Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Photocatalytic Bacteria Inactivation by TiO2-Ag based Photocatalysts and the Effect on Antibiotic Resistance Profile

Author(s): Can B. Ozkal* and Süreyya Meric

Volume 17, Issue 1, 2021

Published on: 11 July, 2020

Page: [98 - 106] Pages: 9

DOI: 10.2174/1573411016999200711145845

Price: $65

Abstract

Background: In the last decade, research in the field of contaminants of emerging concern proliferated while special interest was focused on antibiotic-resistant bacteria, antibiotic resistance genes as widespread pollutants. Advanced oxidation processes have gained an essential attraction in the field of antibiotics degradation and bacteria inactivation

Methods: Photocatalysts in the form of sol-gel based TiO2-Ag-xerogel and green synthesized nanocomposites TiO2-Ag compared with regard to their bacteria inactivation performances and effect on antibiotic resistance behaviour of target strain. Experiments were carried out at parallel plate reactor configuration under UV-A irradiation with an energy equivalent of solar conditions. PEG 600 and Cydonia oblanga seed extract were used as chemical and bio-chemical reducing-stabilizing agents respectively for the synthesis of TiO2-Ag nano-composite.

Results: Photocatalyst type/size based alterations in antibiotic resistance profile of intact and post treatment bacteria cells were examined. Besides the improvement in bacteria inactivation kinetics, photocatalytic disinfection with Ag doped xerogels and TiO2-Ag nanocomposites have triggered alterations on E.coli DSM-498 resistance to tetracycline and aminoglycoside antibiotics.

Conclusion: Cydonia oblanga seed extract is proved to be a promising green substitute for the TiO2- Ag chemical synthesis procedure. Considering the aspects of the economic and environmental impact of nano-composite photocatalyst synthesis, cost reduction is achievable both in the sense of production and disposal. The complexity of water matrix must be considered in a way to determine the wide range applicability of the green synthesis of a nano-composite at the pilot scale.

Keywords: Ag-TiO2 nanocomposite, antibiotic resistance, antibiotics, E. coli, green synthesis, photocatalysis, xerogels.

Graphical Abstract
[1]
Rincón, A.G.; Pulgarin, C. Absence of E. Coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in cpc solar photoreactor. Catal. Today, 2007, 124(3-4), 204-214.
[http://dx.doi.org/10.1016/j.cattod.2007.03.039]
[2]
Carbonaro, S.; Sugihara, M.N.; Strathmann, T.J. Continuous-Flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent. Appl. Catal. B, 2013, 129, 1-12.
[http://dx.doi.org/10.1016/j.apcatb.2012.09.014]
[3]
Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, J.M.; Malato, S.; Maldonado, M.I. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl. Catal. B, 2011, 103(3-4), 294-301.
[http://dx.doi.org/10.1016/j.apcatb.2011.01.030]
[4]
Özkal, C.B.; Mantzavinos, D.; Meriç, S. Photocatalytic activity based-optimization of ttip thin films for E. coli inactivation: Effect of Mn and Cu dopants. Catal. Today, 2017, 280, 1-10.
[5]
Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev., 2016, 3(2), 55-67.
[http://dx.doi.org/10.1002/cben.201500018]
[6]
Zia, F.; Ghafoor, N.; Iqbal, M.; Mehboob, S. Green synthesis and characterization of silver nanoparticles using cydonia oblong seed extract. Appl. Nanosci., 2016, 6(7), 1023-1029.
[http://dx.doi.org/10.1007/s13204-016-0517-z]
[7]
Sirisuk, A.; Hill, C.G.; Anderson, M.A. Photocatalytic degradation of ethylene over thin films of titania supported on glass rings. Catal. Today, 1999, 54(1), 159-164.
[http://dx.doi.org/10.1016/S0920-5861(99)00177-7]
[8]
Tian, J.; Ernst, M.; Cui, F.; Jekel, M. Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions. J. Membr. Sci., 2013, 446, 1-9.
[http://dx.doi.org/10.1016/j.memsci.2013.06.016]
[9]
Priyono, B.; Syahrial, A.Z.; Yuwono, A.H.; Kartini, E.; Marfelly, M.; Rahmatulloh, W.M.F. Synthesis of lithium titanate (Li4Ti5O12) through hydrothermal process by using lithium Hydroxide (LiOH) and Titanium Dioxide (TiO2). Xerogel. Int. J. Technol., 2015, 1, 555-564.
[10]
Su, W.; Wei, S.S.; Hu, S.Q.; Tang, J.X. Preparation of TiO(2)/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol. J. Hazard. Mater., 2009, 172(2-3), 716-720.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.056] [PMID: 19674837]
[11]
Ribeiro, R.S.; Frontistis, Z.; Mantzavinos, D.; Venieri, D.; Antonopoulou, M.; Konstantinou, I.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Magnetic carbon xerogels for the catalytic wet peroxide oxidation of sulfamethoxazole in environmentally relevant water matrices. Appl. Catal. B, 2016, 199, 170-186.
[http://dx.doi.org/10.1016/j.apcatb.2016.06.021]
[12]
Venieri, D.; Bikouvaraki, M.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Solar photocatalysis as disinfection technique: Inactivation of Klebsiella Pneumoniae in Sewage and Investigation of Changes in Antibiotic Resistance pro Fi Le 2016, 1-8.
[13]
Özkal, C.B.; Venieri, D.; Gounaki, I.; Meric, S. Assessment of thin-film photocatalysis inactivation of different bacterial indicators and effect on their antibiotic resistance profile. Appl. Catal. B, 2019, 244, 612-619.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.095]
[14]
León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-Methoxyestradiol. Appl. Sci. (Basel), 2017, 7(1), 1-9.
[http://dx.doi.org/10.3390/app7010049]
[15]
Spasiano, D.; Marotta, R.; Malato, S. Fernandez-Ibanez, P.; Di Somma, I. Solar Photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B, 2015, 170-171, 90-123.
[http://dx.doi.org/10.1016/j.apcatb.2014.12.050]
[16]
Xiao-Quan, C.; Huan-Bin, L.; Guo-Bang, G. Preparation of Nanometer Crystalline TiO2 with high photo-catalytic activity by pyrolysis of titanyl organic compounds and photo-catalytic mechanism. Mater. Chem. Phys., 2005, 91(2-3), 317-324.
[http://dx.doi.org/10.1016/j.matchemphys.2004.11.030]
[17]
Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine (Lond.), 2009, 5(4), 382-386.
[http://dx.doi.org/10.1016/j.nano.2009.06.005] [PMID: 19616127]
[18]
Akhtar, M.S.; Panwar, J.; Yun, Y-S. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem.& Eng., 2013, 1(6), 591-602.
[http://dx.doi.org/10.1021/sc300118u]
[19]
Jain, D.; Daima, H.K.; Kachhwaha, S.; Kothari, S.L. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig. J. Nanomater. Biostruct., 2009, 4(3), 557-563.
[20]
Suriyakalaa, U.; Antony, J.J.; Suganya, S.; Siva, D.; Sukirtha, R.; Kamalakkannan, S.; Pichiah, P.B.T.; Achiraman, S. Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculata. Colloids Surf. B Biointerfaces, 2013, 102, 189-194.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.039] [PMID: 23018020]
[21]
Jegadeeswaran, P.; Rajiv, P.; Vanathi, P.; Rajeshwari, S.; Venckatesh, R. A novel green technology: Synthesis and characterization of Ag/TiO2 nanocomposites using padina tetrastromatica (Seaweed) extract. Mater. Lett., 2016, 166, 137-139.
[22]
Atarod, M.; Nasrollahzadeh, M.; Sajadi, S.M. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci., 2016, 462, 272-279.
[23]
Liu, C.P.; Tao, Y.U.; Xin, T.A.N. Xerogel Solvothermal in Different Alcohols of Cu and N Codoped TiO2 Powders: Characterization photocatalytic oxidation of acetone. Mater. Sci., 2018, 24(4), 443-447.
[24]
Verma, A.; Srivastava, A.K.; Karar, N.; Chander, H.; Agnihotry, S.A. Microstructural characteristics and photoluminescence performance of nanograined thermally treated CeO 2-TiO 2 Xerogels. J. Mater. Res., 2007, 22(5), 1182-1187.
[http://dx.doi.org/10.1557/jmr.2007.0172]
[25]
Sui, R.; Rizkalla, A.S.; Charpentier, P.A. FTIR study on the formation of TiO2 nanostructures in supercritical CO2. J. Phys. Chem. B, 2006, 110(33), 16212-16218.
[http://dx.doi.org/10.1021/jp0570521] [PMID: 16913745]
[26]
García-Serrano, J.; Gómez-Hernández, E.; Ocampo-Fernández, M.; Pal, U. Effect of Ag doping on the crystallization and phase transition of TiO2 Nanoparticles. Curr. Appl. Phys., 2009, 9(5), 1097-1105.
[http://dx.doi.org/10.1016/j.cap.2008.12.008]
[27]
Venieri, D.; Gounaki, I.; Bikouvaraki, M.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Solar photocatalysis as disinfection technique: Inactivation of klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile. J. Environ. Manage., 2016, 1, 1-8.
[PMID: 27316624]
[28]
Page, K.; Palgrave, R.G.; Parkin, I.P.; Wilson, M.; Savin, S.L.P.; Chadwick, A.V. Titania and silver-titania composite films on glass-potent antimicrobial coatings. J. Mater. Chem., 2007, 17(1), 95-104.
[http://dx.doi.org/10.1039/B611740F]
[29]
Veréb, G.; Manczinger, L.; Bozsó, G.; Sienkiewicz, A.; Forró, L.; Mogyorósi, K.; Hernádi, K.; Dombi, A. Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase tio2 photocatalysts under visible light for phenol degradation and E. coli inactivation. Appl. Catal. B, 2013, 129, 566-574.
[http://dx.doi.org/10.1016/j.apcatb.2012.09.045]
[30]
Wang, W.; Yu, Y.; An, T.; Li, G.; Yip, H.Y.; Yu, J.C.; Wong, P.K. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: Bactericidal performance and mechanism. Environ. Sci. Technol., 2012, 46(8), 4599-4606.
[http://dx.doi.org/10.1021/es2042977] [PMID: 22428729]
[31]
Venieri, D.; Fraggedaki, A.; Kostadima, M.; Chatzisymeon, E.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Solar Light and Metal-Doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Appl. Catal. B, 2014, 154, 93-101.
[http://dx.doi.org/10.1016/j.apcatb.2014.02.007]
[32]
Xiong, R.; Xie, G.; Edmondson, A.E.; Sheard, M.A. A mathematical model for bacterial inactivation. Int. J. Food Microbiol., 1999, 46(1), 45-55.
[http://dx.doi.org/10.1016/S0168-1605(98)00172-X] [PMID: 10050684]
[33]
Marugán, J.; van Grieken, R.; Cassano, A.E.; Alfano, O.M. Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-Supported TiO 2 suspensions. Appl. Catal. B, 2008, 85(1), 48-60.
[http://dx.doi.org/10.1016/j.apcatb.2008.06.026]
[34]
Ma, Y.; Metch, J.W.; Yang, Y.; Pruden, A.; Zhang, T. Shift in antibiotic resistance gene profiles associated with nanosilver during wastewater treatment. FEMS Microbiol. Ecol., 2016, 92(3)fiw022
[http://dx.doi.org/10.1093/femsec/fiw022] [PMID: 26850160]
[35]
European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoints - breakpoints and guidance, http://www.eucast.org/clinical breakpoints/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy