Understanding the Plant-microbe Interactions in CRISPR/Cas9 Era: Indeed a Sprinting Start in Marathon

Author(s): Seenichamy Rathinam Prabhukarthikeyan, Chidambaranathan Parameswaran*, Umapathy Keerthana, Basavaraj Teli, Prasanth Tej Kumar Jagannadham, Balasubramaniasai Cayalvizhi, Periyasamy Panneerselvam, Ansuman Senapati, Krishnan Nagendran, Shweta Kumari, Manoj Kumar Yadav, Sundaram Aravindan, Samantaray Sanghamitra

Journal Name: Current Genomics

Volume 21 , Issue 6 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Plant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, ecofriendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/Cas9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/Cas9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/Cas9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.

Keywords: Beneficial microbes, phytopathogens, genome-editing, CRISPR/Cas9, durable disease resistance, plant-microbe interaction.

Wang, W.X.; Zhang, F.; Chen, Z.L.; Liu, J.; Guo, C.; He, J.D.; Zou, Y.N.; Wu, Q.S. Responses of phytohormones and gas exchange to mycorrhizal colonization in trifoliate orange subjected to drought stress. Arch. Agron. Soil Sci.. 2017, 63(1), 14-23.
Bhattacharjee, R.B.; Singh, A.; Mukhopadhyay, S.N. Use of nitro-gen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl. Microbiol. Biotechnol. 2008, 80(2), 199-209.
[http://dx.doi.org/10.1007/s00253-008-1567-2] [PMID: 18600321]
Yazdani, M.; Bahmanyar, M.A.; Pirdashti, H.; Esmaili, M.A. Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield compo-nents of Corn (Zea mays L.). World Acad. Sci. Eng. Technol., 2009, 37, 90-92.
Santner, A.; Calderon-Villalobos, L.I.A.; Estelle, M. Plant hormo-nes are versatile chemical regulators of plant growth. Nat. Chem. Biol., 2009, 5(5), 301-307.
[http://dx.doi.org/10.1038/nchembio.165] [PMID: 19377456]
Saraf, M.; Pandya, U.; Thakkar, A. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol. Res., 2014, 169(1), 18-29.
[http://dx.doi.org/10.1016/j.micres.2013.08.009] [PMID: 24176815]
Meyer, S.L.; Everts, K.L.; Gardener, B.M.; Masler, E.P.; Abdelnabby, H.M.; Skantar, A.M. Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyneincog-nita and Fusarium oxysporum on watermelon. J. Nematol., 2016, 48(1), 43-53.
[http://dx.doi.org/10.21307/jofnem-2017-008] [PMID: 27168652]
Prabhukarthikeyan, S.R.; Keerthana, U.; Raguchander, T. Antibio-tic-producing Pseudomonas fluorescens mediates rhizome rot dise-ase resistance and promotes plant growth in turmeric plants. Microbiol. Res., 2018, 210, 65-73.
[http://dx.doi.org/10.1016/j.micres.2018.03.009] [PMID: 29625661]
Elanchezhiyan, K.; Keerthana, U.; Nagendran, K.; Prabhukarthikeyan, S.R.; Prabakar, K.; Raguchander, T.; Karthikeyan, G. Multifaceted benefits of Bacillusamyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum F. sp. lycopersici. Physiol. Mol. Plant Pathol., 2018, 103, 92-101.
Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture- Trends and Challenges; FAO: Rome , 2017.
Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment 2011, 8(5), 1402-1419.
Dong, O.X.; Ronald, P.C. Genetic engineering for disease re-sistance in plants: recent progress and future perspectives. Plant Physiol. 2019, 180(1), 26-38.
[http://dx.doi.org/10.1104/pp.18.01224] [PMID: 30867331]
Zhou, Q.; Zhang, Z.; Liu, T.; Gao, B.; Xiong, X. Identification and map-based cloning of the Light-Induced Lesion Mimic Mutant 1 (LIL1) gene in rice. Front. Plant Sci., 2017, 8, 2122.
[http://dx.doi.org/10.3389/fpls.2017.02122] [PMID: 29312386]
Arafa, R.A.; Rakha, M.T.; Soliman, N.E.K.; Moussa, O.M.; Kamel, S.M.; Shirasawa, K. Rapid identification of candidate genes for re-sistance to tomato late blight disease using next-generation sequen-cing technologies. PLoS One, 2017, 12(12), e0189951.
[http://dx.doi.org/10.1371/journal.pone.0189951] [PMID: 29253902]
Nepal, M.P.; Andersen, E.J.; Neupane, S.; Benson, B.V. Compara-tive genomics of non-TNL disease resistance genes from six plant species. Genes (Basel), 2017, 8(10), 249.
[http://dx.doi.org/10.3390/genes8100249] [PMID: 28973974]
Ma, Y.; Liu, M.; Stiller, J.; Liu, C. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics, 2019, 20(1), 12.
[http://dx.doi.org/10.1186/s12864-018-5357-7] [PMID: 30616511]
Zhang, Y.; Yao, J.L.; Feng, H.; Jiang, J.; Fan, X.; Jia, Y.F.; Wang, R.; Liu, C. Identification of the defense-related gene VdWRKY53from the wild grapevine Vitis davidii using RNA sequencing and ectopic expression analysis in Arabidopsis. Hereditas, 2019, 156(1), 14.
[http://dx.doi.org/10.1186/s41065-019-0089-5] [PMID: 31057347]
Shelake, R.M.; Pramanik, D.; Kim, J.Y. Exploration of plant-microbe interactions for sustainable agriculture in CRISPR era. Microorganisms, 2019, 7(8), 269.
[http://dx.doi.org/10.3390/microorganisms7080269] [PMID: 31426522]
Prabhukarthikeyan, S.R.; Manikandan, R.; Durgadevi, D.; Keerthana, U.; Harish, S.; Karthikeyan, G.; Raguchander, T. Bio-suppression of turmeric rhizome rot disease and understanding the molecular basis of tripartite interaction among Curcuma longa, Py-thium aphanidermatum and Pseudomonas fluorescens. Biol. Con-trol 2017, 111, 23-31.
Prabhukarthikeyan, S.R.; Yadav, M.K.; Anandan, A.; Aravindan, S.; Keerthana, U.; Raghu, S.; Baite, M.S.; Parameswaran, C.; Panneerselvam, P.; Rath, P.C. Bio-protection of brown spot disease of rice and insight into the molecular basis of interaction between O-ryza sativa, Bipolaris oryzae and Bacillus amyloliquefaciens. Biol. Control, 2019, 137, 104018.
O’Malley, R.C.; Barragan, C.C.; Ecker, J.R. A user’s guide to the Arabidopsis T-DNA insertion mutant collections. Plant Functional Genomics; Humana Press: New York, NY, , 2015; pp. 323-342.
Knief, C. Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front. Plant Sci., 2014, 5, 216.
[http://dx.doi.org/10.3389/fpls.2014.00216] [PMID: 24904612]
Hane, J.K.; Ming, Y.; Kamphuis, L.G.; Nelson, M.N.; Garg, G.; Atkins, C.A.; Bayer, P.E.; Bravo, A.; Bringans, S.; Cannon, S.; Edwards, D.; Foley, R.; Gao, L.L.; Harrison, M.J.; Huang, W.; Hurgobin, B.; Li, S.; Liu, C.W.; McGrath, A.; Morahan, G.; Murray, J.; Weller, J.; Jian, J.; Singh, K.B. A comprehensive draft ge-nome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol. J., 2017, 15(3), 318-330.
[http://dx.doi.org/10.1111/pbi.12615] [PMID: 27557478]
Ishino, Y.; Krupovic, M.; Forterre, P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol., 2018, 200(7), e00580-e17.
[http://dx.doi.org/10.1128/JB.00580-17] [PMID: 29358495]
Brandt, K.; Barrangou, R. Applications of CRISPR technologies across the food supply chain. Annu. Rev. Food Sci. Technol., 2019, 10, 133-150.
[http://dx.doi.org/10.1146/annurev-food-032818-121204] [PMID: 30908954]
Jiang, F.; Doudna, J.A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys., 2017, 46, 505-529.
[http://dx.doi.org/10.1146/annurev-biophys-062215-010822] [PMID: 28375731]
Nishimasu, H.; Ran, F.A.; Hsu, P.D.; Konermann, S.; Shehata, S.I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5), 935-949.
[http://dx.doi.org/10.1016/j.cell.2014.02.001] [PMID: 24529477]
Hendel, A.; Bak, R.O.; Clark, J.T.; Kennedy, A.B.; Ryan, D.E.; Roy, S.; Steinfeld, I.; Lunstad, B.D.; Kaiser, R.J.; Wilkens, A.B.; Bacchetta, R.; Tsalenko, A.; Dellinger, D.; Bruhn, L.; Porteus, M.H. Chemically modified guide RNAs enhance CRISPR-Cas ge-nome editing in human primary cells. Nat. Biotechnol., 2015, 33(9), 985-989.
[http://dx.doi.org/10.1038/nbt.3290] [PMID: 26121415]
Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Pro-grammable editing of a target base in genomic DNA without dou-ble-stranded DNA cleavage. Nature, 2016, 533(7603), 420-424.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
Satheesh, V.; Zhang, H.; Wang, X.; Lei, M. Precise editing of plant genomes- Prospects and challenges. Semin. Cell Developmental Biol., 2019, 96, 115-123.
Kocak, D.D.; Josephs, E.A.; Bhandarkar, V.; Adkar, S.S.; Kwon, J.B.; Gersbach, C.A. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat. Biotechnol., 2019, 37(6), 657-666.
[http://dx.doi.org/10.1038/s41587-019-0095-1] [PMID: 30988504]
Muñoz, I.V.; Sarrocco, S.; Malfatti, L.; Baroncelli, R.; Vannacci, G. CRISPR-Cas for fungal genome editing: a new tool for the ma-nagement of plant diseases. Front. Plant Sci., 2019, 10, 135.
[http://dx.doi.org/10.3389/fpls.2019.00135] [PMID: 30828340]
Glandorf, D.C. Re-evaluation of biosafety questions on genetically modified biocontrol bacteria. Eur. J. Plant Pathol., 2019, 153(1), 243-251.
Yi, Y.; Li, Z.; Song, C.; Kuipers, O.P. Exploring plant-microbe interactions of the rhizobacteria Bacillus subtilis and Bacillusmycoides by use of the CRISPR-Cas9 system. Environ. Microbiol., 2018, 20(12), 4245-4260.
[http://dx.doi.org/10.1111/1462-2920.14305] [PMID: 30051589]
Giraud, T.; Gladieux, P.; Gavrilets, S. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol. Evol. (Amst.), 2010, 25(7), 387-395.
[http://dx.doi.org/10.1016/j.tree.2010.03.006] [PMID: 20434790]
Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol., 2012, 13(4), 414-430.
[http://dx.doi.org/10.1111/j.1364-3703.2011.00783.x] [PMID: 22471698]
Susan, A.; Yadav, M.K.; Kar, S.; Aravindan, S.; Ngangkham, U.; Raghu, S.; Prabhukarthikeyan, S.R.; Keerthana, U.; Mukherjee, S.C.; Salam, J.L.; Adak, T. Molecular identification of blast re-sistance genes in rice landraces from northeastern India. Plant Pa-thol., 2019, 68(3), 537-546.
Liu, D.; Chen, X.; Liu, J.; Ye, J.; Guo, Z. The rice ERF transcripti-on factor OsERF922 negatively regulates resistance to Magnaport-he oryzae and salt tolerance. J. Exp. Bot., 2012, 63(10), 3899-3911.
[http://dx.doi.org/10.1093/jxb/ers079] [PMID: 22442415]
Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.G.; Zhao, K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One,. 2016, 11(4), e0154027.
[http://dx.doi.org/10.1371/journal.pone.0154027] [PMID: 27116122]
Cao, Y.; Wu, Y.; Zheng, Z.; Song, F. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol. Mol. Plant Pathol. 2006, 67, 202-211.
Li, S.; Shen, L.; Hu, P.; Liu, Q.; Zhu, X.; Qian, Q.; Wang, K.; Wang, Y. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J. Integr. Plant Biol., 2019, 61(12), 1201-1205.
[http://dx.doi.org/10.1111/jipb.12774] [PMID: 30623600]
Zhang, Y.; Zhao, J.; Li, Y.; Yuan, Z.; He, H.; Yang, H.; Qu, H.; Ma, C.; Qu, S. Transcriptome analysis highlights defense and sig-naling pathways mediated by rice pi21 gene with partial resistance to Magnaporthe oryzae. Front. Plant Sci., 2016, 7, 1834.
[http://dx.doi.org/10.3389/fpls.2016.01834] [PMID: 28008334]
Ma, J.; Chen, J.; Wang, M.; Ren, Y.; Wang, S.; Lei, C.; Cheng, Z. Sodmergen, Disruption of OsSEC3A increases the content of sa-licylic acid and induces plant defense responses in rice. J. Exp. Bot. 2018, 69(5), 1051-1064.
[http://dx.doi.org/10.1093/jxb/erx458] [PMID: 29300985]
Xie, K.; Yang, Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant, 2013, 6(6), 1975-1983.
[http://dx.doi.org/10.1093/mp/sst119] [PMID: 23956122]
Xiong, L.; Yang, Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mito-gen-activated protein kinase. Plant Cell, 2003, 15(3), 745-759.
[http://dx.doi.org/10.1105/tpc.008714] [PMID: 12615946]
Bai, Y.; Pavan, S.; Zheng, Z.; Zappel, N.F.; Reinstädler, A.; Lotti, C.; De Giovanni, C.; Ricciardi, L.; Lindhout, P.; Visser, R.; Theres, K.; Panstruga, R. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol. Plant Microbe Interact. 2008, 21(1), 30-39.
[http://dx.doi.org/10.1094/MPMI-21-1-0030] [PMID: 18052880]
Zheng, Z.; Nonomura, T.; Appiano, M.; Pavan, S.; Matsuda, Y.; Toyoda, H.; Wolters, A.M.; Visser, R.G.; Bai, Y. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One, 2013, 8(7), e70723.
[http://dx.doi.org/10.1371/journal.pone.0070723] [PMID: 23923019]
Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol., 2014, 32(9), 947-951.
[http://dx.doi.org/10.1038/nbt.2969] [PMID: 25038773]
Malnoy, M.; Viola, R.; Jung, M-H.; Koo, O-J.; Kim, S.; Kim, J-S.; Velasco, R.; Nagamangala, K.C. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleopro-teins. Front. Plant Sci., 2016, 7, 1904.
Nie, J.; Wang, Y.; He, H.; Guo, C.; Zhu, W.; Pan, J.; Li, D.; Lian, H.; Pan, J.; Cai, R. Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativusL.). Front. Plant Sci., 2015, 6, 1155.
[http://dx.doi.org/10.3389/fpls.2015.01155] [PMID: 26734050]
McCahill, I.W.; Hazen, S.P. Regulation of cell wall thickening by a medley of mechanisms. Trends Plant Sci. 2019, 24(9), 853-866.
[http://dx.doi.org/10.1016/j.tplants.2019.05.012] [PMID: 31255545]
Giacomelli, L.; Zeilmaker, T.; Malnoy, M. Generation of mildew-resistant grapevine clones via genome editing. XII International Conference on Grapevine Breeding and Genetics, , 2018; pp. 195-200.
Pessina, S.; Lenzi, L.; Perazzolli, M.; Campa, M.; Dalla Costa, L.; Urso, S.; Valè, G.; Salamini, F.; Velasco, R.; Malnoy, M. Knock-down of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic. Res., 2016, 3(1), 16016.
[http://dx.doi.org/10.1038/hortres.2016.16] [PMID: 27390621]
de Toledo Thomazella, D.P.; Brail, Q.; Dahlbeck, D.; Staskawicz, B. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv, 2016., 064824.
Darma, R.; Lutz, A.; Elliott, C.E.; Idnurm, A. Identification of a gene cluster for the synthesis of the plant hormone abscisic acid in the plant pathogen Leptosphaeria maculans. Fungal Genet. Biol., 2019, 130, 62-71.
[http://dx.doi.org/10.1016/j.fgb.2019.04.015] [PMID: 31034868]
Xu, G.; Yang, S.; Meng, L.; Wang, B.G. The plant hormone ab-scisic acid regulates the growth and metabolism of endophytic fun-gus Aspergillus nidulans. Sci. Rep., 2018, 8(1), 6504.
[http://dx.doi.org/10.1038/s41598-018-24770-9] [PMID: 29695775]
Fu, Z.Q.; Dong, X. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol., 2013, 64, 839-863.
[http://dx.doi.org/10.1146/annurev-arplant-042811-105606] [PMID: 23373699]
Kuai, X.; MacLeod, B.J.; Després, C. Integrating data on the Ara-bidopsis NPR1/NPR3/NPR4 salicylic acid receptors; a differentia-ting argument. Front. Plant Sci., 2015, 6, 235.
[http://dx.doi.org/10.3389/fpls.2015.00235] [PMID: 25914712]
Shi, Z.; Zhang, Y.; Maximova, S.N.; Guiltinan, M.J. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC Plant Biol. 2013, 13, 204.
[http://dx.doi.org/10.1186/1471-2229-13-204] [PMID: 24314063]
Fan, D.; Liu, T.; Li, C.; Jiao, B.; Li, S.; Hou, Y.; Luo, K. Efficient CRISPR/Cas9 mediated targeted mutagenesis in Populus in the first generation. Sci. Rep., 2015, 5, 12217.
[http://dx.doi.org/10.1038/srep12217] [PMID: 26193631]
Wang, X.; Tu, M.; Wang, D.; Liu, J.; Li, Y.; Li, Z.; Wang, Y.; Wang, X. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol. J. 2018, 16(4), 844-855.
[http://dx.doi.org/10.1111/pbi.12832] [PMID: 28905515]
Davierwala, A.P.; Reddy, A.P.K.; Lagu, M.D.; Ranjekar, P.K.; Gupta, V.S. Marker assisted selection of bacterial blight resistance genes in rice. Biochem. Genet., 2001, 39(7-8), 261-278.
[http://dx.doi.org/10.1023/A:1010282732444] [PMID: 11590832]
Graham, J.H.; Gottwald, T.R.; Cubero, J.; Achor, D.S. Xanthomo-nas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol. Plant Pathol., 2004, 5(1), 1-15.
[http://dx.doi.org/10.1046/j.1364-3703.2004.00197.x] [PMID: 20565577]
Hu, Y.; Zhang, J.; Jia, H.; Sosso, D.; Li, T.; Frommer, W.B.; Yang, B.; White, F.F.; Wang, N.; Jones, J.B. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc. Natl. Acad. Sci. USA, 2014, 111(4), E521-E529.
[http://dx.doi.org/10.1073/pnas.1313271111] [PMID: 24474801]
Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in ci-trus. Plant Biotechnol. J., 2017, 15(12), 1509-1519.
[http://dx.doi.org/10.1111/pbi.12733] [PMID: 28371200]
Hepworth, S.R.; Pautot, V.A. Beyond the divide: boundaries for patterning and stem cell regulation in plants. Front. Plant Sci.,. 2015, 6, 1052.
[http://dx.doi.org/10.3389/fpls.2015.01052] [PMID: 26697027]
Grimplet, J.; Pimentel, D.; Agudelo-Romero, P.; Martinez-Zapater, J.M.; Fortes, A.M. The LATERAL ORGAN BOUNDARIES Do-main gene family in grapevine: genome-wide characterization and expression analyses during developmental processes and stress responses. Sci. Rep., 2017, 7(1), 15968.
[http://dx.doi.org/10.1038/s41598-017-16240-5] [PMID: 29162903]
Duan, S.; Jia, H.; Pang, Z.; Teper, D.; White, F.; Jones, J.; Zhou, C.; Wang, N. Functional characterization of the citrus canker susceptibility gene CsLOB1. Mol. Plant Pathol., 2018, 19(8), 1908-1916.
[http://dx.doi.org/10.1111/mpp.12667] [PMID: 29461671]
Mew, T.W.; Alvarez, A.M.; Leach, J.E.; Swings, J. Focus on bacte-rial blight of rice. Plant Dis., 2019, 77, 5-12.
Makino, S.; Sugio, A.; White, F.; Bogdanove, A.J. Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzaepv. oryzicola. Mol. Plant Microbe Interact., 2006, 19(3), 240-249.
[http://dx.doi.org/10.1094/MPMI-19-0240] [PMID: 16570654]
Boch, J.; Bonas, U. Xanthomonas AvrBs3 familytype III effectors: discovery and function. Annu. Rev. Phytopathol, 2010, 48, 419-436.
Doyle, E.L.; Stoddard, B.L.; Voytas, D.F.; Bogdanove, A.J. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol., . 2013, 23(8), 390-398.
[http://dx.doi.org/10.1016/j.tcb.2013.04.003] [PMID: 23707478]
Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol., 2012, 30(5), 390-392.
[http://dx.doi.org/10.1038/nbt.2199] [PMID: 22565958]
Oliva, R.; Ji, C.; Atienza-Grande, G.; Huguet-Tapia, J.C.; Perez-Quintero, A.; Li, T.; Eom, J.S.; Li, C.; Nguyen, H.; Liu, B.; Auguy, F.; Sciallano, C.; Luu, V.T.; Dossa, G.S.; Cunnac, S.; Schmidt, S.M.; Slamet-Loedin, I.H.; Vera Cruz, C.; Szurek, B.; Frommer, W.B.; White, F.F.; Yang, B. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol., 2019, 37(11), 1344-1350.
[http://dx.doi.org/10.1038/s41587-019-0267-z] [PMID: 31659337]
Yuan, M.; Wang, S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol. Plant, 2013, 6(3), 665-674.
[http://dx.doi.org/10.1093/mp/sst035] [PMID: 23430047]
Fonseca, S.; Chico, J.M.; Solano, R. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol., 2009, 12(5), 539-547.
[http://dx.doi.org/10.1016/j.pbi.2009.07.013] [PMID: 19716757]
Zheng, X.Y.; Spivey, N.W.; Zeng, W.; Liu, P.P.; Fu, Z.Q.; Klessig, D.F.; He, S.Y.; Dong, X. Coronatine promotes Pseudomonassy-ringae virulence in plants by activating a signaling cascade that in-hibits salicylic acid accumulation. Cell Host Microbe, 2012, 11(6), 587-596.
[http://dx.doi.org/10.1016/j.chom.2012.04.014] [PMID: 22704619]
Ortigosa, A.; Gimenez-Ibanez, S.; Leonhardt, N.; Solano, R. De-sign of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J., 2019, 17(3), 665-673.
[http://dx.doi.org/10.1111/pbi.13006] [PMID: 30183125]
Zhao, Y.; Yang, X.; Zhou, G.; Zhang, T. Engineering plant virus resistance: from RNA silencing to genome editing strategies. Plant Biotechnol. J., 2020, 18(2), 328-336.
[http://dx.doi.org/10.1111/pbi.13278] [PMID: 31618513]
Ji, X.; Zhang, H.; Zhang, Y.; Wang, Y.; Gao, C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 2015, 1, 15144.
[http://dx.doi.org/10.1038/nplants.2015.144] [PMID: 27251395]
Baltes, N.J.; Hummel, A.W.; Konecna, E.; Cegan, R.; Bruns, A.N.; Bisaro, D.M. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants, 2015, 1, 15145.
Ali, Z.; Abul-faraj, A.; Li, L.; Ghosh, N.; Piatek, M.; Mahjoub, A.; Aouida, M.; Piatek, A.; Baltes, N.J.; Voytas, D.F.; Dinesh-Kumar, S.; Mahfouz, M.M. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant, 2015, 8(8), 1288-1291.
[http://dx.doi.org/10.1016/j.molp.2015.02.011] [PMID: 25749112]
Ali, Z.; Ali, S.; Tashkandi, M.; Zaidi, S.S.; Mahfouz, M.M. CRISPR/Cas9-mediated immunity to geminiviruses: Differential interference and evasion. Sci. Rep., 2016, 6, 26912.
[http://dx.doi.org/10.1038/srep26912] [PMID: 27225592]
Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol., 2016, 17(7), 1140-1153.
[http://dx.doi.org/10.1111/mpp.12375] [PMID: 26808139]
Pyott, D.E.; Sheehan, E.; Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol., 2016, 17(8), 1276-1288.
[http://dx.doi.org/10.1111/mpp.12417] [PMID: 27103354]
Zhang, T.; Zheng, Q.; Yi, X.; An, H.; Zhao, Y.; Ma, S.; Zhou, G. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol. J., 2018, 16(8), 1415-1423.
[http://dx.doi.org/10.1111/pbi.12881] [PMID: 29327438]
Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slamet-Loedin, I.; Čermák, T.; Voytas, D.F.; Choi, I.R.; Chadha-Mohanty, P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol. J. 2018, 16(11), 1918-1927.
[http://dx.doi.org/10.1111/pbi.12927] [PMID: 29604159]
Aman, R.; Ali, Z.; Butt, H.; Mahas, A.; Aljedaani, F.; Khan, M.Z.; Ding, S.; Mahfouz, M. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol., 2018a, 19(1), 1.
[http://dx.doi.org/10.1186/s13059-017-1381-1] [PMID: 29301551]
Burgyán, J.; Havelda, Z. Viral suppressors of RNA silencing. Trends Plant Sci., 2011, 16(5), 265-272.
[http://dx.doi.org/10.1016/j.tplants.2011.02.010] [PMID: 21439890]
Price, A.A.; Sampson, T.R.; Ratner, H.K.; Grakoui, A.; Weiss, D.S. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc. Natl. Acad. Sci. USA, 2015, 112(19), 6164-6169.
[http://dx.doi.org/10.1073/pnas.1422340112] [PMID: 25918406]
Ronde, D. DE; Butterbach, P.; and Kormelink, R. Dominant re-sistance against plant viruses. Front. Plant Sci., 2014, 5, 307.
Xie, K.; Minkenberg, B.; Yang, Y. Boosting CRISPR/Cas9 multi-plex editing capability with the endogenous tRNA-processing sys-tem. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3570-3575.
[http://dx.doi.org/10.1073/pnas.1420294112] [PMID: 25733849]
Adesemoye, A.O.; Kloepper, J.W. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol., 2009, 85(1), 1-12.
[http://dx.doi.org/10.1007/s00253-009-2196-0] [PMID: 19707753]
Wang, Q.; Yang, S.; Liu, J.; Terecskei, K.; Ábrahám, E.; Gombár, A.; Domonkos, Á.; Szűcs, A.; Körmöczi, P.; Wang, T.; Fodor, L.; Mao, L.; Fei, Z.; Kondorosi, É.; Kaló, P.; Kereszt, A.; Zhu, H. Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula.Proc. Natl. Acad. Sci. USA, 2017, 114(26), 6854-6859.
[PMID: 28607058]
Vallino, M.; Greppi, D.; Novero, M.; Bonfante, P.; Lupotto, E. Rice root colonisation by mycorrhizal and endophytic fungi in ae-robic soil, Ann. Appl. Biol., 2009, 154(2), 195-204.
Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol., 2012, 38(6), 651-664.
[http://dx.doi.org/10.1007/s10886-012-0134-6] [PMID: 22623151]
Wu, H.H.; Zou, Y.N.; Rahman, M.M.; Ni, Q.D.; Wu, Q.S. Mycor-rhizas alter sucrose and proline metabolism in trifoliate orange ex-posed to drought stress. Sci. Rep., 2017, 7, 42389.
[http://dx.doi.org/10.1038/srep42389] [PMID: 28181575]
Wilson, G.W.; Rice, C.W.; Rillig, M.C.; Springer, A.; Hartnett, D.C. Soil aggregation and carbon sequestration are tightly correla-ted with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol. Lett., 2009, 12(5), 452-461.
[http://dx.doi.org/10.1111/j.1461-0248.2009.01303.x] [PMID: 19320689]
Li, J.; Zhang, X.; Sun, Y.; Zhang, J.; Du, W.; Guo, X.; Li, S.; Zhao, Y.; Xia, L. Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene. J. Integr. Plant Biol., 2018, 60(7), 536-540.
[http://dx.doi.org/10.1111/jipb.12650] [PMID: 29575650]
Mohapatra, S.; Mishra, S.S.; Bhalla, P.; Thatoi, H. Engineering grass biomass for sustainable and enhanced bioethanol production. Planta 2019, 250(2), 395-412.
[http://dx.doi.org/10.1007/s00425-019-03218-y] [PMID: 31236698]
Horvath, P.; Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327(5962), 167-170.
[http://dx.doi.org/10.1126/science.1179555] [PMID: 20056882]
Kerfahi, D.; Tripathi, B.M.; Dong, K.; Kim, M.; Kim, H.; Ferry Slik, J.W.; Go, R.; Adams, J.M. From the high Arctic to the equa-tor: do soil metagenomes differ according to our expectations? Microb. Ecol., 2019, 77(1), 168-185.
[http://dx.doi.org/10.1007/s00248-018-1215-z] [PMID: 29882154]
Santos, K.O.; Costa-Filho, J.; Spagnol, K.L.; Marins, L.F. Compa-ring methods of genetic manipulation in Bacillus subtilis for ex-pression of recombinant enzyme: Replicative or integrative (CRISPR-Cas9) plasmid? J. Microbiol. Methods, 2019, 164, 105667.
[http://dx.doi.org/10.1016/j.mimet.2019.105667] [PMID: 31295508]
Wang, L.; Wang, L.; Tan, Q.; Fan, Q.; Zhu, H.; Hong, Z.; Zhang, Z.; Duanmu, D. Efficient inactivation of symbiotic nitrogen fixati-on related genes in Lotus japonicus using CRISPR- Cas9. Front. Plant Sci. 2016, 7, 1333.
[http://dx.doi.org/10.3389/fpls.2016.01333] [PMID: 27630657]
Ji, J.; Zhang, C.; Sun, Z.; Wang, L.; Duanmu, D.; Fan, Q. Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9. Int. J. Mol. Sci., 2019, 20(10), 2471.
[http://dx.doi.org/10.3390/ijms20102471] [PMID: 31109137]
Fan, Y.; Liu, J.; Lyu, S.; Wang, Q.; Yang, S.; Zhu, H. The soybean Rfg1 gene restricts nodulation by Sinorhizobium fredii USDA193. Front. Plant Sci., 2017, 8, 1548.
[http://dx.doi.org/10.3389/fpls.2017.01548] [PMID: 28936222]
Tang, F.; Yang, S.; Liu, J.; Zhu, H. Rj4, a gene controlling nodula-tion specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol., 2016, 170(1), 26-32.
[http://dx.doi.org/10.1104/pp.15.01661] [PMID: 26582727]
van Zeijl, A.; Wardhani, T.A.K.; Seifi Kalhor, M.; Rutten, L.; Bu, F.; Hartog, M.; Linders, S.; Fedorova, E.E.; Bisseling, T.; Kohlen, W.; Geurts, R. Geurts, R. CRISPR/Cas9-mediated mutagenesis of four putative symbiosis genes of the tropical tree Parasponiaan-dersonii reveals novel phenotypes. Front. Plant Sci., 2018, 9, 284.
[http://dx.doi.org/10.3389/fpls.2018.00284] [PMID: 29559988]
Ren, B.; Wang, X.; Duan, J.; Ma, J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 2019, 365(6456), 919-922.
[http://dx.doi.org/10.1126/science.aav8907] [PMID: 31346137]
Kim, G.B.; Son, S.U.; Yu, H.J.; Mun, J.H. MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule develo-pment in Medicago truncatula. Sci. Rep., 2019, 9(1), 5952.
[http://dx.doi.org/10.1038/s41598-019-42407-3] [PMID: 30976084]
Wenderoth, M.; Pinecker, C.; Voß, B.; Fischer, R. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet. Biol., 2017, 101, 55-60.
[http://dx.doi.org/10.1016/j.fgb.2017.03.001] [PMID: 28286319]
Wang, Q.; Cobine, P.A.; Coleman, J.J. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genet. Biol., 2018b, 117, 21-29.
[http://dx.doi.org/10.1016/j.fgb.2018.05.003] [PMID: 29763675]
Miao, J.; Chi, Y.; Lin, D.; Tyler, B.M.; Liu, X. Mutations in ORP1 conferring oxathiapiprolin resistance confirmed by genome editing using CRISPR/Cas9 in Phytophthora capsici and P. sojae. Phytopa-thology, 2018, 108(12), 1412-1419.
[http://dx.doi.org/10.1094/PHYTO-01-18-0010-R] [PMID: 29979095]
Nakamura, M.; Okamura, Y.; Iwai, H. Plasmid-based and-free methods using CRISPR/Cas9 system for replacement of targeted genes in Colletotrichum sansevieriae. Sci. Rep., 2019, 9(1), 1-10.
[http://dx.doi.org/10.1038/s41598-019-55302-8] [PMID: 30626917]
Li, J.; Zhang, Y.; Zhang, Y.; Yu, P.L.; Pan, H.; Rollins, J.A. Intro-duction of large sequence inserts by CRISPR-Cas9 to create patho-genicity mutants in the multinucleate filamentous pathogen Sclero-tinia sclerotiorum. MBio, 2018, 9(3), e00567-e18.
[http://dx.doi.org/10.1128/mBio.00567-18] [PMID: 29946044]
Ferrara, M.; Haidukowski, M.; Logrieco, A.F.; Leslie, J.F.; Mulè, G.A. CRISPR-Cas9 system for genome editing of Fusariumproliferatum. Sci. Rep., 2019, 9(1), 19836.
[http://dx.doi.org/10.1038/s41598-019-56270-9] [PMID: 31882627]
Wang, Q.; Coleman, J.J. CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum. Fungal Genet. Biol., 2019, 126, 17-24.
[http://dx.doi.org/10.1016/j.fgb.2019.02.002] [PMID: 30738140]
Fang, C.; Chen, X. Potential biocontrol efficacy of Trichoderma atroviride with cellulase expression regulator ace1 gene knock-out. 3 Biotech, 2018, 8(7), 302.
[http://dx.doi.org/10.1007/s13205-018-1314-z] [PMID: 30002992]
Kourelis, J.; van der Hoorn, R.A.L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell, 2018, 30(2), 285-299.
[http://dx.doi.org/10.1105/tpc.17.00579] [PMID: 29382771]
Xu, X.; Gao, J.; Dai, W.; Wang, D.; Wu, J.; Wang, J. Gene activa-tion by a CRISPR-assisted trans enhancer. eLife, 2019, 8, e45973.
[http://dx.doi.org/10.7554/eLife.45973] [PMID: 30973327]
van der Burgh, A.M.; Joosten, M.H.A.J. Plant immunity: thinking outside and inside the box. Trends Plant Sci., . 2019, 24(7), 587-601.
[http://dx.doi.org/10.1016/j.tplants.2019.04.009] [PMID: 31171472]
Sanjana, N.E. Genome-scale CRISPR pooled screens. Anal. Bio-chem., 2017, 532, 95-99.
[http://dx.doi.org/10.1016/j.ab.2016.05.014] [PMID: 27261176]
Davis, K.F.; Chhatre, A.; Rao, N.D.; Singh, D.; Ghosh-Jerath, S.; Mridul, A.; Poblete-Cazenave, M.; Pradhan, N.; DeFries, R. Asses-sing the sustainability of post-Green Revolution cereals in India. Proc. Natl. Acad. Sci. USA, 2019, 116(50), 25034-25041.
[http://dx.doi.org/10.1073/pnas.1910935116] [PMID: 31754037]
Jia, H.; Zhang, Y.; Orbović, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Bio-technol. J., 2017, 15(7), 817-823.
[http://dx.doi.org/10.1111/pbi.12677] [PMID: 27936512]
Wang, L.; Chen, S.; Peng, A.; Xie, Z.; He, Y.; Zou, X. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibi-lity to Xanthomonas citri subsp. citri in Wanjincheng orange (Ci-trus sinensis (L.) Osbeck). Plant Biotechnol. Rep., 2019, 13(5), 501-510.
Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res., 2013, 41(20), e188-e188.
[http://dx.doi.org/10.1093/nar/gkt780] [PMID: 23999092]
Li, C.; Unver, T.; Zhang, B. A high-efficiency CRISPR/Cas9 sys-tem for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Sci. Rep. 2017, 7, 43902.
[http://dx.doi.org/10.1038/srep43902] [PMID: 28256588]
Nekrasov, V.; Wang, C.; Win, J.; Lanz, C.; Weigel, D.; Kamoun, S. Rapid generation of a transgene-free powdery mildew resistant to-mato by genome deletion. Sci. Rep., 2017, 7(1), 482.
[http://dx.doi.org/10.1038/s41598-017-00578-x] [PMID: 28352080]
Prihatna, C.; Barbetti, M.J.; Barker, S.J. A novel tomato fusarium wilt tolerance gene. Front. Microbiol., 2018, 9, 1226.
[http://dx.doi.org/10.3389/fmicb.2018.01226] [PMID: 29937759]
Fister, A.S.; Landherr, L.; Maximova, S.N.; Guiltinan, M.J. Tran-sient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front. Plant Sci. 2018, 9, 268.
[http://dx.doi.org/10.3389/fpls.2018.00268] [PMID: 29552023]
Nalam, V.J.; Alam, S.; Keereetaweep, J.; Venables, B.; Burdan, D.; Lee, H.; Trick, H.N.; Sarowar, S.; Makandar, R.; Shah, J. Facilita-tion of Fusarium graminearum infection by 9-Lipoxygenases in Arabidopsis and wheat. Mol. Plant Microbe Interact., 2015, 28(10), 1142-1152.
[http://dx.doi.org/10.1094/MPMI-04-15-0096-R] [PMID: 26075826]
Sun, Q.; Lin, L.; Liu, D.; Wu, D.; Fang, Y.; Wu, J.; Wang, Y. CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int. J. Mol. Sci., 2018, 19(9), 2716.
[http://dx.doi.org/10.3390/ijms19092716] [PMID: 30208656]
Tashkandi, M.; Ali, Z.; Aljedaani, F.; Shami, A.; Mahfouz, M.M. Engineering resistance against Tomato yellow leaf curl virus viathe CRISPR/Cas9 system in tomato. Plant Signal. Behav., 2018, 13(10), e1525996.
[http://dx.doi.org/10.1080/15592324.2018.1525996] [PMID: 30289378]
Yin, K.; Han, T.; Xie, K.; Zhao, J.; Song, J.; Liu, Y. Engineer com-plete resistance to Cotton leaf curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathol. Res., 2019, 1, 9.
Liu, H.; Soyars, C.L.; Li, J.; Fei, Q.; He, G.; Peterson, B.A.; Meyers, B.C.; Nimchuk, Z.L.; Wang, X. CRISPR/Cas9-mediated re-sistance to cauliflower mosaic virus. Plant Direct 2018, 2(3)e00047
[http://dx.doi.org/10.1002/pld3.47] [PMID: 31245713]
Kis, A.; Hamar, É.; Tholt, G.; Bán, R.; Havelda, Z. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol. J., 2019, 17(6), 1004-1006.
[http://dx.doi.org/10.1111/pbi.13077] [PMID: 30633425]
Tripathi, J.N.; Ntui, V.O.; Ron, M.; Muiruri, S.K.; Britt, A.; Tripathi, L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun. Biol. 2019, 2, 46.
[http://dx.doi.org/10.1038/s42003-019-0288-7] [PMID: 30729184]
Mehta, D.; Stürchler, A.; Anjanappa, R.B.; Zaidi, S.S.; Hirsch-Hoffmann, M.; Gruissem, W.; Vanderschuren, H. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol., 2019, 20(1), 80.
[http://dx.doi.org/10.1186/s13059-019-1678-3] [PMID: 31018865]
Gomez, M.A.; Lin, Z.D.; Moll, T.; Chauhan, R.D.; Hayden, L.; Renninger, K.; Beyene, G.; Taylor, N.J.; Carrington, J.C.; Staskawicz, B.J.; Bart, R.S. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Bio-technol. J., 2019, 17(2), 421-434.
[http://dx.doi.org/10.1111/pbi.12987] [PMID: 30019807]
Fang, Y.; Tyler, B.M. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol. Plant Pathol. 2016, 17(1), 127-139.
[http://dx.doi.org/10.1111/mpp.12318] [PMID: 26507366]
Makhotenko, A.V.; Khromov, A.V.; Snigir, E.A.; Makarova, S.S.; Makarov, V.V.; Suprunova, T.P.; Kalinina, N.O.; Taliansky, M.E. Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Dokl. Biochem. Biophys. 2019, 484(1), 88-91.
[http://dx.doi.org/10.1134/S1607672919010241] [PMID: 31012023]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 15 September, 2020
Page: [429 - 443]
Pages: 15
DOI: 10.2174/1389202921999200716110853
Price: $65

Article Metrics

PDF: 23