Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and in Vitro Cytotoxicity Evaluation of Phenanthrene Linked 2,4- Thiazolidinediones as Potential Anticancer Agents

Author(s): Upasana Yadav, Yogesh Vanjari, Kritika Laxmikeshav, Ramya Tokala, Praveen K. Niggula, Manoj Kumar, Venu Talla*, Ahmed Kamal and Nagula Shankaraiah*

Volume 21, Issue 9, 2021

Published on: 14 July, 2020

Page: [1127 - 1140] Pages: 14

DOI: 10.2174/1871520620666200714142931

Price: $65

Abstract

Objective: To synthesize a series of phenanthrene-thiazolidinedione hybrids and explore their cytotoxic potential against human cancer cell lines of A-549 (lung cancer), HCT-116 and HT-29 (colon cancer), MDA MB-231 (triple-negative breast cancer), BT-474 (breast cancer) and (mouse melanoma) B16F10 cells.

Methods: A new series of phenanthrene-thiazolidinedione hybrids was synthesized via Knoevenagel condensation of phenanthrene-9-carbaldehyde and N-alkylated thiazolidinediones. The cytotoxicity (IC50) of the synthesized compounds was determined by MTT assay. Apoptotic assays like (AO/EB) and DAPI staining, cell cycle analysis, JC-1 staining and Annexin V binding assay studies were performed for the most active compound (Z)- 3-(4-bromobenzyl)-5-((2,3,6,7-tetramethoxyphenanthren-9-yl)methylene)thiazolidine-2,4-dione (17b). Molecular docking, dynamics and evaluation of pharmacokinetic (ADME/T) properties were also carried out by using Schrödinger.

Results and Discussion: From the series of tested compounds, 17b unveiled promising cytotoxic action with an IC50 value of 0.985±0.02μM on HCT-116 human colon cancer cells. The treatment of HCT-116 cells with 17b demonstrated distinctive apoptotic morphology like shrinkage of cells, horseshoe-shaped nuclei formation and chromatin condensation. The flow-cytometry analysis revealed the G0/G1 phase cell cycle arrest in a dosedependent fashion. The AO/EB, DAPI, DCFDA, Annexin-V and JC-1 staining studies were performed in order to determine the effect of the compound on cell viability. Computational studies were performed by using Schrödinger to determine the stability of the ligand with the DNA.

Conclusion: The current study provides an insight into developing a series of phenanthrene thiazolidinedione derivatives as potential DNA interactive agents which might aid in colon cancer therapy.

Keywords: Phenanthrene, thiazolidinedione, knoevenagel condensation, cytotoxicity, apoptosis, cell cycle arrest.

Graphical Abstract
[1]
(a)Shankaraiah, N.; Nekkanti, S.; Ommi, O.; Lakshmi Soukya, P.S. Diverse targeted approaches to battle multidrug resistance in cancer. Curr. Med. Chem., 2019, 26(39), 7059-7080.
[http://dx.doi.org/10.2174/0929867325666180410110729] [PMID: 29637849]
(b)Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027] [PMID: 22608854]
[2]
(a)Ricci, M.S.; Zong, W.X. Chemotherapeutic approaches for targeting cell death pathways. Oncologist, 2006, 11(4), 342-357.
[http://dx.doi.org/10.1634/theoncologist.11-4-342] [PMID: 16614230]
(b)Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; Wang, X.; He, C.; Pan, H. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis., 2013, 4, e838.
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[3]
(a)Roviello, G.N.; Iannitti, R.; Roviello, V.; Palumbo, R.; Simonyan, H.; Vicidomini, C. Synthesis and biological evaluation of a novel Amadori compound. Amino Acids, 2017, 49(2), 327-335.
[http://dx.doi.org/10.1007/s00726-016-2363-4] [PMID: 27864693]
(b)Roviello, G.N.; Iannitti, R.; Palumbo, R.; Simonyan, H.; Vicidomini, C.; Roviello, V. Lac-L-TTA, a novel lactose-based amino acid-sugar conjugate for anti-metastatic applications. Amino Acids, 2017, 49(8), 1347-1353.
[http://dx.doi.org/10.1007/s00726-017-2433-2] [PMID: 28478584]
[4]
Raguz, S.; Yagüe, E. Resistance to chemotherapy: New treatments and novel insights into an old problem. Br. J. Cancer, 2008, 99(3), 387-391.
[http://dx.doi.org/10.1038/sj.bjc.6604510] [PMID: 18665178]
[5]
Curran, W.J. New chemotherapeutic agents: Update of major chemoradiation trials in solid tumors. Oncology, 2002, 63(Suppl. 2), 29-38.
[http://dx.doi.org/10.1159/000067145] [PMID: 12466642]
[6]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[7]
(a)Hurley, L.H. DNA and its associated processes as targets for cancer therapy Nat. Rev. Cancer, 2002, 2(3), 188-200.
[http://dx.doi.org/10.1038/nrc749] [PMID: 11990855]
(b)Sheng, J.; Gan, J.; Huang, Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med. Res. Rev., 2013, 33(5), 1119-1173.
[http://dx.doi.org/10.1002/med.21278] [PMID: 23633219]
(c)Fik-Jaskółka, M.A.; Mkrtchyan, A.F.; Saghyan, A.S.; Palumbo, R.; Belter, A.; Hayriyan, L.A.; Simonyan, H.; Roviello, V.; Roviello, G.N. Spectroscopic and SEM evidences for G4-DNA binding by a synthetic alkyne-containing amino acid with anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229, 117884.
[http://dx.doi.org/10.1016/j.saa.2019.117884] [PMID: 31927477]
[8]
(a)Wei, L.; Brossi, A.; Kendall, R.; Bastow, K.F.; Morris-Natschke, S.L.; Shi, Q.; Lee, K.H. Antitumor agents 251: synthesis, cytotoxic evaluation, and structure-activity relationship studies of Phenanthrene-Based Tylophorine derivatives (PBTs) as a new class of antitumor agents. Bioorg. Med. Chem., 2006, 14(19), 6560-6569.
[http://dx.doi.org/10.1016/j.bmc.2006.06.009] [PMID: 16809043]
(b)Ikeda, T.; Yaegashi, T.; Matsuzaki, T.; Yamazaki, R.; Hashimoto, S.; Sawada, S. Synthesis of phenanthroindolizidine alkaloids and evaluation of their antitumor activities and toxicities. Bioorg. Med. Chem. Lett., 2011, 21(19), 5978-5981.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.120] [PMID: 21865039]
[9]
Su, B.; Cai, C.; Deng, M.; Liang, D.; Wang, L.; Wang, Q. Design, synthesis, antiviral activity, and SARs of 13a-substituted phenanthroindolizidine alkaloid derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2881-2884.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.101] [PMID: 24835986]
[10]
Baumgartner, B.; Erdelmeier, C.A.; Wright, A.D.; Rali, T.; Sticher, O. An antimicrobial alkaloid from Ficus septica. Phytochemistry, 1990, 29, 3327-3330.
[http://dx.doi.org/10.1016/0031-9422(90)80209-Y]
[11]
Faidallah, H.M.; Al-Shaikh, K.M.; Sobahi, T.R.; Khan, K.A.; Asiri, A.M. An efficient approach to the synthesis of highly congested 9,10-dihydrophenanthrene-2,4-dicarbonitriles and their biological evaluation as antimicrobial agents. Molecules, 2013, 18(12), 15704-15716.
[http://dx.doi.org/10.3390/molecules181215704] [PMID: 24352023]
[12]
You, X.; Pan, M.; Gao, W.; Shiah, H.S.; Tao, J.; Zhang, D.; Koumpouras, F.; Wang, S.; Zhao, H.; Madri, J.A.; Baker, D.; Cheng, Y.C.; Yin, Z. Effects of a novel tylophorine analog on collagen-induced arthritis through inhibition of the innate immune response. Arthritis Rheum., 2006, 54(3), 877-886.
[http://dx.doi.org/10.1002/art.21640] [PMID: 16508970]
[13]
Yang, C.W.; Chen, W.L.; Wu, P.L.; Tseng, H.Y.; Lee, S.J. Anti-inflammatory mechanisms of phenanthroindolizidine alkaloids. Mol. Pharmacol., 2006, 69, 749-758; (b) Yang, L.; Qin, L.H.; Bligh, S.A.; Bashall, A.; Zhang, C.F.; Zhang, M.; Wang, Z.T.; Xu, L.S. A new phenanthrene with a spirolactone from Dendrobium chrysanthum and its anti-inflammatory activities. Bioorg. Med. Chem., 2006, 14, 3496-3501.
[http://dx.doi.org/10.1016/j.bmc.2006.01.004] [PMID: 16431116]
[14]
Banwell, M.G.; Bezos, A.; Burns, C.; Kruszelnicki, I.; Parish, C.R.; Su, S.; Sydnes, M.O. C8c-C15 monoseco-analogues of the phenanthroquinolizidine alkaloids julandine and cryptopleurine exhibiting potent anti-angiogenic properties. Bioorg. Med. Chem. Lett., 2006, 16(1), 181-185.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.032] [PMID: 16236503]
[15]
Gao, W.; Lam, W.; Zhong, S.; Kaczmarek, C.; Baker, D.C.; Cheng, Y.C. Novel mode of action of tylophorine analogs as antitumor compounds. Cancer Res., 2004, 64(2), 678-688.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1904] [PMID: 14744785]
[16]
Yang, X.; Shi, Q.; Yang, S.C.; Chen, C.Y.; Yu, S.L.; Bastow, K.F.; Morris-Natschke, S.L.; Wu, P.C.; Lai, C.Y.; Wu, T.S.; Pan, S.L.; Teng, C.M.; Lin, J.C.; Yang, P.C.; Lee, K.H. Antitumor agents 288: Design, synthesis, SAR, and biological studies of novel heteroatom-incorporated antofine and cryptopleurine analogues as potent and selective antitumor agents. J. Med. Chem., 2011, 54(14), 5097-5107.
[http://dx.doi.org/10.1021/jm200330s] [PMID: 21668000]
[17]
Narasimha Rao, K.; Bhattacharya, R.K.; Venkatachalam, S.R. Thymidylate synthase activity in leukocytes from patients with chronic myelocytic leukemia and acute lymphocytic leukemia and its inhibition by phenanthroindolizidine alkaloids pergularinine and tylophorinidine. Cancer Lett., 1998, 128(2), 183-188.
[http://dx.doi.org/10.1016/S0304-3835(98)00061-5] [PMID: 9683281]
[18]
Naim, M.J.; Alam, M.J.; Ahmad, S.; Nawaz, F.; Shrivastava, N.; Sahu, M.; Alam, O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur. J. Med. Chem., 2017, 129, 218-250.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.031] [PMID: 28231521]
[19]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur. J. Med. Chem., 2014, 87, 814-833.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.025] [PMID: 25440883]
[20]
(a)Liu, K.; Rao, W.; Parikh, H.; Li, Q.; Guo, T.L.; Grant, S.; Kellogg, G.E.; Zhang, S. 3,5-Disubstituted-thiazolidine-2,4-dione analogs as anticancer agents: design, synthesis and biological characterization. Eur. J. Med. Chem, 2012, 47(1), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.031] [PMID: 22074985]
(b)Motomura, W.; Tanno, S.; Takahashi, N.; Nagamine, M.; Fukuda, M.; Kohgo, Y.; Okumura, T. Involvement of MEK-ERK signaling pathway in the inhibition of cell growth by troglitazone in human pancreatic cancer cells. Biochem. Biophys. Res. Commun., 2005, 332(1), 89-94.
[http://dx.doi.org/10.1016/j.bbrc.2005.04.095] [PMID: 15896303]
[21]
(a)Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; Sarpong, M.A.; Schmidt, S.J.; Van Aller, G.S.; Carson, J.D.; Diamond, M.A.; Elkins, P.A.; Gardiner, C.M.; Garver, E.; Gilbert, S.A.; Gontarek, R.R.; Jackson, J.R.; Kershner, K.L.; Luo, L.; Raha, K.; Sherk, C.S.; Sung, C.M.; Sutton, D.; Tummino, P.J.; Wegrzyn, R.J.; Auger, K.R.; Dhanak, D. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett., 2010, 1(1), 39-43.
[http://dx.doi.org/10.1021/ml900028r] [PMID: 24900173]
(b)Jung, K.Y.; Samadani, R.; Chauhan, J.; Nevels, K.; Yap, J.L.; Zhang, J.; Worlikar, S.; Lanning, M.E.; Chen, L.; Ensey, M.; Shukla, S.; Salmo, R.; Heinzl, G.; Gordon, C.; Dukes, T.; MacKerell, A.D., Jr; Shapiro, P.; Fletcher, S. Structural modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione that improve selectivity for inhibiting the proliferation of melanoma cells containing active ERK signaling. Org. Biomol. Chem., 2013, 11(22), 3706-3732.
[http://dx.doi.org/10.1039/c3ob40199e] [PMID: 23624850]
[22]
Wei, X.; Han, J.; Chen, Z.Z.; Qi, B.W.; Wang, G.C.; Ma, Y.H.; Zheng, H.; Luo, Y.F.; Wei, Y.Q.; Chen, L.J. A phosphoinositide 3-kinase-γ inhibitor, AS605240 prevents bleomycin-induced pulmonary fibrosis in rats. Biochem. Biophys. Res. Commun., 2010, 397(2), 311-317.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.109] [PMID: 20510675]
[23]
Laxmi, S.V.; Anil, P.; Rajitha, G.; Rao, A.J.; Crooks, P.A.; Rajitha, B. Synthesis of thiazolidine-2,4-dione derivatives: Anticancer, antimicrobial and DNA cleavage studies. J. Chem. Biol., 2016, 9(4), 97-106.
[http://dx.doi.org/10.1007/s12154-016-0154-8] [PMID: 27698947]
[24]
(a)Sharma, P.; Srinivasa Reddy, T.; Thummuri, D.; Senwar, K.R.; Praveen Kumar, N.; Naidu, V.G.M.; Bhargava, S.K.; Shankaraiah, N. Synthesis and biological evaluation of new benzimidazolethiazolidinedione hybrids as potential cytotoxic and apoptosis inducing agents. Eur. J. Med. Chem., 2016, 124, 608-621.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.029] [PMID: 27614408]
(b)Sharma, P.; Reddy, T.S.; Kumar, N.P.; Senwar, K.R.; Bhargava, S.K.; Shankaraiah, N. Conventional and microwave-assisted synthesis of new 1H-benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur. J. Med. Chem., 2017, 138, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.035] [PMID: 28668476]
(c)Tokala, R.; Thatikonda, S.; Sana, S.; Regur, P.; Godugu, C.; Shankaraiah, N. Synthesis and in vitro cytotoxicity evaluation of β-carboline-linked 2, 4-thiazolidinedione hybrids: potential DNA intercalation and apoptosis-inducing studies. New J. Chem., 2018, 42, 16226-16236.
[http://dx.doi.org/10.1039/C8NJ03248C]
[25]
(a)Kumar, N.P.; Sharma, P.; Reddy, T.S.; Shankaraiah, N.; Bhargava, S.K.; Kamal, A. Microwave-assisted one-pot synthesis of new phenanthrene fused-tetrahydrodibenzo-acridinones as potential cytotoxic and apoptosis inducing agents. Eur. J. Med. Chem., 2018, 151, 173-185.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.069] [PMID: 29609122]
(b)Kumar, N.P.; Thatikonda, S.; Tokala, R.; Kumari, S.S.; Lakshmi, U.J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzoquinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorg. Med. Chem., 2018, 26(8), 1996-2008.
[http://dx.doi.org/10.1016/j.bmc.2018.02.050] [PMID: 29525336]
(c)Kumar, N.P.; Sharma, P.; Reddy, T.S.; Nekkanti, S.; Shankaraiah, N.; Lalita, G.; Sujanakumari, S.; Bhargava, S.K.; Naidu, V.G.M.; Kamal, A. Synthesis of 2,3,6,7- tetramethoxyphenanthren-9-amine: An efficient precursor to access new 4-aza-2,3-dihydropyridophenanthrenes as apoptosis inducing agents. Eur. J. Med. Chem., 2017, 127, 305-317.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.001] [PMID: 28068602]
(d)Jadala, C.; Sathish, M.; Reddy, T.S.; Reddy, V.G.; Tokala, R.; Bhargava, S.K.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis and in vitro cytotoxicity evaluation of β-carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition. Bioorg. Med. Chem., 2019, 27(15), 3285-3298.
[http://dx.doi.org/10.1016/j.bmc.2019.06.007] [PMID: 31227365]
(e)Shankaraiah, N.; Kumar, N.P.; Tokala, R.; Gayatri, B.S.; Talla, V.; Santos, L.S. Synthesis of new 1, 2, 3-triazolo-naphthalimide/phthalimide conjugates via ‘click’ reaction: DNA intercalation and cytotoxic studies. J. Braz. Chem. Soc., 2019, 3, 454-461.
(f)Sankara Rao, N.; Nagesh, N.; Lakshma Nayak, V.; Sunkari, S.; Tokala, R.; Kiranmai, G.; Regur, P.; Shankaraiah, N.; Kamal, A. Design and synthesis of DNA-intercalative naphthalimidebenzothiazole/ cinnamide derivatives: Cytotoxicity evaluation and topoisomerase-IIα inhibition. Med. Chem. Comm., 2018, 10(1), 72-79.
[http://dx.doi.org/10.1039/C8MD00395E] [PMID: 30774856]
(g)Tokala, R.; Thatikonda, S.; Vanteddu, U.S.; Sana, S.; Godugu, C.; Shankaraiah, N. Design and synthesis of DNA-interactive β- carboline-oxindole hybrids as cytotoxic and apoptosis-inducing agents. Chem. Med. Chem., 2018, 13(18), 1909-1922.
[http://dx.doi.org/10.1002/cmdc.201800402] [PMID: 30010248]
(h)Sathish, M.; Chetan Dushantrao, S.; Nekkanti, S.; Tokala, R.; Thatikonda, S.; Tangella, Y.; Srinivas, G.; Cherukommu, S.; Hari Krishna, N.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of DNA interactive C3-trans-cinnamide linked β-carboline conjugates as potential cytotoxic and DNA topoisomerase I inhibitors. Bioorg. Med. Chem., 2018, 26(17), 4916-4929.
[http://dx.doi.org/10.1016/j.bmc.2018.08.031] [PMID: 30172625]
(i)Nekkanti, S.; Pooladanda, V.; Veldandi, M.; Tokala, R.; Godugu, C.; Shankaraiah, N. Synthesis of 1, 2, 3-triazolo-fusedtetrahydro- β-carboline derivatives via 1, 3-dipolar cycloaddition reaction: Cytotoxicity evaluation and DNA-binding studies. Chemistry Select, 2017, 2, 7210-7221.
[http://dx.doi.org/10.1002/slct.201700620]
(j)Senwar, K.R.; Reddy, T.S.; Thummuri, D.; Sharma, P.; Naidu, V.G.M.; Srinivasulu, G.; Shankaraiah, N. Design, synthesis and apoptosis inducing effect of novel (Z)-3-(3′-methoxy-4′-(2-amino- 2-oxoethoxy)-benzylidene)indolin-2-ones as potential antitumour agents. Eur. J. Med. Chem., 2016, 118, 34-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.025] [PMID: 27128173]
(k)Kamal, A.; Sreekanth, K.; Shankaraiah, N.; Sathish, M.; Nekkanti, S.; Srinivasulu, V. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: Synthesis, DNA-binding affinity and cytotoxic activity. Bioorg. Chem., 2015, 59, 23-30.
[http://dx.doi.org/10.1016/j.bioorg.2015.01.002] [PMID: 25665519]
(l)Kamal, A.; Sreekanth, K.; Kumar, P.P.; Shankaraiah, N.; Balakishan, G.; Ramaiah, M.J.; Pushpavalli, S.N.C.V.L.; Ray, P.; Bhadra, M.P. Synthesis and potential cytotoxic activity of new phenanthrylphenol-pyrrolobenzodiazepines. Eur. J. Med. Chem., 2010, 45(6), 2173-2181.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.054] [PMID: 20171761]
[26]
(a)Zhang, X.; Lv, X.; Bi, F.; Lu, G.; Wang, Y. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors. Molecular Catalysis, 2020, 482, 110701.
[http://dx.doi.org/10.1016/j.mcat.2019.110701]
(b)Zhang, C.; Huang, H.; Li, G.; Wang, L.; Song, L.; Li, X. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts. Catal. Today, 2019, 327, 374-381.
[http://dx.doi.org/10.1016/j.cattod.2018.03.019]
[27]
Reddy, T.S.; Kulhari, H.; Reddy, V.G.; Bansal, V.; Kamal, A.; Shukla, R. Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem., 2015, 101, 790-805.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.031] [PMID: 26231080]
[28]
(a)Kasibhatla, S.; Amarante-Mendes, G.P.; Finucane, D.; Brunner, T.; Bossy-Wetzel, E.; Green, D.R. Acridine Orange/Ethidium Bromide (AO/EB) staining to detect apoptosis. Cold Spring Harbor Protocols, 2006, 2006M, pdb-prot4493..
(b)Kumar, N.P.; Sharma, P.; Kumari, S.S.; Brahma, U.; Nekkanti, S.; Shankaraiah, N.; Kamal, A. Synthesis of substituted phenanthrene- 9-benzimidazole conjugates: Cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2017, 140, 128-140.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.006] [PMID: 28923381]
(c)Sharma, P.; Thummuri, D.; Reddy, T.S.; Senwar, K.R.; Naidu, V.G.M.; Srinivasulu, G.; Bharghava, S.K.; Shankaraiah, N. New (E)-1-alkyl-1H-benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2016, 122, 584-600.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.019] [PMID: 27448916]
(d)Kumar, N.P.; Nekkanti, S.; Sujana Kumari, S.; Sharma, P.; Shankaraiah, N. Design and synthesis of 1,2,3-triazolo-phenanthrene hybrids as cytotoxic agents. Bioorg. Med. Chem. Lett., 2017, 27(11), 2369-2376.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.022] [PMID: 28431881]
[29]
(a)Tarnowski, B.I.; Spinale, F.G.; Nicholson, J.H. DAPI as a useful stain for nuclear quantitation. Biotech. Histochem., 1991, 66(6), 297-302.
[http://dx.doi.org/10.3109/10520299109109990] [PMID: 1725854]
(b)Otto, F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol., 1990, 33, 105-110.
[http://dx.doi.org/10.1016/S0091-679X(08)60516-6] [PMID: 1707478]
[30]
(a)Senwar, K.R.; Sharma, P.; Reddy, T.S.; Jeengar, M.K.; Nayak, V.L.; Naidu, V.G.M.; Kamal, A.; Shankaraiah, N. Spirooxindolederived morpholine-fused-1,2,3-triazoles: Design, synthesis, cytotoxicity and apoptosis inducing studies. Eur. J. Med. Chem., 2015, 102, 413-424.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.017] [PMID: 26301558]
(b)Carella, A.; Roviello, V.; Iannitti, R.; Palumbo, R.; La Manna, S.; Marasco, D.; Trifuoggi, M.; Diana, R.; Roviello, G.N. Evaluating the biological properties of synthetic 4-nitrophenyl functionalized benzofuran derivatives with telomeric DNA binding and antiproliferative activities. Int. J. Biol. Macromol., 2019, 121, 77-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.153] [PMID: 30261256]
[31]
Lakshmanan, I.; Batra, S.K. Protocol for apoptosis assay by flow cytometry using annexin-V staining method. Bio Protoc., 2013, 3(6), 374-376.
[http://dx.doi.org/10.21769/BioProtoc.374] [PMID: 27430005]
[32]
(a)Senwar, K.R.; Reddy, T.S.; Thummuri, D.; Sharma, P.; Bharghava, S.K.; Naidu, V.G.; Shankaraiah, N. Design and synthesis of 4′-O-alkylamino-tethered-benzylideneindolin-2-ones as potent cytotoxic and apoptosis inducing agents. Bioorg. Med. Chem. Lett., 2016, 26(16), 4061-4069.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.077] [PMID: 27397498]
(b)Eruslanov, E.; Kusmartsev, S. Identification of ROS using oxidized DCFDA and flow-cytometry. Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology (Methods and Protocols), 594; Humana Press: Totowa, NJ, 2010.
[33]
(a)Cossarizza, A.; Salvioli, S. Flow cytometric analysis of mitochondrial membrane potential using JC‐1. Curr. Protoc. Cytom., 2000, 13, 9-14.
[http://dx.doi.org/10.1002/0471142956.cy0914s13] [PMID: 18770751]
(b)Kulabaş, N.; Tatar, E.; Bingöl Özakpınar, Ö.; Özsavcı, D.; Pannecouque, C.; De Clercq, E.; Küçükgüzel, İ. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur. J. Med. Chem., 2016, 121, 58-70.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.017] [PMID: 27214512]
[34]
Tikhomirova, A.A.; Tcyrulnikov, N.A.; Wilson, R.M. Synthesis, characterization, DNA binding and cleaving properties of photochemically activated phenanthrene dihydrodioxin. J. Photochem. Photobiol. Chem., 2019, 380, 111803.
[http://dx.doi.org/10.1016/j.jphotochem.2019.04.014]]
[35]
Wang, L.; Wen, Y.; Liu, J.; Zhou, J.; Li, C.; Wei, C. Promoting the formation and stabilization of human telomeric G-quadruplex DNA, inhibition of telomerase and cytotoxicity by phenanthroline derivatives. Org. Biomol. Chem., 2011, 9(8), 2648-2653.
[http://dx.doi.org/10.1039/c0ob00961j] [PMID: 21347502]
[36]
(a)Schrödinger Release 2017-1: Schrödinger Suite 2017-1 Protein Preparation Wizard; Epik, Schrödinger , LLC, New York, NY, 2017; Impact, Schrödinger, LLC, New York, NY, 2017; LigPrep, Schrödinger, LLC, New York, NY, 2017; Prime, Schrödinger, LLC, New York, NY, 2017; QikProp, Schrödinger, LLC, New York, NY, 2017.
(b)Satyanarayana, S.; Dabrowiak, J.C.; Chaires, J.B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry, 1993, 32(10), 2573-2584.
[http://dx.doi.org/10.1021/bi00061a015] [PMID: 8448115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy