [PMID: 30376409]
[85]
Cheewatanakornkool, K.; Niratisai, S.; Manchun, S.; Dass, C.R.; Sriamornsak, P. Thiolated pectin-doxorubicin conjugates: Synthesis, characterization and anticancer activity studies. Carbohydr. Polym., 2017, 174, 493-506.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.115 ] [PMID: 28821097]
[86]
Almeida, E.A.; Facchi, S.P.; Martins, A.F.; Nocchi, S.; Schuquel, I.T.; Nakamura, C.V.; Rubira, A.F.; Muniz, E.C. Synthesis and characterization of pectin derivative with antitumor property against Caco-2 colon cancer cells. Carbohydr. Polym., 2015, 115, 139-145.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.085 ] [PMID: 25439878]
[87]
Elyagoby, A.; Layas, N.; Wong, T.W. Colon-specific delivery of 5-fluorouracil from zinc pectinate pellets through in situ intracapsular ethylcellulose-pectin plug formation. J. Pharm. Sci., 2013, 102(2), 604-616.
[http://dx.doi.org/10.1002/jps.23388 ] [PMID: 23225084]
[88]
Vaidya, A.; Jain, A.; Khare, P.; Agrawal, R.K.; Jain, S.K. Metronidazole loaded pectin microspheres for colon targeting. J. Pharm. Sci., 2009, 98(11), 4229-4236.
[http://dx.doi.org/10.1002/jps.21742 ] [PMID: 19492406]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 10
Year: 2020
Page: [911 - 924]
Pages: 14
DOI: 10.2174/1567201817666200717090623
Price: $65

Article Metrics

PDF: 39
HTML: 3
EPUB: 1
PRC: 1