Anti-Aging Effect of Metformin: A Molecular and Therapeutical Perspective

Author(s): Wheeler Torres*, Manuel Nava, Nestor Galbán, Yosselin Gómez, Valery Morillo, Milagros Rojas, Clímaco Cano, Maricarmen Chacín, Luis D´Marco, Yaneth Herazo, Manuel Velasco, Valmore Bermúdez, Joselyn Rojas-Quintero

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 35 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Aging is a time-dependent inevitable process, in which cellular homeostasis is affected, which has an impact on tissue function. This represents a risk factor for the development of numerous non-transmissible diseases. In consequence, the scientific community continues to search for therapeutic measures capable of improving quality of life and delaying cellular aging. At the center of this research is metformin, a widely used drug in Type 2 Diabetes Mellitus treatment that has a reduced adverse effects profile. Furthermore, there is evidence that this drug has beneficial health effects that go beyond its anti-hyperglycemic properties. Among these effects, its geronto-protection capability stands out. There is growing evidence that points out to an increased life expectancy as well as the quality of life in model organisms treated with metformin. Therefore, there is an abundance of research centered on elucidating the mechanism through which metformin has its anti-aging effects. Among these, the AMPK, mTORC1, SIRT1, FOXO, NF.kB, and DICER1 pathways can be mentioned. Furthermore, studies have highlighted the possibility of a role for the gut microbiome in these processes. The next step is the design of clinical essays that have as a goal evaluating the efficacy and safety of metformin as an anti-aging drug in humans to create a paradigm in the medical horizon. The question being if metformin is, in fact, the new antiaging therapy in humans?

Keywords: Metformin, ageing, anti-ageing drugs, Type 2 diabetes mellitus, geronto-protective properties, cellular homeostasis.

[1]
World Population Prospects: The 2017 Revision Multimedia Library - United Nations Department of Economic and Social Affairs. Available at:. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html
[2]
Fernandes M, Wan C, Tacutu R, et al. Systematic analysis of the gerontome reveals links between aging and age-related diseases. Hum Mol Genet 2016; 25(21): 4804-18.
[http://dx.doi.org/10.1093/hmg/ddw307] [PMID: 28175300]
[3]
Wang T, Maden SK, Luebeck GE, et al. Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk. Clin Epigenetics 2020; 12(1): 5.
[http://dx.doi.org/10.1186/s13148-019-0801-3] [PMID: 31900199]
[4]
Kucia M, Ratajczak MZ. Plausible Links Between Metabolic Networks, Stem Cells, and Longevity. Adv Exp Med Biol 2019; 1201: 355-88.
[http://dx.doi.org/10.1007/978-3-030-31206-0_15] [PMID: 31898793]
[5]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[6]
Argüelles S, Guerrero-Castilla A, Cano M, Muñoz MF, Ayala A. Advantages and disadvantages of apoptosis in the aging process. Ann N Y Acad Sci 2019; 1443(1): 20-33.
[http://dx.doi.org/10.1111/nyas.14020] [PMID: 30839127]
[7]
Morrison EJ, Champagne DP, Dzieciatkowska M, et al. Parabiosis Incompletely Reverses Aging-Induced Metabolic Changes and Oxidant Stress in Mouse Red Blood Cells. Nutrients 2019; 11(6) E1337
[http://dx.doi.org/10.3390/nu11061337] [PMID: 31207887]
[8]
Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014; 344(6184): 630-4.
[http://dx.doi.org/10.1126/science.1251141] [PMID: 24797482]
[9]
Yin Z, Raj DD, Schaafsma W, et al. Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging. Front Mol Neurosci 2018; 11: 65.
[http://dx.doi.org/10.3389/fnmol.2018.00065] [PMID: 29593493]
[10]
Granado M, Amor S, Martín-Carro B, et al. Caloric restriction attenuates aging-induced cardiac insulin resistance in male Wistar rats through activation of PI3K/Akt pathway. Nutr Metab Cardiovasc Dis 2019; 29(1): 97-105.
[http://dx.doi.org/10.1016/j.numecd.2018.09.005] [PMID: 30497927]
[11]
Corrales P, Vivas Y, Izquierdo-Lahuerta A, et al. Long-term caloric restriction ameliorates deleterious effects of aging on white and brown adipose tissue plasticity. Aging Cell 2019; 18(3) e12948
[http://dx.doi.org/10.1111/acel.12948] [PMID: 30920127]
[12]
Bielas J, Herbst A, Widjaja K, et al. Long term rapamycin treatment improves mitochondrial DNA quality in aging mice. Exp Gerontol 2018; 106: 125-31.
[http://dx.doi.org/10.1016/j.exger.2018.02.021] [PMID: 29486228]
[13]
Chung CL, Lawrence I, Hoffman M, et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. Geroscience 2019; 41(6): 861-9.
[http://dx.doi.org/10.1007/s11357-019-00113-y] [PMID: 31761958]
[14]
Garg G, Singh S, Singh AK, Rizvi SI. Antiaging Effect of Metformin on Brain in Naturally Aged and Accelerated Senescence Model of Rat. Rejuvenation Res 2017; 20(3): 173-82.
[http://dx.doi.org/10.1089/rej.2016.1883] [PMID: 27897089]
[15]
Neumann B, Baror R, Zhao C, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell 2019; 25(4): 473-485.e8.
[http://dx.doi.org/10.1016/j.stem.2019.08.015] [PMID: 31585093]
[16]
Zhao P, Sui B-D, Liu N, et al. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 2017; 16(5): 1083-93.
[http://dx.doi.org/10.1111/acel.12635] [PMID: 28677234]
[17]
Song J, Jiang G, Zhang J, et al. Metformin prolongs lifespan through remodeling the energy distribution strategy in silkworm, Bombyx mori. Aging (Albany NY) 2019; 11(1): 240-8.
[http://dx.doi.org/10.18632/aging.101746] [PMID: 30636724]
[18]
Bailey CJ. Metformin: historical overview. Diabetologia 2017; 60(9): 1566-76.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[19]
Watanabe CK. Studies in the Metabolism Changes Induced by Administration of Guanidine Bases I. Influence of Injected Guanidine Hydrochloride Upon Blood Sugar Content. J Biol Chem 1918; 33(2): 253-65.
[20]
Werner EA, Bell J. The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively. J Chem Soc Trans 1922; 121(0): 1790-4.
[http://dx.doi.org/10.1039/CT9222101790]
[21]
Cree-Green M, Bergman BC, Cengiz E, et al. Metformin Improves Peripheral Insulin Sensitivity in Youth With Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104(8): 3265-78.
[http://dx.doi.org/10.1210/jc.2019-00129] [PMID: 30938764]
[22]
Li F-F, Liu B-L, Yin G-P, et al. Young onset type 2 diabetic patients might be more sensitive to metformin compared to late onset type 2 diabetic patients. Sci Rep 2017; 7(1): 16382.
[http://dx.doi.org/10.1038/s41598-017-16658-x] [PMID: 29180640]
[23]
Madiraju AK, Qiu Y, Perry RJ, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 2018; 24(9): 1384-94.
[http://dx.doi.org/10.1038/s41591-018-0125-4] [PMID: 30038219]
[24]
Sambe T, Mason RP, Dawoud H, Bhatt DL, Malinski T. Metformin treatment decreases nitroxidative stress, restores nitric oxide bioavailability and endothelial function beyond glucose control. Biomed Pharmacother 2018; 98: 149-56.
[http://dx.doi.org/10.1016/j.biopha.2017.12.023] [PMID: 29253762]
[25]
Aghaalikhani N, Goodarzi MT, Latifi Z, Farimani AR, Fattahi A. Effects of Different Doses of Metformin on Serum Fatty Acid Composition in Type 2 Diabetic Rats. Avicenna J Med Biochem 2017; 5(1): 22-8.
[http://dx.doi.org/10.15171/ajmb.2017.04]
[26]
Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 2020; 500 110628
[http://dx.doi.org/10.1016/j.mce.2019.110628] [PMID: 31647955]
[27]
Howell JJ, Hellberg K, Turner M, et al. Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab 2017; 25(2): 463-71.
[http://dx.doi.org/10.1016/j.cmet.2016.12.009] [PMID: 28089566]
[28]
Napolitano A, Miller S, Nicholls AW, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One 2014; 9(7) e100778
[http://dx.doi.org/10.1371/journal.pone.0100778] [PMID: 24988476]
[29]
Ridlon JM, Harris SC, Bhowmik S, Kang D-J, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016; 7(1): 22-39.
[http://dx.doi.org/10.1080/19490976.2015.1127483] [PMID: 26939849]
[30]
de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care 2017; 40(1): 54-62.
[http://dx.doi.org/10.2337/dc16-1324] [PMID: 27999002]
[31]
Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23(7): 850-8.
[http://dx.doi.org/10.1038/nm.4345] [PMID: 28530702]
[32]
Bonfili L, Cecarini V, Berardi S, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 2017; 7(1): 2426.
[http://dx.doi.org/10.1038/s41598-017-02587-2] [PMID: 28546539]
[33]
Jin C, Lagoudas GK, Zhao C, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell 2019; 176(5): 998-1013.e16.
[http://dx.doi.org/10.1016/j.cell.2018.12.040] [PMID: 30712876]
[34]
Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018; 67(2): 226-36.
[http://dx.doi.org/10.1136/gutjnl-2017-314205] [PMID: 29102920]
[35]
Brandsma E, Kloosterhuis NJ, Koster M, et al. A Proinflammatory Gut Microbiota Increases Systemic Inflammation and Accelerates Atherosclerosis. Circ Res 2019; 124(1): 94-100.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313234] [PMID: 30582442]
[36]
Le S, Lee GC. Emerging Trends in Metformin Prescribing in the United States from 2000 to 2015. Clin Drug Investig 2019; 39(8): 757-63.
[http://dx.doi.org/10.1007/s40261-019-00799-0] [PMID: 31124014]
[37]
Morley JE, Niehoff ML, Roesler EC, Farr SA. Metformin increases pkc and decreases app and tau in the samp8 mouse model of alzheimer’s disease Alzheimers Dement 2018.14(7S_Part_21): P1141-1..
[http://dx.doi.org/10.1016/j.jalz.2018.06.1551]
[38]
Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE. Metformin Improves Learning and Memory in the SAMP8 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2019; 68(4): 1699-710.
[http://dx.doi.org/10.3233/JAD-181240] [PMID: 30958364]
[39]
Samy M, Fouda A-M, Daba M-H, Yassin A-R. Reduction of Hepato-Metabolic Changes in Rat Model of Metabolic Syndrome by Metformin and Atorvastatin Combination. Adv Med Med Res 2018; 1(1): 49-57.
[http://dx.doi.org/10.31377/ammr.v1i1.497]
[40]
Jing Y, Wu F, Li D, Yang L, Li Q, Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 2018; 461: 256-64.
[http://dx.doi.org/10.1016/j.mce.2017.09.025] [PMID: 28935544]
[41]
Cui Y, Chang L, Wang C, et al. Metformin attenuates autoimmune disease of the neuromotor system in animal models of myasthenia gravis. Int Immunopharmacol 2019. 75105822
[http://dx.doi.org/10.1016/j.intimp.2019.105822] [PMID: 31437793]
[42]
Jang SG, Lee J, Hong S-M, Kwok S-K, Cho M-L, Park S-H. Metformin enhances the immunomodulatory potential of adipose-derived mesenchymal stem cells through STAT1 in an animal model of lupus. Rheumatology (Oxford) 2020; 59(6): 1426-38.
[http://dx.doi.org/10.1093/rheumatology/kez631] [PMID: 31904843]
[43]
Garg G, Singh S, Singh AK, Rizvi SI. Metformin Alleviates Altered Erythrocyte Redox Status During Aging in Rats. Rejuvenation Res 2017; 20(1): 15-24.
[http://dx.doi.org/10.1089/rej.2016.1826] [PMID: 27185159]
[44]
Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. Metformin improves healthspan and lifespan in mice. Nat Commun 2013; 4: 2192.
[http://dx.doi.org/10.1038/ncomms3192] [PMID: 23900241]
[45]
Anisimov VN, Popovich IG, Zabezhinski MA, et al. Sex differences in aging, life span and spontaneous tumorigenesis in 129/Sv mice neonatally exposed to metformin. Cell Cycle 2015; 14(1): 46-55.
[http://dx.doi.org/10.4161/15384101.2014.973308] [PMID: 25483062]
[46]
Anisimov VN, Egormin PA, Bershtein LM, et al. Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice. Bull Exp Biol Med 2005; 139(6): 721-3.
[http://dx.doi.org/10.1007/s10517-005-0389-9] [PMID: 16224592]
[47]
Anisimov VN, Berstein LM, Egormin PA, et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 2008; 7(17): 2769-73.
[http://dx.doi.org/10.4161/cc.7.17.6625] [PMID: 18728386]
[48]
Anisimov VN, Berstein LM, Popovich IG, et al. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY) 2011; 3(2): 148-57.
[http://dx.doi.org/10.18632/aging.100273] [PMID: 21386129]
[49]
Fatemi I, Khaluoi A, Kaeidi A, Shamsizadeh A, Heydari S, Allahtavakoli MA. Protective effect of metformin on D-galactose-induced aging model in mice. Iran J Basic Med Sci 2018; 21(1): 19-25.
[PMID: 29372032]
[50]
Qin X, Du D, Chen Q, et al. Metformin prevents murine ovarian aging. Aging (Albany NY) 2019; 11(11): 3785-94.
[http://dx.doi.org/10.18632/aging.102016] [PMID: 31182682]
[51]
Fatemi I, Heydari S, Kaeidi A, et al. Metformin ameliorates the age-related changes of d-galactose administration in ovariectomized mice. Fundam Clin Pharmacol 2018; 32(4): 392-9.
[http://dx.doi.org/10.1111/fcp.12364] [PMID: 29512848]
[52]
Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 2010; 5(1) e8758
[http://dx.doi.org/10.1371/journal.pone.0008758] [PMID: 20090912]
[53]
Chen J, Ou Y, Li Y, Hu S, Shao L-W, Liu Y. Metformin extends C. elegans lifespan through lysosomal pathway. eLife 2017; 6: 6.
[http://dx.doi.org/10.7554/eLife.31268] [PMID: 29027899]
[54]
Cabreiro F, Au C, Leung K-Y, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013; 153(1): 228-39.
[http://dx.doi.org/10.1016/j.cell.2013.02.035] [PMID: 23540700]
[55]
Na H-J, Park J-S, Pyo J-H, et al. Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell. Mech Ageing Dev 2013; 134(9): 381-90.
[http://dx.doi.org/10.1016/j.mad.2013.07.003] [PMID: 23891756]
[56]
Na H-J, Park J-S, Pyo J-H, et al. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway. Mech Ageing Dev 2015; 149: 8-18.
[http://dx.doi.org/10.1016/j.mad.2015.05.004] [PMID: 25988874]
[57]
Slack C, Foley A, Partridge L. Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS One 2012; 7(10) e47699
[http://dx.doi.org/10.1371/journal.pone.0047699] [PMID: 23077661]
[58]
Piskovatska V, Strilbytska O, Koliada A, Vaiserman A, Lushchak O. Health Benefits of Anti-aging Drugs. Subcell Biochem 2019; 91: 339-92.
[http://dx.doi.org/10.1007/978-981-13-3681-2_13] [PMID: 30888659]
[59]
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29: 90-112.
[http://dx.doi.org/10.1016/j.arr.2016.06.005] [PMID: 27353257]
[60]
Aunan JR, Watson MM, Hagland HR, Søreide K. Molecular and biological hallmarks of ageing. Br J Surg 2016; 103(2): e29-46.
[http://dx.doi.org/10.1002/bjs.10053] [PMID: 26771470]
[61]
Qian M, Liu B. Pharmaceutical Intervention of Aging. Adv Exp Med Biol 2018; 1086: 235-54.
[http://dx.doi.org/10.1007/978-981-13-1117-8_15] [PMID: 30232763]
[62]
Hillson O, Gonzalez S, Rallis C. Prospects of Pharmacological Interventions to Organismal Aging. Biomol Concepts 2018; 9(1): 200-15.
[http://dx.doi.org/10.1515/bmc-2018-0018] [PMID: 30676997]
[63]
Houthoofd K, Vanfleteren JR. The longevity effect of dietary restriction in Caenorhabditis elegans. Exp Gerontol 2006; 41(10): 1026-31.
[http://dx.doi.org/10.1016/j.exger.2006.05.007] [PMID: 16782293]
[64]
Anton S, Leeuwenburgh C. Fasting or caloric restriction for healthy aging. Exp Gerontol 2013; 48(10): 1003-5.
[http://dx.doi.org/10.1016/j.exger.2013.04.011] [PMID: 23639403]
[65]
Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol 2018; 217(1): 93-106.
[http://dx.doi.org/10.1083/jcb.201707168] [PMID: 29074705]
[66]
Bartke A. Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci 2011; 366(1561): 28-34.
[http://dx.doi.org/10.1098/rstb.2010.0281] [PMID: 21115527]
[67]
Bartke A. Growth hormone, insulin and aging: the benefits of endocrine defects. Exp Gerontol 2011; 46(2-3): 108-11.
[http://dx.doi.org/10.1016/j.exger.2010.08.020] [PMID: 20851173]
[68]
Anisimov VN, Bartke A. The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol 2013; 87(3): 201-23.
[http://dx.doi.org/10.1016/j.critrevonc.2013.01.005] [PMID: 23434537]
[69]
Scheen AJ. The future of obesity: new drugs versus lifestyle interventions. Expert Opin Investig Drugs 2008; 17(3): 263-7.
[http://dx.doi.org/10.1517/13543784.17.3.263] [PMID: 18321226]
[70]
Golbidi S, Daiber A, Korac B, Li H, Essop MF, Laher I. Health Benefits of Fasting and Caloric Restriction. Curr Diab Rep 2017; 17(12): 123.
[http://dx.doi.org/10.1007/s11892-017-0951-7] [PMID: 29063418]
[71]
Valencia WM, Palacio A, Tamariz L, Florez H. Metformin and ageing: improving ageing outcomes beyond glycaemic control. Diabetologia 2017; 60(9): 1630-8.
[http://dx.doi.org/10.1007/s00125-017-4349-5] [PMID: 28770328]
[72]
Podhorecka M, Ibanez B, Dmoszyńska A. Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw 2017; 71(0): 170-5.
[http://dx.doi.org/10.5604/01.3001.0010.3801] [PMID: 28258677]
[73]
Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 2013; 18(4): 556-66.
[http://dx.doi.org/10.1016/j.cmet.2013.08.019] [PMID: 24093679]
[74]
Jeon S-M. Regulation and function of AMPK in physiology and diseases. Exp Mol Med 2016; 48(7) e245
[http://dx.doi.org/10.1038/emm.2016.81] [PMID: 27416781]
[75]
Hardie DG, Schaffer BE, Brunet A. AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends Cell Biol 2016; 26(3): 190-201.
[http://dx.doi.org/10.1016/j.tcb.2015.10.013] [PMID: 26616193]
[76]
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348(Pt 3): 607-14.
[http://dx.doi.org/10.1042/bj3480607] [PMID: 10839993]
[77]
Cameron AR, Logie L, Patel K, et al. Metformin selectively targets redox control of complex I energy transduction. Redox Biol 2018; 14: 187-97.
[http://dx.doi.org/10.1016/j.redox.2017.08.018] [PMID: 28942196]
[78]
Guo R, Zong S, Wu M, Gu J, Yang M. Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2. Cell 2017; 170(6): 1247-1257.e12.
[http://dx.doi.org/10.1016/j.cell.2017.07.050] [PMID: 28844695]
[79]
Batandier C, Guigas B, Detaille D, et al. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 2006; 38(1): 33-42.
[http://dx.doi.org/10.1007/s10863-006-9003-8] [PMID: 16732470]
[80]
Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature 2014; 515(7525): 80-4.
[http://dx.doi.org/10.1038/nature13686] [PMID: 25209663]
[81]
Wang Y, An H, Liu T, et al. Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Rep 2019; 29(6): 1511-1523.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.09.070] [PMID: 31693892]
[82]
Larsen S, Rabøl R, Hansen CN, Madsbad S, Helge JW, Dela F. Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration. Diabetologia 2012; 55(2): 443-9.
[http://dx.doi.org/10.1007/s00125-011-2340-0] [PMID: 22009334]
[83]
Toyama EQ, Herzig S, Courchet J, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 2016; 351(6270): 275-81.
[http://dx.doi.org/10.1126/science.aab4138] [PMID: 26816379]
[84]
Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005; 102(15): 5618-23.
[http://dx.doi.org/10.1073/pnas.0501559102] [PMID: 15800038]
[85]
Joseph A-M, Adhihetty PJ, Wawrzyniak NR, et al. Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging. PLoS One 2013; 8(7) e69327
[http://dx.doi.org/10.1371/journal.pone.0069327] [PMID: 23935986]
[86]
Rana A, Oliveira MP, Khamoui AV, et al. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun 2017; 8(1): 448.
[http://dx.doi.org/10.1038/s41467-017-00525-4] [PMID: 28878259]
[87]
Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol 2015; 77: 57-80.
[http://dx.doi.org/10.1146/annurev-physiol-021014-071649] [PMID: 25668017]
[88]
McGuire C, Stransky L, Cotter K, Forgac M. Regulation of V-ATPase activity. Front Biosci 2017; 22: 609-22.
[http://dx.doi.org/10.2741/4506] [PMID: 27814636]
[89]
Zhang C-S, Jiang B, Li M, et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20(3): 526-40.
[http://dx.doi.org/10.1016/j.cmet.2014.06.014] [PMID: 25002183]
[90]
Zhang C-S, Li M, Ma T, et al. Metformin Activates AMPK through the Lysosomal Pathway. Cell Metab 2016; 24(4): 521-2.
[http://dx.doi.org/10.1016/j.cmet.2016.09.003] [PMID: 27732831]
[91]
Soukas AA, Hao H, Wu L. Metformin as Anti-Aging Therapy: Is It for Everyone? Trends Endocrinol Metab 2019; 30(10): 745-55.
[http://dx.doi.org/10.1016/j.tem.2019.07.015] [PMID: 31405774]
[92]
Logie L, Harthill J, Patel K, et al. Cellular responses to the metal-binding properties of metformin. Diabetes 2012; 61(6): 1423-33.
[http://dx.doi.org/10.2337/db11-0961] [PMID: 22492524]
[93]
Lockwood TD. The lysosome among targets of metformin: new anti-inflammatory uses for an old drug? Expert Opin Ther Targets 2010; 14(5): 467-78.
[http://dx.doi.org/10.1517/14728221003774135] [PMID: 20392164]
[94]
Fang J, Yang J, Wu X, et al. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018; 17(4) e12765
[http://dx.doi.org/10.1111/acel.12765] [PMID: 29659168]
[95]
Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 2015; 33: 55-66.
[http://dx.doi.org/10.1016/j.ceb.2014.12.001] [PMID: 25554914]
[96]
Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 2014; 20(3): 460-73.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[97]
Clements A, Gao B, Yeap SHO, Wong MKY, Ali SS, Gurney H. Metformin in prostate cancer: two for the price of one. Ann Oncol 2011; 22(12): 2556-60.
[http://dx.doi.org/10.1093/annonc/mdr037] [PMID: 21421541]
[98]
Parmar N, Tamanoi F. Rheb G-Proteins and the Activation of mTORC1. Enzymes 2010; 27: 39-56.
[http://dx.doi.org/10.1016/S1874-6047(10)27003-8] [PMID: 25429186]
[99]
Amin S, Lux A, O’Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol 2019; 85(1): 37-46.
[http://dx.doi.org/10.1111/bcp.13780] [PMID: 30290005]
[100]
Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010; 11(5): 390-401.
[http://dx.doi.org/10.1016/j.cmet.2010.03.014] [PMID: 20444419]
[101]
Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460(7253): 392-5.
[http://dx.doi.org/10.1038/nature08221] [PMID: 19587680]
[102]
Ehninger D, Neff F, Xie K. Longevity, aging and rapamycin. Cell Mol Life Sci 2014; 71(22): 4325-46.
[http://dx.doi.org/10.1007/s00018-014-1677-1] [PMID: 25015322]
[103]
Huo Y, Iadevaia V, Proud CG. Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis. Biochem Soc Trans 2011; 39(2): 446-50.
[http://dx.doi.org/10.1042/BST0390446] [PMID: 21428917]
[104]
Kapuy O, Vinod PK, Bánhegyi G. mTOR inhibition increases cell viability via autophagy induction during endoplasmic reticulum stress - An experimental and modeling study. FEBS Open Bio 2014; 4: 704-13.
[http://dx.doi.org/10.1016/j.fob.2014.07.006] [PMID: 25161878]
[105]
Sanchez-Alvarez M, Del Pozo MA, Bakal C. AKT-mTOR signaling modulates the dynamics of IRE1 RNAse activity by regulating ER-mitochondria contacts. Sci Rep 2017; 7(1): 16497.
[http://dx.doi.org/10.1038/s41598-017-16662-1] [PMID: 29184100]
[106]
Zhao J, Zhai B, Gygi SP, Goldberg AL. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA 2015; 112(52): 15790-7.
[http://dx.doi.org/10.1073/pnas.1521919112] [PMID: 26669439]
[107]
Zhou J, Chong SY, Lim A, et al. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging. Aging (Albany NY) 2017; 9(2): 583-99.
[http://dx.doi.org/10.18632/aging.101181] [PMID: 28238968]
[108]
Pluquet O, Pourtier A, Abbadie C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am J Physiol Cell Physiol 2015; 308(6): C415-25.
[http://dx.doi.org/10.1152/ajpcell.00334.2014] [PMID: 25540175]
[109]
Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem 2015; 84: 435-64.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033955] [PMID: 25784053]
[110]
Papadopoli D, Boulay K, Kazak L, et al. mTOR as a central regulator of lifespan and aging. F1000 Res 2019; 8: 8.
[http://dx.doi.org/10.12688/f1000research.17196.1] [PMID: 31316753]
[111]
Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM. Metformin - a Future Therapy for Neurodegenerative Diseases : Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla In: Pharm Res. 2017; 34: pp. (12)2614-7.
[112]
Theurey P, Pizzo P. The Aging Mitochondria. Genes (Basel) 2018; 9(1) E22
[http://dx.doi.org/10.3390/genes9010022] [PMID: 29315229]
[113]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev 2017. 20178416763
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[114]
Moskalev AA, Shaposhnikov MV, Plyusnina EN, et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12(2): 661-84.
[http://dx.doi.org/10.1016/j.arr.2012.02.001] [PMID: 22353384]
[115]
Kim M-J, Haroon S, Chen G-D, et al. Increased burden of mitochondrial DNA deletions and point mutations in early-onset age-related hearing loss in mitochondrial mutator mice. Exp Gerontol 2019. 125110675
[http://dx.doi.org/10.1016/j.exger.2019.110675] [PMID: 31344454]
[116]
Rivera-Torres J, Acín-Perez R, Cabezas-Sánchez P, et al. Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J Proteomics 2013; 91: 466-77.
[http://dx.doi.org/10.1016/j.jprot.2013.08.008] [PMID: 23969228]
[117]
Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458(7241): 1056-60.
[http://dx.doi.org/10.1038/nature07813] [PMID: 19262508]
[118]
Cuyàs E, Verdura S, Llorach-Parés L, et al. Metformin Is a Direct SIRT1-Activating Compound: Computational Modeling and Experimental Validation. Front Endocrinol (Lausanne) 2018; 9: 657.
[http://dx.doi.org/10.3389/fendo.2018.00657] [PMID: 30459716]
[119]
Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev 2016; 155: 10-21.
[http://dx.doi.org/10.1016/j.mad.2016.02.003] [PMID: 26923269]
[120]
Song YM, Lee YH, Kim J-W, et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 2015; 11(1): 46-59.
[http://dx.doi.org/10.4161/15548627.2014.984271] [PMID: 25484077]
[121]
Kim DH, Park MH, Lee EK, et al. The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 2015; 16(1): 1-14.
[http://dx.doi.org/10.1007/s10522-014-9519-y] [PMID: 25146189]
[122]
Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 2016; 15(2): 196-207.
[http://dx.doi.org/10.1111/acel.12427] [PMID: 26643314]
[123]
Foulkes WD, Priest JR, Duchaine TF. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 2014; 14(10): 662-72.
[http://dx.doi.org/10.1038/nrc3802] [PMID: 25176334]
[124]
Noren Hooten N, Martin-Montalvo A, Dluzen DF, et al. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell 2016; 15(3): 572-81.
[http://dx.doi.org/10.1111/acel.12469] [PMID: 26990999]
[125]
Mohajeri MH, Brummer RJM, Rastall RA, et al. The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr 2018; 57(Suppl. 1): 1-14.
[http://dx.doi.org/10.1007/s00394-018-1703-4] [PMID: 29748817]
[126]
Vallianou NG, Stratigou T, Tsagarakis S. Metformin and gut microbiota: their interactions and their impact on diabetes. Hormones (Athens) 2019; 18(2): 141-4.
[http://dx.doi.org/10.1007/s42000-019-00093-w] [PMID: 30719628]
[127]
Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007; 128(1): 92-105.
[http://dx.doi.org/10.1016/j.mad.2006.11.016] [PMID: 17116321]
[128]
Flynn MG, Markofski MM, Carrillo AE. Elevated Inflammatory Status and Increased Risk of Chronic Disease in Chronological Aging: Inflamm-aging or Inflamm-inactivity? Aging Dis 2019; 10(1): 147-56.
[http://dx.doi.org/10.14336/AD.2018.0326] [PMID: 30705775]
[129]
Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol 2018; 8: 1960.
[http://dx.doi.org/10.3389/fimmu.2017.01960] [PMID: 29375577]
[130]
Gabandé-Rodríguez E, Gómez de Las Heras MM, Mittelbrunn M. Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells 2019; 9(1) E82
[http://dx.doi.org/10.3390/cells9010082] [PMID: 31905682]
[131]
Moiseeva O, Deschênes-Simard X, St-Germain E, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 2013; 12(3): 489-98.
[http://dx.doi.org/10.1111/acel.12075] [PMID: 23521863]
[132]
Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009; 460(7251): 103-7.
[http://dx.doi.org/10.1038/nature08097] [PMID: 19494812]
[133]
Bonafè M, Sabbatinelli J, Olivieri F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res Rev 2020. 59101027
[http://dx.doi.org/10.1016/j.arr.2020.101027] [PMID: 32068123]
[134]
Xia S, Zhang X, Zheng S, et al. An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. J Immunol Res 2016; 2016 8426874
[http://dx.doi.org/10.1155/2016/8426874] [PMID: 27493973]
[135]
Picca A, Lezza AMS, Leeuwenburgh C, et al. Fueling Inflamm-Aging through Mitochondrial Dysfunction: Mechanisms and Molecular Targets. Int J Mol Sci 2017; 18(5) E933
[http://dx.doi.org/10.3390/ijms18050933] [PMID: 28452964]
[136]
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol 2018; 9: 586.
[http://dx.doi.org/10.3389/fimmu.2018.00586] [PMID: 29686666]
[137]
Potempa M, Jonczyk P, Szczerba K, Kandefer B, Kajdaniuk D. Metformin - today’s panacea? Clinical Diabetology 2016; 5(4): 17-122.
[http://dx.doi.org/10.5603/DK.2016.0020]
[138]
Novelle MG, Ali A, Diéguez C, Bernier M, de Cabo R. Metformin: A Hopeful Promise in Aging Research. Cold Spring Harb Perspect Med 2016; 6(3) a025932
[http://dx.doi.org/10.1101/cshperspect.a025932] [PMID: 26931809]
[139]
Bannister CA, Holden SE, Jenkins-Jones S, et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 2014; 16(11): 1165-73.
[http://dx.doi.org/10.1111/dom.12354] [PMID: 25041462]
[140]
Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis 2014; 41(1): 61-8.
[http://dx.doi.org/10.3233/JAD-131901] [PMID: 24577463]
[141]
VA Office of Research and Development Investigation of Metformin in Pre-Diabetes on Atherosclerotic Cardiovascular Outcomes (VA-IMPACT) 2020. Available at:. https://clinicaltrials.gov/ct2/show/NCT02915198
[142]
Brutsaert E. 2018.Metformin in Longevity Study (MILES). Available at:. https://clinicaltrials.gov/ct2/show/NCT02432287
[143]
Long DE, Peck BD, Martz JL, et al. Metformin to Augment Strength Training Effective Response in Seniors (MASTERS): study protocol for a randomized controlled trial. Trials 2017; 18(1): 192.
[http://dx.doi.org/10.1186/s13063-017-1932-5] [PMID: 28441958]
[144]
Yin M, Zhou J, Gorak EJ, Quddus F. Metformin is associated with survival benefit in cancer patients with concurrent type 2 diabetes: a systematic review and meta-analysis. Oncologist 2013; 18(12): 1248-55.
[http://dx.doi.org/10.1634/theoncologist.2013-0111] [PMID: 24258613]
[145]
Gandini S, Puntoni M, Heckman-Stoddard BM, et al. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. Cancer Prev Res (Phila) 2014; 7(9): 867-85.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0424] [PMID: 24985407]
[146]
Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis. Ageing Res Rev 2017; 40: 31-44.
[http://dx.doi.org/10.1016/j.arr.2017.08.003] [PMID: 28802803]
[147]
Bo S, Ciccone G, Rosato R, et al. Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab 2012; 14(1): 23-9.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01480.x] [PMID: 21812892]
[148]
Glossmann HH, Lutz OMD. Metformin and Aging: A Review. Gerontology 2019; 65(6): 581-90.
[http://dx.doi.org/10.1159/000502257] [PMID: 31522175]
[149]
Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a Tool to Target Aging. Cell Metab 2016; 23(6): 1060-5.
[http://dx.doi.org/10.1016/j.cmet.2016.05.011] [PMID: 27304507]
[150]
Justice JN, Ferrucci L, Newman AB, et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience 2018; 40(5-6): 419-36.
[http://dx.doi.org/10.1007/s11357-018-0042-y] [PMID: 30151729]
[151]
Huang W, Castelino RL, Peterson GM. Lactate Levels with Chronic Metformin Use: A Narrative Review. Clin Drug Investig 2017; 37(11): 991-1007.
[http://dx.doi.org/10.1007/s40261-017-0564-6] [PMID: 28836132]
[152]
Florez JC. The pharmacogenetics of metformin. Diabetologia 2017; 60(9): 1648-55.
[http://dx.doi.org/10.1007/s00125-017-4335-y] [PMID: 28770331]
[153]
Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117(5): 1422-31.
[http://dx.doi.org/10.1172/JCI30558] [PMID: 17476361]
[154]
He L, Wondisford FE. Metformin action: concentrations matter. Cell Metab 2015; 21(2): 159-62.
[http://dx.doi.org/10.1016/j.cmet.2015.01.003] [PMID: 25651170]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 35
Year: 2020
Published on: 15 October, 2020
Page: [4496 - 4508]
Pages: 13
DOI: 10.2174/1381612826666200716161610
Price: $65

Article Metrics

PDF: 46
HTML: 7
EPUB: 1
PRC: 2