Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Nanomaterial LaNiTiO3-Fe3O4-based Peroxidase Biomimetic Sensor with High Sensitivity

Author(s): Yanhong Xu*, Ying Sun and Qiao Feng*

Volume 17, Issue 4, 2021

Published on: 15 July, 2020

Page: [545 - 551] Pages: 7

DOI: 10.2174/1573411016999200715160103

Price: $65

Abstract

Background: Hydrogen peroxide (H2O2) is widely used in various fields and it plays a quintessential role in a variety of biomolecular processes. H2O2 concentration level is an essential biological parameter in monitoring and maintaining the physiological balance of a living cell, and its variation causes some related diseases. Therefore, it is extremely significant to fabricate biosensor with low cost, which can quickly, accurately and sensitively detect H2O2 in a wide range. The aims of this paper are to explore a novel electrochemical sensor with high intrinsic peroxidase-like activity, high sensitivity and stability to effectively detect H2O2 concentration in real samples.

Methods: The chemically modified electrode LaNiTiO3-Fe3O4/GCE was fabricated based on the nanomaterial LaNiTiO3-Fe3O4 by a simple process, and its electrochemical properties were investigated in the supporting electrolyte of 0.1 M NaOH by the techniques of cyclic voltammetry and currenttime curves on an electrochemical workstation with a conventional three-electrode system.

Results: LaNiTiO3-Fe3O4 nanoparticles show good peroxidase-like activity for H2O2 at a low applied potential of +0.50 V. Under the optimum conditions, the peroxidase biomimetic sensor LaNiTiO3-Fe3O4/GCE exhibited a wide linear response for H2O2 oxidation in the range of 0.05 μM - 3.0 mM (R = 0.9994) with a high sensitivity of 3946.2 μA·mM-1·cm-2 and fast response time of 2 s; besides, the detection limit of H2O2 was found to be ca. 5.15 nM (S/N = 3). Moreover, the biosensor exhibited good repeatability, stability and anti-interference. Satisfactory results were obtained when the sensor LaNiTiO3-Fe3O4/GCE was applied to determine H2O2 in real samples. All of these results provide support to practical application.

Conclusion: A highly sensitive peroxidase biomimetic sensor based on LaNiTiO3-Fe3O4 with nanoscaled material has been successfully explored, and shows good activity for H2O2. The proposed biosensor with simple and low cost exhibited excellent advantages of quick response, wide linear range, low detection limit, high sensitivity, long-term stability and good anti-interference ability, which offer promising applications.

Keywords: Amperometric biosensor, biomimetic sensor, nanoparticles, perovskite, peroxidase-like, spinel.

Graphical Abstract
[1]
Wang, N.; Miller, C.J.; Wang, P.; Waite, T.D. Quantitative determination of trace hydrogen peroxide in the presence of sulfide using the Amplex Red/horseradish peroxidase assay. Anal. Chim. Acta, 2017, 963, 61-67.
[http://dx.doi.org/10.1016/j.aca.2017.02.033] [PMID: 28335976]
[2]
Sharma, A.K.; Pandey, S.; Sharma, K.H.; Nerthigan, Y.; Khan, M.S.; Hang, D-R.; Wu, H-F. Two dimensional α-MoO3-x nanoflakes as bare eye probe for hydrogen peroxide in biological fluids. Anal. Chim. Acta, 2018, 1015, 58-65.
[http://dx.doi.org/10.1016/j.aca.2018.01.057] [PMID: 29530252]
[3]
Li, Z.; Xin, Y.; Wu, W.; Fu, B.; Zhang, Z. Topotactic conversion of copper (I) phosphide nanowires for sensitive electrochemical detection of H2O2 release from living cells. Anal. Chem., 2016, 88(15), 7724-7729.
[http://dx.doi.org/10.1021/acs.analchem.6b01637] [PMID: 27377605]
[4]
Peng, X.; Wan, G.; Wu, L.; Zeng, M.; Lin, S.; Wang, G. Peroxidase-like activity of Au@TiO2 yolk-shell nanostructure and its application for colorimetric detection of H2O2 and glucose. Sens. Actuators B Chem., 2018, 257, 166-177.
[http://dx.doi.org/10.1016/j.snb.2017.10.146]
[5]
Khataee, A.; Haddad Irani-Nezhad, M.; Hassanzadeh, J. Improved peroxidase mimetic activity of a mixture of WS2 nanosheets and silver nanoclusters for chemiluminescent quantification of H2O2 and glucose. Mikrochim. Acta, 2018, 185(3), 190.
[http://dx.doi.org/10.1007/s00604-018-2727-4] [PMID: 29594818]
[6]
Hu, X.; Liu, X.; Zhang, X.; Chai, H.; Huang, Y. One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity. Biosens. Bioelectron., 2018, 105, 65-70.
[http://dx.doi.org/10.1016/j.bios.2018.01.019] [PMID: 29355780]
[7]
Maduraiveeran, G.; Kundu, M.; Sasidharan, M. Electrochemical detection of hydrogen peroxide based on silver nanoparticles via amplified electron transfer process. J. Mater. Sci., 2018, 53, 8328-8338.
[http://dx.doi.org/10.1007/s10853-018-2141-7]
[8]
Jouyban, A.; Rahimpour, E.; Jouybangharamaleki, V.; Khoubnasabjafari, M.; Abdolmohammadzadeh, H. Development and validation of a novel fluorometric sensor for hydrogen peroxide monitoring in exhaled breath condensate; Anal; Methods-Uk, 2017, p. 9.
[9]
Zhang, L.; Hou, W.; Lu, Q.; Liu, M.; Chen, C.; Zhang, Y.; Yao, S. Colorimetric detection of hydrogen peroxide and lactate based on the etching of the carbon based Au-Ag bimetallic nanocomposite synthesized by carbon dots as the reductant and stabilizer. Anal. Chim. Acta, 2016, 947, 23-31.
[http://dx.doi.org/10.1016/j.aca.2016.10.011] [PMID: 27846986]
[10]
Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Mikrochim. Acta, 2018, 185(5), 276.
[http://dx.doi.org/10.1007/s00604-018-2820-8] [PMID: 29721621]
[11]
Bakhshpour, M.; Piskin, A.K.; Yavuz, H.; Denizli, A. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor. Talanta, 2019, 204, 840-845.
[http://dx.doi.org/10.1016/j.talanta.2019.06.060] [PMID: 31357373]
[12]
Gür, S.D.; Bakhshpour, M.; Denizli, A. Selective detection of Escherichia coli caused UTIs with surface imprinted plasmonic nanoscale sensor. Mater. Sci. Eng. C, 2019, 104109869
[http://dx.doi.org/10.1016/j.msec.2019.109869]] [PMID: 31500013]
[13]
Crespilho, F.N.; Iost, R.M.; Travain, S.A.; Oliveira, O.N., Jr; Zucolotto, V. Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens. Bioelectron., 2009, 24(10), 3073-3077.
[http://dx.doi.org/10.1016/j.bios.2009.03.026] [PMID: 19427191]
[14]
Chen, W.; Cai, S.; Ren, Q.Q.; Wen, W.; Zhao, Y.D. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst (Lond.), 2012, 137(1), 49-58.
[http://dx.doi.org/10.1039/C1AN15738H] [PMID: 22081036]
[15]
Ma, X.; Li, J.; Liu, Y.; Yuan, Y.; Xu, G. Construction of a Concanavalin A electrochemical sensor base on a novel sandwich capture mode. Sens. Actuators B Chem., 2017, 248, 201-206.
[http://dx.doi.org/10.1016/j.snb.2017.03.172]
[16]
Chen, W.; Yang, W.; Lu, Y.; Zhu, W.; Chen, X. Encapsulation of enzyme into mesoporous cages of metal-organic frameworks for the development of highly stable electrochemical biosensors; Anal; Methods-Uk, 2017, p. 9.
[17]
Ruzgas, T.; Csöregi, E.; Emnéus, J.; Gorton, L.; Marko-Varga, G. Peroxidase-modified electrodes: Fundamentals and application. Anal. Chim. Acta, 1996, 330, 123-138.
[http://dx.doi.org/10.1016/0003-2670(96)00169-9]
[18]
Palanisamy, S.; Chen, S.M.; Sarawathi, R. A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens. Actuators B-Chem., 2012, s 166–167, 372-377..
[19]
Zou, X.; He, Y.; Sun, P.; Zhao, J.; Cui, G. A novel dealloying strategy for fabricating nanoporous silver as an electrocatalyst for hydrogen peroxide detection. Appl. Surf. Sci., 2018, 447, 542-547.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.018]
[20]
Tang, Y.; Allen, B.L.; Kauffman, D.R.; Star, A. Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc., 2009, 131(37), 13200-13201.
[http://dx.doi.org/10.1021/ja904595t] [PMID: 19722487]
[21]
Wang, J.; Gao, H.; Sun, F.; Hao, Q.; Xu, C. Highly sensitive detection of hydrogen peroxide based on nanoporous FerOr/CoO composites. Biosens. Bioelectron., 2013, 42, 550-555.
[http://dx.doi.org/10.1016/j.bios.2012.11.016] [PMID: 23261688]
[22]
Wang, L.; Xu, M.; Xie, Y.; Song, Y.; Wang, L. A nonenzymatic electrochemical H2O2 sensor based on macroporous carbon/polymer foam/PtNPs electrode. J. Mater. Sci., 2018, 53, 10946-10954.
[http://dx.doi.org/10.1007/s10853-018-2386-1]
[23]
Dhinesh Kumar, R.; Thangappan, R.; Jayavel, R. Enhanced visible light photocatalytic activity of LaMnO3 nanostructures for water purification. Res. Chem. Intermed., 2018, 44, 4323-4337.
[http://dx.doi.org/10.1007/s11164-018-3371-7]
[24]
Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem., 2008, 80(6), 2250-2254.
[http://dx.doi.org/10.1021/ac702203f] [PMID: 18290671]
[25]
Li, M.; Cao, X.; Zheng, S.; Qi, S. Ternary composites RGO/MoS2@Fe3O4: synthesis and enhanced electromagnetic wave absorbing performance. J. Mater. Sci. Mater. Electron., 2017, 28, 16802-16812.
[http://dx.doi.org/10.1007/s10854-017-7595-x]
[26]
Chen, F.; Xie, S.; Huang, X.; Qiu, X. Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fentonlike catalysts for degradation of organic pollutants with H2O2. J. Hazard. Mater., 2017, 322(Pt A), 152-162..
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.073] [PMID: 26952081]
[27]
Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. biotechnological perspective on the application of iron oxide nanoparticles. Nano Res., 2016, 9, 2203-2225.
[http://dx.doi.org/10.1007/s12274-016-1131-9]
[28]
Gruskiene, R.; Krivorotova, T.; Staneviciene, R.; Ratautas, D.; Serviene, E.; Sereikaite, J. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin. Colloids Surf. B Biointerfaces, 2018, 169, 126-134.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.017] [PMID: 29758538]
[29]
Qu, J.; Dong, Y.; Lou, T.; Du, X. Determination of hydrogen peroxide using a novel sensor based on Fe3O4 magnetic nanoparticles. Anal. Lett., 2014, 47, 1797-1807.
[http://dx.doi.org/10.1080/00032719.2014.888733]
[30]
Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2(9), 577-583.
[http://dx.doi.org/10.1038/nnano.2007.260] [PMID: 18654371]
[31]
Munshi, A.M.; Ho, D.; Saunders, M.; Agarwal, V.; Raston, C.L.; Iyer, K.S. Influence of aspect ratio of magnetite coated gold nanorods in hydrogen peroxide sensing. Sens. Actuators B Chem., 2016, 235, 492-497.
[http://dx.doi.org/10.1016/j.snb.2016.05.090]
[32]
Guivar, J.A.R.; Fernandes, E.G.R.; Zucolotto, V. A peroxidase biomimetic system based on Fe3O4 nanoparticles in non-enzymatic sensors. Talanta, 2015, 141, 307-314.
[http://dx.doi.org/10.1016/j.talanta.2015.03.017] [PMID: 25966419]
[33]
Wang, Y.; Xu, Y.; Luo, L.; Ding, Y.; Liu, X. Preparation of perovskite-type composite oxide LaNi0.5Ti0.5O3-NiFe2O4 and its application in glucose biosensor. J. Electroanal. Chem. (Lausanne Switz.), 2010, 642, 35-40.
[http://dx.doi.org/10.1016/j.jelechem.2010.02.001]
[34]
Gang, D.; Chen, Y.; Tao, M.; Wu, C.; Shen, X.; Yang, H.; Ming, L. Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries. Electrochim. Acta, 2010, 55, 1120-1124.
[http://dx.doi.org/10.1016/j.electacta.2009.09.078]
[35]
Wang, Y.Z.; Zhong, H.; Li, X.M.; Jia, F.F.; Shi, Y.X.; Zhang, W.G.; Cheng, Z.P.; Zhang, L.L.; Wang, J.K. Perovskite LaTiO3-Ag0.2 nanomaterials for nonenzymatic glucose sensor with high performance. Biosens. Bioelectron., 2013, 48, 56-60.
[http://dx.doi.org/10.1016/j.bios.2013.03.081] [PMID: 23648686]
[36]
Amirfakhri, S.J.; Meunier, J-L.; Berk, D. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution. J. Power Sources, 2014, 272, 248-258.
[http://dx.doi.org/10.1016/j.jpowsour.2014.08.068]
[37]
Wang, H.Y.; Zhu, X.L.; Xin, M.L.; Xu, Y.H. A Nonenzymatic sensor for H2O2 detection based on rare-earth perovskite LaNiTiO3 containing Ni. Chin. J. Anal. Chem., 2014, 42, 847-852.
[38]
Xu, Y.; Zhang, X.; Chen, D.; Hou, J.; Li, C.; Zhu, X. A Layered Nano-structured Perovskite-type Oxide LaNiTiO3 for nonenzymatic catalytic detection of hydrogen peroxide. Curr. Nanosci., 2013, 9, 5.
[http://dx.doi.org/10.2174/15734137113099990080]
[39]
Wang, Y.; Xu, Y.; Luo, L.; Ding, Y.; Liu, X.; Huang, A. A novel sensitive nonenzymatic glucose sensor based on perovskite LaNi0.5Ti0.5O3-modified carbon paste electrode. Sens. Actuators B Chem., 2010, 151, 65-70.
[http://dx.doi.org/10.1016/j.snb.2010.09.052]
[40]
Ye, D.; Xu, Y.; Luo, L.; Ding, Y.; Wang, Y.; Liu, X.; Xing, L.; Peng, J. A novel nonenzymatic hydrogen peroxide sensor based on LaNi0.5Ti0.5O3/CoFe2O4 modified electrode B Biointerfaces. Colloids Surf. B Biointerfaces, 2012, 89, 5.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.014]
[41]
Zhao, Y.; Huo, D.; Bao, J.; Yang, M.; Chen, M.; Hou, J.; Fa, H.; Hou, C. Biosensor based on 3D graphene-supported Fe3O4 quantum dots as biomimetic enzyme for in situ detection of H2O2 released from living cells. Sens. Actuators B Chem., 2017, 244, 1037-1044.
[http://dx.doi.org/10.1016/j.snb.2017.01.029]
[42]
Ding, J.; Sun, W.; Wei, G.; Su, Z. Cuprous oxide microspheres on graphene nanosheets: An enhanced material for non-enzymatic electrochemical detection of H2O2 and glucose. Rsc. Adv., 2015, 5, 35338-35345.
[http://dx.doi.org/10.1039/C5RA04164C]
[43]
George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Mikrochim. Acta, 2018, 185(7), 358.
[http://dx.doi.org/10.1007/s00604-018-2894-3] [PMID: 29974265]
[44]
Jin, Y.; Qian, J.; Wang, K.; Yang, X.; Dong, X.; Qiu, B. Fabrication of multifunctional magnetic FePc@Fe3O4/reduced graphene oxide nanocomposites as biomimetic catalysts for organic peroxide sensing. J. Electroanal. Chem. (Lausanne Switz.), 2013, 693, 79-85.
[http://dx.doi.org/10.1016/j.jelechem.2013.01.031]
[45]
Zhou, Y.; Xu, Y.; Zhu, X.; Wang, K.; Yao, X.; Ma, W.; Zheng, W. Direct electochemical sensing of o-phenylendiamine based on perovskite-type nanomaterial LaNiTiO3-F3O4. J. Solid State Electrochem., 2014, 18, 1973-1979.
[http://dx.doi.org/10.1007/s10008-014-2406-2]
[46]
Falcón, H.; Carbonio, R.E.; Fierro, J.L.G. Correlation of oxidation states in LaFexNi1-xO3+δ Oxides with catalytic activity for H2O2 decomposition. J. Catal., 2001, 203, 264-272.
[http://dx.doi.org/10.1006/jcat.2001.3351]
[47]
Ishihara, T. Oxide Ion Conductivity in Perovskite Oxide for SOFC Electrolyte; Springer Science: US, 2009.
[http://dx.doi.org/10.1007/978-0-387-77708-5_4]
[48]
Kibria, A.K.M.F.; Tarafdar, S.A. Electrochemical studies of a nickel-copper electrode for the oxygen evolution reaction (OER). Int. J. Hydrogen Energy, 2002, 27, 879-884.
[http://dx.doi.org/10.1016/S0360-3199(01)00185-9]
[49]
Al-Hardan, N.H.; Abdul Hamid, M.A.; Shamsudin, R.; Al-Khalqi, E.M.; Kar Keng, L.; Ahmed, N.M. Electrochemical hydrogen peroxide sensor based on macroporous silicon. Sensors (Basel), 2018, 18(3), 716.
[http://dx.doi.org/10.3390/s18030716] [PMID: 29495561]
[50]
Wang, M.Y.; Shen, T.; Wang, M.; Zhang, D.E.; Tong, Z.W.; Chen, J. One-pot synthesis of α-Fe2O3 nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2 biosensor. Sens. Actuators B Chem., 2014, 190, 645-650.
[http://dx.doi.org/10.1016/j.snb.2013.08.091]
[51]
Fang, Y.; Zhang, D.; Qin, X.; Miao, Z.; Takahashi, S.; Anzai, J.I.; Chen, Q. A non-enzymatic hydrogen peroxide sensor based on poly(vinyl alcohol)-multiwalled carbon nanotubes–platin um nanoparticles hybrids modified glassy carbon electrode. Electrochim. Acta, 2012, 70, 266-271.
[http://dx.doi.org/10.1016/j.electacta.2012.03.105]
[52]
Miao, Y.; Wang, H.; Shao, Y.; Tang, Z.; Wang, J.; Lin, Y. Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2. Sens. Actuators B Chem., 2016, 138, 182-188.
[http://dx.doi.org/10.1016/j.snb.2008.12.045]
[53]
Yao, S.; Xu, J.; Wang, Y.; Chen, X.; Xu, Y.; Hu, S. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film.Anal. Chim. Acta, 2005, 557, 78-84.,
[http://dx.doi.org/10.1016/j.aca.2005.10.052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy