Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Tumor Suppressor Role of the Ras Association Domain Family 10

Author(s): Yulong Hou, Shuofeng Li, Wei Du, Hailong Li and Rumin Wen*

Volume 20, Issue 18, 2020

Page: [2207 - 2215] Pages: 9

DOI: 10.2174/1871520620666200714141906

Price: $65

Abstract

The Ras association domain family 10(RASSF10), a tumor suppressor gene, is located on human chromosome 11p15.2, which is one of the members homologous to other N-terminal RASSF families obtained through structural prediction. RASSF10 plays an important role in inhibiting proliferation, invasion, and migration, inducing apoptosis, making cancer cells sensitive to docetaxel, and capturing G2/M phase. Some studies have found that RASSF10 may inhibit the occurrence and development of tumors by regulating Wnt/β-catenin, P53, and MMP2. Methylation of tumor suppressor gene promoter is a key factor in the development and progression of many tumors. Various methylation detection methods confirmed that the methylation and downregulation of RASSF10 often occur in various tumors, such as gastric cancer, lung cancer, colon cancer, breast cancer, and leukemia. The status of RASSF10 methylation is positively correlated with tumor size, tumor type, and TNM stage. RASSF10 methylation can be used as a prognostic factor for overall survival and disease-free survival, and is also a sign of tumor diagnosis and sensitivity to docetaxel chemotherapy. In this review, we mainly elucidate the acknowledged structure and progress in the verified functions of RASSF10 and the probably relevant signaling pathways.

Keywords: RASSF10, tumor suppressor, promoter hypermethylation, therapeutic target, function, mechanism.

Graphical Abstract
[1]
Ponting, C.P.; Benjamin, D.R. A novel family of Ras-binding domains. Trends Biochem. Sci., 1996, 21(11), 422-425.
[http://dx.doi.org/10.1016/S0968-0004(96)30038-8] [PMID: 8987396]
[2]
Sherwood, V.; Recino, A.; Jeffries, A.; Ward, A.; Chalmers, A.D. The N-terminal RASSF family: A new group of Ras-association-domain-containing proteins, with emerging links to cancer formation. Biochem. J., 2009, 425(2), 303-311.
[http://dx.doi.org/10.1042/BJ20091318] [PMID: 20025613]
[3]
Saucedo, L.J.; Edgar, B.A. Filling out the Hippo pathway. Nat. Rev. Mol. Cell Biol., 2007, 8(8), 613-621.
[http://dx.doi.org/10.1038/nrm2221] [PMID: 17622252]
[4]
Rong, R.; Jin, W.; Zhang, J.; Sheikh, M.S.; Huang, Y. Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene, 2004, 23(50), 8216-8230.
[http://dx.doi.org/10.1038/sj.onc.1207901] [PMID: 15378022]
[5]
Shivakumar, L.; Minna, J.; Sakamaki, T.; Pestell, R.; White, M.A. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol. Cell. Biol., 2002, 22(12), 4309-4318.
[http://dx.doi.org/10.1128/MCB.22.12.4309-4318.2002] [PMID: 12024041]
[6]
Whang, Y.M.; Kim, Y.H.; Kim, J.S.; Yoo, Y.D. RASSF1A suppresses the c-Jun-NH2-kinase pathway and inhibits cell cycle progression. Cancer Res., 2005, 65(9), 3682-3690.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2792] [PMID: 15867363]
[7]
Liu, L.; Tommasi, S.; Lee, D.H.; Dammann, R.; Pfeifer, G.P. Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene, 2003, 22(50), 8125-8136.
[http://dx.doi.org/10.1038/sj.onc.1206984] [PMID: 14603253]
[8]
Baylin, S.B.; Herman, J.G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet., 2000, 16(4), 168-174.
[http://dx.doi.org/10.1016/S0168-9525(99)01971-X] [PMID: 10729832]
[9]
Agathanggelou, A.; Cooper, W.N.; Latif, F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res., 2005, 65(9), 3497-3508.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4088] [PMID: 15867337]
[10]
Rountree, M.R.; Bachman, K.E.; Herman, J.G.; Baylin, S.B. DNA methylation, chromatin inheritance, and cancer. Oncogene, 2001, 20(24), 3156-3165.
[http://dx.doi.org/10.1038/sj.onc.1204339] [PMID: 11420732]
[11]
Lock, F.E.; Underhill-Day, N.; Dunwell, T.; Matallanas, D.; Cooper, W.; Hesson, L.; Recino, A.; Ward, A.; Pavlova, T.; Zabarovsky, E.; Grant, M.M.; Maher, E.R.; Chalmers, A.D.; Kolch, W.; Latif, F. The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-kappaB signaling pathways. Oncogene, 2010, 29(30), 4307-4316.
[http://dx.doi.org/10.1038/onc.2010.192] [PMID: 20514026]
[12]
Li, Z.; Chang, X.; Dai, D.; Deng, P.; Sun, Q. RASSF10 is an epigenetically silenced tumor suppressor in gastric cancer. Oncol. Rep., 2014, 31(4), 1661-1668.
[http://dx.doi.org/10.3892/or.2014.3039] [PMID: 24573726]
[13]
Mutter, G.L.; Baak, J.P.; Fitzgerald, J.T.; Gray, R.; Neuberg, D.; Kust, G.A.; Gentleman, R.; Gullans, S.R.; Wei, L.J.; Wilcox, M. Global expression changes of constitutive and hormonally regulated genes during endometrial neoplastic transformation. Gynecol. Oncol., 2001, 83(2), 177-185.
[http://dx.doi.org/10.1006/gyno.2001.6352] [PMID: 11606070]
[14]
Dong, T.; Zhang, M.; Dong, Y.; Herman, J.G.; van Engeland, M.; Zhong, G.; Guo, M. Methylation of RASSF10 promotes cell proliferation and serves as a docetaxel resistant marker in human breast cancer. Discov. Med., 2015, 20(111), 261-271.
[PMID: 26645898]
[15]
Younesian, S.; Shahkarami, S.; Ghaffari, P.; Alizadeh, S.; Mehrasa, R.; Ghavamzadeh, A.; Ghaffari, S.H. DNA hypermethylation of tumor suppressor genes RASSF6 and RASSF10 as independent prognostic factors in adult acute lymphoblastic leukemia. Leuk. Res., 2017, 61, 33-38.
[http://dx.doi.org/10.1016/j.leukres.2017.08.016] [PMID: 28869817]
[16]
Underhill-Day, N.; Hill, V.; Latif, F. N-terminal RASSF family: RASSF7-RASSF10. Epigenetics, 2011, 6(3), 284-292.
[http://dx.doi.org/10.4161/epi.6.3.14108] [PMID: 21116130]
[17]
Schagdarsurengin, U.; Richter, A.M.; Wöhler, C.; Dammann, R.H. Frequent epigenetic inactivation of RASSF10 in thyroid cancer. Epigenetics, 2009, 4(8), 571-576.
[http://dx.doi.org/10.4161/epi.4.8.10056] [PMID: 19934646]
[18]
Hesson, L.B.; Dunwell, T.L.; Cooper, W.N.; Catchpoole, D.; Brini, A.T.; Chiaramonte, R.; Griffiths, M.; Chalmers, A.D.; Maher, E.R.; Latif, F. The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukaemias. Mol. Cancer, 2009, 8, 42.
[http://dx.doi.org/10.1186/1476-4598-8-42] [PMID: 19570220]
[19]
Mason, J.M.; Arndt, K.M. Coiled coil domains: stability, specificity, and biological implications. ChemBioChem, 2004, 5(2), 170-176.
[http://dx.doi.org/10.1002/cbic.200300781] [PMID: 14760737]
[20]
Grigoryan, G.; Keating, A.E. Structural specificity in coiled-coil interactions. Curr. Opin. Struct. Biol., 2008, 18(4), 477-483.
[http://dx.doi.org/10.1016/j.sbi.2008.04.008] [PMID: 18555680]
[21]
Wei, Z.; Chen, X.; Chen, J.; Wang, W.; Xu, X.; Cai, Q. RASSF10 is epigenetically silenced and functions as a tumor suppressor in gastric cancer. Biochem. Biophys. Res. Commun., 2013, 432(4), 632-637.
[http://dx.doi.org/10.1016/j.bbrc.2013.02.033] [PMID: 23428420]
[22]
Deng, J.; Liang, H.; Ying, G.; Li, H.; Xie, X.; Yu, J.; Fan, D.; Hao, X. Methylation of ras association domain protein 10 (RASSF10) promoter negative association with the survival of gastric cancer. Am. J. Cancer Res., 2014, 4(6), 916-923.
[PMID: 25520879]
[23]
Lu, D.; Ma, J.; Zhan, Q.; Li, Y.; Qin, J.; Guo, M. Epigenetic silencing of RASSF10 promotes tumor growth in esophageal squamous cell carcinoma. Discov. Med., 2014, 17(94), 169-178.
[PMID: 24759621]
[24]
Guo, J.; Yang, Y.; Yang, Y.; Linghu, E.; Zhan, Q.; Brock, M.V.; Herman, J.G.; Zhang, B.; Guo, M. RASSF10 suppresses colorectal cancer growth by activating P53 signaling and sensitizes colorectal cancer cell to docetaxel. Oncotarget, 2015, 6(6), 4202-4213.
[http://dx.doi.org/10.18632/oncotarget.2866] [PMID: 25638156]
[25]
Ma, J.; Zhang, S.; Hu, Y.; Li, X.; Yuan, F.; Sun, D.; Wang, L.; Zhang, F.; Chen, G.; Cui, P. Decreased expression of RASSF10 correlates with poor prognosis in patients with colorectal cancer. Medicine (Baltimore), 2017, 96(42)e7011
[http://dx.doi.org/10.1097/MD.0000000000007011] [PMID: 29049167]
[26]
Wang, F.; Li, P.; Feng, Y.; Hu, Y.L.; Liu, Y.F.; Guo, Y.B.; Jiang, X.L.; Mao, Q.S.; Xue, W.J. Low expression of RASSF10 is associated with poor survival in patients with colorectal cancer. Hum. Pathol., 2017, 62, 108-114.
[http://dx.doi.org/10.1016/j.humpath.2016.12.016] [PMID: 28041974]
[27]
Liu, W.; Wang, J.; Wang, L.; Qian, C.; Qian, Y.; Xuan, H.; Zhuo, W.; Li, X.; Yu, J.; Si, J. Ras-association domain family 10 acts as a novel tumor suppressor through modulating MMP2 in hepatocarcinoma. Oncogenesis, 2016, 5(6)e237
[http://dx.doi.org/10.1038/oncsis.2016.24] [PMID: 27348267]
[28]
Wang, F.; Feng, Y.; Li, P.; Wang, K.; Feng, L.; Liu, Y.F.; Huang, H.; Guo, Y.B.; Mao, Q.S.; Xue, W.J. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget, 2016, 7(4), 4279-4297.
[http://dx.doi.org/10.18632/oncotarget.6654] [PMID: 26701853]
[29]
Jin, Y.; Cao, B.; Zhang, M.; Zhan, Q.; Herman, J.G.; Yu, M.; Guo, M. RASSF10 suppresses hepatocellular carcinoma growth by activating P53 signaling and methylation of RASSF10 is a docetaxel resistant marker. Genes Cancer, 2015, 6(5-6), 231-240.
[PMID: 26124922]
[30]
Younesian, S.; Shahkarami, S.; Ghaffari, P.; Alizadeh, S.; Mehrasa, R.; Ghaffari, S.H. Residual methylation of tumor suppressor gene promoters, RASSF6 and RASSF10, as novel biomarkers for minimal residual disease detection in adult acute lymphoblastic leukemia. Ann. Hematol., 2019, 98(12), 2719-2727.
[http://dx.doi.org/10.1007/s00277-019-03775-y] [PMID: 31486880]
[31]
Richter, A.M.; Haag, T.; Walesch, S.; Herrmann-Trost, P.; Marsch, W.C.; Kutzner, H.; Helmbold, P.; Dammann, R.H. Aberrant Promoter Hypermethylation of RASSF Family Members in Merkel Cell Carcinoma. Cancers (Basel), 2013, 5(4), 1566-1576.
[http://dx.doi.org/10.3390/cancers5041566] [PMID: 24252868]
[32]
Richter, A.M.; Walesch, S.K.; Würl, P.; Taubert, H.; Dammann, R.H. The tumor suppressor RASSF10 is upregulated upon contact inhibition and frequently epigenetically silenced in cancer. Oncogenesis, 2012, 1e18
[http://dx.doi.org/10.1038/oncsis.2012.18] [PMID: 23552700]
[33]
Helmbold, P.; Richter, A.M.; Walesch, S.; Skorokhod, A.; Marsch, W.Ch.; Enk, A.; Dammann, R.H. RASSF10 promoter hypermethylation is frequent in malignant melanoma of the skin but uncommon in nevus cell nevi. J. Invest. Dermatol., 2012, 132(3 Pt 1), 687-694.
[http://dx.doi.org/10.1038/jid.2011.380] [PMID: 22113481]
[34]
Hill, V.K.; Underhill-Day, N.; Krex, D.; Robel, K.; Sangan, C.B.; Summersgill, H.R.; Morris, M.; Gentle, D.; Chalmers, A.D.; Maher, E.R.; Latif, F. Epigenetic inactivation of the RASSF10 candidate tumor suppressor gene is a frequent and an early event in gliomagenesis. Oncogene, 2011, 30(8), 978-989.
[http://dx.doi.org/10.1038/onc.2010.471] [PMID: 20956940]
[35]
Dansranjavin, T.; Wagenlehner, F.; Gattenloehner, S.; Steger, K.; Weidner, W.; Dammann, R.; Schagdarsurengin, U. Epigenetic down regulation of RASSF10 and its possible clinical implication in prostate carcinoma. Prostate, 2012, 72(14), 1550-1558.
[http://dx.doi.org/10.1002/pros.22510] [PMID: 22415519]
[36]
Han, X.; Dong, Q.; Wu, J.; Luo, Y.; Rong, X.; Han, Q.; Zheng, X.; Wang, E. RASSF10 suppresses lung cancer proliferation and invasion by decreasing the level of phosphorylated LRP6. Mol. Carcinog., 2019, 58(7), 1168-1180.
[http://dx.doi.org/10.1002/mc.23000] [PMID: 30834575]
[37]
Wang, Y.; Ma, T.; Bi, J.; Song, B.; Zhou, Y.; Zhang, C.; Gao, M. RASSF10 is epigenetically inactivated and induces apoptosis in lung cancer cell lines. Biomed. Pharmacother., 2014, 68(3), 321-326.
[http://dx.doi.org/10.1016/j.biopha.2013.12.005] [PMID: 24433832]
[38]
Xie, J.; Chen, Y.; Meng, F.; Shu, T.; Liu, Y.; Zhang, L.; Zhang, Z.X. Study on the relationship between the RASSF10 gene and the biological behavior of hepatocellular carcinoma cells. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(16), 3576-3580.
[PMID: 28925496]
[39]
Fan, C.; Wang, W.; Jin, J.; Yu, Z.; Xin, X. RASSF10 is epigenetically inactivated and suppresses cell proliferation and induces cell apoptosis by activating the p53 signalling pathway in papillary thyroid carcinoma cancer. Cell. Physiol. Biochem., 2017, 41(3), 1229-1239.
[http://dx.doi.org/10.1159/000464386] [PMID: 28268222]
[40]
Richter, A.M.; Walesch, S.K.; Dammann, R.H. Aberrant promoter methylation of the tumour suppressor RASSf10 and its growth inhibitory function in breast cancer. Cancers (Basel), 2016, 8(3)E26
[http://dx.doi.org/10.3390/cancers8030026] [PMID: 26927176]
[41]
Xue, W.J.; Feng, Y.; Wang, F.; Li, P.; Liu, Y.F.; Guo, Y.B.; Wang, Z.W.; Mao, Q.S. The value of serum RASSF10 hypermethylation as a diagnostic and prognostic tool for gastric cancer. Tumour Biol., 2016, 37(8), 11249-11257.
[http://dx.doi.org/10.1007/s13277-016-5001-6] [PMID: 26945573]
[42]
van Dongen, J.J.; van der Velden, V.H.; Brüggemann, M.; Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood, 2015, 125(26), 3996-4009.
[http://dx.doi.org/10.1182/blood-2015-03-580027] [PMID: 25999452]
[43]
Litwiniec, A.; Grzanka, A.; Helmin-Basa, A.; Gackowska, L.; Grzanka, D. Features of senescence and cell death induced by doxorubicin in A549 cells: organization and level of selected cytoskeletal proteins. J. Cancer Res. Clin. Oncol., 2010, 136(5), 717-736.
[http://dx.doi.org/10.1007/s00432-009-0711-4] [PMID: 19898866]
[44]
Dietrich, C.; Wallenfang, K.; Oesch, F.; Wieser, R. Differences in the mechanisms of growth control in contact-inhibited and serum-deprived human fibroblasts. Oncogene, 1997, 15(22), 2743-2747.
[http://dx.doi.org/10.1038/sj.onc.1201439] [PMID: 9401001]
[45]
Wu, H.; Medeiros, L.J.; Young, K.H. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev., 2018, 32(1), 8-28.
[http://dx.doi.org/10.1016/j.blre.2017.08.004] [PMID: 28802908]
[46]
Tamm, I.; Wang, Y.; Sausville, E.; Scudiero, D.A.; Vigna, N.; Oltersdorf, T.; Reed, J.C. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res., 1998, 58(23), 5315-5320.
[PMID: 9850056]
[47]
Aslan Koşar, P.; Tuncer, H.; Cihangir Uğuz, A.; Espino Palma, J.; Darıcı, H.; Onaran, İ.; Çiğ, B.; Koşar, A.; Rodriguez Moratinos, A.B. The efficiency of Poly(ADP-Ribose) Polymerase (PARP) cleavage on detection of apoptosis in an experimental model of testicular torsion. Int. J. Exp. Pathol., 2015, 96(5), 294-300.
[http://dx.doi.org/10.1111/iep.12137] [PMID: 26303136]
[48]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[49]
Müllers, E.; Silva Cascales, H.; Jaiswal, H.; Saurin, A.T.; Lindqvist, A. Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase. Cell Cycle, 2014, 13(17), 2733-2743.
[http://dx.doi.org/10.4161/15384101.2015.945831] [PMID: 25486360]
[50]
Stern, B.; Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet., 1996, 12(9), 345-350.
[http://dx.doi.org/10.1016/S0168-9525(96)80016-3] [PMID: 8855663]
[51]
Draetta, G.F. Mammalian G1 cyclins. Curr. Opin. Cell Biol., 1994, 6(6), 842-846.
[http://dx.doi.org/10.1016/0955-0674(94)90054-X] [PMID: 7880531]
[52]
Berthet, C.; Kaldis, P. Cdk2 and Cdk4 cooperatively control the expression of Cdc2. Cell Div., 2006, 1, 10.
[http://dx.doi.org/10.1186/1747-1028-1-10] [PMID: 16759374]
[53]
Murray, S.; Briasoulis, E.; Linardou, H.; Bafaloukos, D.; Papadimitriou, C. Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat. Rev., 2012, 38(7), 890-903.
[http://dx.doi.org/10.1016/j.ctrv.2012.02.011] [PMID: 22465195]
[54]
Armand, J.P. Focus on cellular pharmacology of docetaxel Bull. Cancer, 2003, 90(12), 1067-1070.
[PMID: 14715427]
[55]
Kang, S.; Sim, C.; Byrd, B.D.; Collins, F.H.; Hong, Y.S. Ex vivo promoter analysis of antiviral heat shock cognate 70B gene in Anopheles gambiae. Virol. J., 2008, 5, 136.
[http://dx.doi.org/10.1186/1743-422X-5-136] [PMID: 18986525]
[56]
Liao, T.T.; Yang, M.H. Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Mol. Oncol., 2017, 11(7), 792-804.
[http://dx.doi.org/10.1002/1878-0261.12096] [PMID: 28649800]
[57]
Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. Emt: 2016. Cell, 2016, 166(1), 21-45.
[http://dx.doi.org/10.1016/j.cell.2016.06.028] [PMID: 27368099]
[58]
Del Re, D.P.; Matsuda, T.; Zhai, P.; Gao, S.; Clark, G.J.; Van Der Weyden, L.; Sadoshima, J. Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice. J. Clin. Invest., 2010, 120(10), 3555-3567.
[http://dx.doi.org/10.1172/JCI43569] [PMID: 20890045]
[59]
Oceandy, D.; Pickard, A.; Prehar, S.; Zi, M.; Mohamed, T.M.; Stanley, P.J.; Baudoin-Stanley, F.; Nadif, R.; Tommasi, S.; Pfeifer, G.P.; Armesilla, A.L.; Cartwright, E.J.; Neyses, L. Tumor suppressor Ras-association domain family 1 isoform A is a novel regulator of cardiac hypertrophy. Circulation, 2009, 120(7), 607-616.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.868554] [PMID: 19652091]
[60]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[61]
Mohammed, M.K.; Shao, C.; Wang, J.; Wei, Q.; Wang, X.; Collier, Z.; Tang, S.; Liu, H.; Zhang, F.; Huang, J.; Guo, D.; Lu, M.; Liu, F.; Liu, J.; Ma, C.; Shi, L.L.; Athiviraham, A.; He, T.C.; Lee, M.J. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis., 2016, 3(1), 11-40.
[http://dx.doi.org/10.1016/j.gendis.2015.12.004] [PMID: 27077077]
[62]
Duchartre, Y.; Kim, Y.M.; Kahn, M. The Wnt signaling pathway in cancer. Crit. Rev. Oncol. Hematol., 2016, 99, 141-149.
[http://dx.doi.org/10.1016/j.critrevonc.2015.12.005] [PMID: 26775730]
[63]
John, R.R.; Malathi, N.; Ravindran, C.; Anandan, S. Mini review: Multifaceted role played by cyclin D1 in tumor behavior. Indian J. Dent. Res., 2017, 28(2), 187-192.
[http://dx.doi.org/10.4103/ijdr.IJDR_697_16] [PMID: 28611330]
[64]
Zeng, X.; Huang, H.; Tamai, K.; Zhang, X.; Harada, Y.; Yokota, C.; Almeida, K.; Wang, J.; Doble, B.; Woodgett, J.; Wynshaw-Boris, A.; Hsieh, J.C.; He, X. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development, 2008, 135(2), 367-375.
[http://dx.doi.org/10.1242/dev.013540] [PMID: 18077588]
[65]
Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002, 295(5564), 2387-2392.
[http://dx.doi.org/10.1126/science.1067100] [PMID: 11923519]
[66]
Roy, R.; Yang, J.; Moses, M.A. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol., 2009, 27(31), 5287-5297.
[http://dx.doi.org/10.1200/JCO.2009.23.5556] [PMID: 19738110]
[67]
Brooks, P.C.; Strömblad, S.; Sanders, L.C.; von Schalscha, T.L.; Aimes, R.T.; Stetler-Stevenson, W.G.; Quigley, J.P.; Cheresh, D.A. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell, 1996, 85(5), 683-693.
[http://dx.doi.org/10.1016/S0092-8674(00)81235-0] [PMID: 8646777]
[68]
Seftor, R.E.; Seftor, E.A.; Stetler-Stevenson, W.G.; Hendrix, M.J. The 72 kDa type IV collagenase is modulated via differential expression of alpha v beta 3 and alpha 5 beta 1 integrins during human melanoma cell invasion. Cancer Res., 1993, 53(14), 3411-3415.
[PMID: 7686818]
[69]
Yu, Q.; Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev., 2000, 14(2), 163-176.
[PMID: 10652271]
[70]
Hua, H.; Li, M.; Luo, T.; Yin, Y.; Jiang, Y. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell. Mol. Life Sci., 2011, 68(23), 3853-3868.
[http://dx.doi.org/10.1007/s00018-011-0763-x] [PMID: 21744247]
[71]
Murphy, G. Tissue inhibitors of metalloproteinases. Genome Biol., 2011, 12(11), 233.
[http://dx.doi.org/10.1186/gb-2011-12-11-233] [PMID: 22078297]
[72]
Hu, B.; Jarzynka, M.J.; Guo, P.; Imanishi, Y.; Schlaepfer, D.D.; Cheng, S.Y. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res., 2006, 66(2), 775-783.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1149] [PMID: 16424009]
[73]
Liu, Y.; Zhu, P.; Wang, Y.; Wei, Z.; Tao, L.; Zhu, Z.; Sheng, X.; Wang, S.; Ruan, J.; Liu, Z.; Cao, Y.; Shan, Y.; Sun, L.; Wang, A.; Chen, W.; Lu, Y. Antimetastatic therapies of the polysulfide diallyl trisulfide against Triple-Negative Breast Cancer (TNBC) via suppressing MMP2/9 by blocking NF-κB and ERK/MAPK signaling pathways. PLoS One, 2015, 10(4)e0123781
[http://dx.doi.org/10.1371/journal.pone.0123781] [PMID: 25927362]
[74]
Mon, N.N.; Hasegawa, H.; Thant, A.A.; Huang, P.; Tanimura, Y.; Senga, T.; Hamaguchi, M. A role for focal adhesion kinase signaling in tumor necrosis factor-alpha-dependent matrix metalloproteinase-9 production in a cholangiocarcinoma cell line, CCKS1. Cancer Res., 2006, 66(13), 6778-6784.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4159] [PMID: 16818654]
[75]
Zhao, J.; Guan, J.L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev., 2009, 28(1-2), 35-49.
[http://dx.doi.org/10.1007/s10555-008-9165-4] [PMID: 19169797]
[76]
Esparza, J.; Vilardell, C.; Calvo, J.; Juan, M.; Vives, J.; Urbano-Márquez, A.; Yagüe, J.; Cid, M.C. Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Blood, 1999, 94(8), 2754-2766.
[http://dx.doi.org/10.1182/blood.V94.8.2754.420k09_2754_2766] [PMID: 10515879]
[77]
Kolli-Bouhafs, K.; Boukhari, A.; Abusnina, A.; Velot, E.; Gies, J.P.; Lugnier, C.; Rondé, P. Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest. New Drugs, 2012, 30(6), 2121-2131.
[http://dx.doi.org/10.1007/s10637-011-9777-3] [PMID: 22170088]
[78]
Hong, J.; Zhou, J.; Fu, J.; He, T.; Qin, J.; Wang, L.; Liao, L.; Xu, J. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res., 2011, 71(11), 3980-3990.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2914] [PMID: 21502402]
[79]
Hipp, S.; Berg, D.; Ergin, B.; Schuster, T.; Hapfelmeier, A.; Walch, A.; Avril, S.; Schmalfeldt, B.; Höfler, H.; Becker, K.F. Interaction of Snail and p38 mitogen-activated protein kinase results in shorter overall survival of ovarian cancer patients. Virchows Arch., 2010, 457(6), 705-713.
[http://dx.doi.org/10.1007/s00428-010-0986-5] [PMID: 20957493]
[80]
Leng, R.; Liao, G.; Wang, H.; Kuang, J.; Tang, L. Rac1 expression in epithelial ovarian cancer: effect on cell EMT and clinical outcome. Med. Oncol., 2015, 32(2), 329.
[http://dx.doi.org/10.1007/s12032-014-0329-5] [PMID: 25585684]
[81]
Wei, J.; Li, Z.; Chen, W.; Ma, C.; Zhan, F.; Wu, W.; Peng, Y. AEG-1 participates in TGF-beta1-induced EMT through p38 MAPK activation. Cell Biol. Int., 2013, 37(9), 1016-1021.
[http://dx.doi.org/10.1002/cbin.10125] [PMID: 23640911]
[82]
Lane, D.; Levine, A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol., 2010, 2(12)a000893
[http://dx.doi.org/10.1101/cshperspect.a000893] [PMID: 20463001]
[83]
Levav-Cohen, Y.; Goldberg, Z.; Tan, K.H.; Alsheich-Bartok, O.; Zuckerman, V.; Haupt, S.; Haupt, Y. The p53-Mdm2 loop: a critical juncture of stress response. Subcell. Biochem., 2014, 85, 161-186.
[http://dx.doi.org/10.1007/978-94-017-9211-0_9] [PMID: 25201194]
[84]
Fang, S.; Jensen, J.P.; Ludwig, R.L.; Vousden, K.H.; Weissman, A.M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem., 2000, 275(12), 8945-8951.
[http://dx.doi.org/10.1074/jbc.275.12.8945] [PMID: 10722742 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy