Emerging Aspects of Photo-catalysts (TiO2 & ZnO) Doped Zeolites and Advanced Oxidation Processes for Degradation of Azo Dyes: A Review

Author(s): Syed M. Hussain, Tabassum Hussain, Moeen Faryad, Qasim Ali, Shafaqat Ali, Muhammad Rizwan, Abdullah I. Hussain, Madhumita B. Ray*, Shahzad A.S. Chatha*

Journal Name: Current Analytical Chemistry

Volume 17 , Issue 1 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Azo dyes are recognized as non-decomposable and recalcitrant compounds and can be depleted into more dangerous secondary products in anaerobic environments. In the current scenario, different water treatment strategies, including adsorption, photocatalysis, and advanced oxidation processes based practices, are facing different limitations.

Methods: A literature survey was accomplished by searching the scientific data from different search engines, including Scopus, PubMed, Science Direct, Springer, Taylor and Francis, Google Scholar, Blackwell-Synergy, Wiley-Interscience and Research-Gate, etc. This article has been compiled after intensively reviewing about 231 research papers, reviews, and book chapters in the fields of industrial effluents, hazardous materials, and water treatment strategies with their advantages and limitations.

Results: Molecular oxygen and other active species, such as O2•−, HO2•, H2O2, and •OH, play a significant role in the degradation of dyes in AOPs and photocatalyst utilizes sunlight energy and accelerates some chemical reactions depending upon the activation energies. Different reaction parameters, including calcination temperature, pH, initial dye concentration, and catalyst dosage, have a significant impact on photocatalytic degradation performance. Characterization of degradation processes of dye-stuffs could be carried out by the state-of-the-art analytical techniques i.e. UV-Visible spectroscopy, powdered XRD, FTIR (ATR), EDX-SEM, BET, and differential pulse voltammetry. GC-MS and LC-MS investigation of photodegradation by-products and intermediates could provide identification and possible degradation pathway for target dye molecules. This review covers research related to photocatalytic degradation of azo dyes by TiO2 and ZnO, widely used photocatalysts, and various combinations of zeolites.

Conclusion: It can be concluded that the combination of nano-sorbents (Fly Ash Zeolites) and photocatalysts not only enhances the degradation but also effectively removes toxic dye molecules and their by-products. The review explains the suitability of synergic applications of catalysts (TiO2, ZnO) and catalytic bed (zeolites) for different industrial effluents and waste water treatment at a significant pace towards green technology.

Keywords: Dyes degradation, oxidation, photo-catalysis, TiO2, zeolites, ZnO.

Chen, F.; Li, Y.; Cai, W.; Zhang, J. Preparation and sono-Fenton performance of 4A-zeolite supported α-Fe2O3). J. Hazard. Mater., 2010, 177(1-3), 743-749.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.094 PMID: 20080341]
Clarke, E.A.; Anliker, R. Anliker, Organic dyes and pigments Anthropogenic compounds Springer Berlin Heidelberg, , 181-215.1980
Denise, A.; Fungaro, I. Sueli, Borrely, E.M. Terezinha, Carvalho, Surfactant modified zeolite from cyclone ash as adsorbent for removal of reactive orange 16 from aqueous solution. Am. J. Environ. Protect., 2013, 1, 1-9.
Anon, German ban of use of certain azo compounds in some consumer goods. Ecological and toxicological association of dyes and pigments manufacturers Textile Chemists Colourists. ETAD., 1996, 11, 6-28. Information Notice no , 1996, 11, 6-28. Information Notice no 6-28(4)
Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res., 1983, 113(3-4), 173-215.
[http://dx.doi.org/10.1016/0165-1161(83)90010-9 PMID: 6341825]
Prival, M.J.; Bell, S.J.; Mitchell, V.D.; Peiperl, M.D.; Vaughan, V.L. Mutagenicity of benzidine and benzidine-congener dyes and selected monoazo dyes in a modified Salmonella assay. Mutat. Res., 1984, 136(1), 33-47.
[http://dx.doi.org/10.1016/0165-1218(84)90132-0 PMID: 6371512]
Hsueh, C.L.; Huang, Y.H.; Wang, C.C.; Chen, C.Y. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 2005, 58(10), 1409-1414.
[http://dx.doi.org/10.1016/j.chemosphere.2004.09.091 PMID: 15686759]
Cho, I.H.; Zoh, K.D. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modelling using a response surface methodology (RSM) based on the central composite design. Dyes Pigments, 2007, 75, 533-543.
Velmurugan, R.; Krishnakumar, B.; Swaminathan, M. Synthesis of Pd Co-doped nano-TiO2-SO42-and its synergetic effect on the solar photodegradation of Reactive Red 120 dye. Mater. Sci. Semicond. Process., 2014, 25, 163-172.
FDA. Compliance Program Guidance Manual, 2010.
Rasalingam, S.; Wu, C.M.; Koodali, R.T. Modulation of pore sizes of titanium dioxide photocatalysts by a facile template free hydrothermal synthesis method: implications for photocatalytic degradation of rhodamine B. ACS Appl. Mater. Interfaces, 2015, 7(7), 4368-4380.
[http://dx.doi.org/10.1021/am508883f PMID: 25633643]
Zhang, L.; Li, H.; Liu, Y.; Tian, Z.; Yang, B.; Sun, Z.; Yan, S. Adsorption-photocatalytic degradation of methyl orange over a facile one-step hydrothermally synthesized TiO2/ZnO-NH2-RGO nanocomposite. RSC Advances, 2014, 4, 48703-48711.
Kuriakose, S.; Choudhary, V.; Satpati, B.; Mohapatra, S. Facile synthesis of Ag-ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange. Phys. Chem. Chem. Phys., 2014, 16(33), 17560-17568.
[http://dx.doi.org/10.1039/C4CP02228A PMID: 25025425]
Liu, J.; Zhang, L.; Li, N.; Tian, Q.; Zhou, J.; Sun, Y. Synthesis of MoS2/SrTiO3 composite materials for enhanced photocatalytic activity under UV irradiation. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 706-712.
Al-Qaradawi, S.; Salman, S.R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. Chem., 2002, 148, 161-168.
Wakimoto, R.; Kitamura, T.; Ito, F.; Usami, H.; Moriwaki, H. Decomposition of methyl orange using C-60 fullerene adsorbed on silica gel as a photocatalyst via visible-light induced electron transfer. Appl. Catal. B, 2015, 166, 544-550.
Brüschweiler, B.J.; Küng, S.; Bürgi, D.; Muralt, L.; Nyfeler, E. Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles. Regul. Toxicol. Pharmacol., 2014, 69(2), 263-272.
[http://dx.doi.org/10.1016/j.yrtph.2014.04.011 PMID: 24793261]
Brown, M.A.; De Vito, S.C. De Vito. Predicting azo dye toxicity. Crit. Rev. Environ. Sci. Technol., 1993, 23, 249-324.
Longstaff, E. An assessment and categorisation of the animal carcinogenicity data on selected dyestuffs and an extrapolation of those data to an evaluation of the relative carcinogenic risk to man. Dyes Pigments, 1983, 4, 243-304.
Enoch, S.J.; Cronin, M.T.D. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit. Rev. Toxicol., 2010, 40(8), 728-748.
[http://dx.doi.org/10.3109/10408444.2010.494175 PMID: 20722585]
Zouari-Mechichi, H.; Mechichi, T.; Dhouib, A.; Sayadi, S.; Martínez, A.T.; Martinez, M.J. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb. Technol., 2006, 39, 141-148.
Rodríguez Couto, S.; Sanromán, M.; Gübitz, G.M. Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. Chemosphere, 2005, 58(4), 417-422.
[http://dx.doi.org/10.1016/j.chemosphere.2004.09.033 PMID: 15620733]
Ghoreishi, S.M.; Haghighi, R. Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chem. Eng. J., 2003, 95, 163-169.
Ben-Moshe, T.; Dror, I.; Berkowitz, B. Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts. Appl. Catal. B, 2009, 85, 207-211.
Kasiri, M.B.; Aleboyeh, H.; Aleboyeh, A. Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Appl. Catal. B, 2008, 84, 9-15.
Gharbani, P.; Khosravi, M.; Tabatabaii, S.M.; Zare, K.; Dastmalchi, S.; Mehrizad, A. Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone. Int. J. Environ. Sci. Technol., 2010, 7, 377-384.
Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: a review. Environ. Int., 2004, 30(7), 953-971.
[http://dx.doi.org/10.1016/j.envint.2004.02.001 PMID: 15196844]
Herrmann, J.M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 1999, 53, 115-129.
Huang, M.; Xu, C.; Wu, Z.; Huang, Y.; Lin, J.; Wu, J. Photocatalytic discolorization of methyl-orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments, 2008, 77, 327-334.
Wong, C.C.; Chu, W. The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources. Chemosphere, 2003, 50(8), 981-987.
[http://dx.doi.org/10.1016/S0045-6535(02)00640-9 PMID: 12531703]
Al-Momani, F.; Touraud, E.; Degorce-Dumas, J.R.; Roussy, J.; Thomas, O. Biodegradability enhancement of textile dyes and textile wastewater by UV photolysis. J. Photochem. Photobiol. Chem., 2002, 153, 191-197.
Mills, A.; Le Hunte, S. An overview of semi-conductor photocatalysis, Journal ofPhotochemistry and Photobiology A. Chemistry, 1997, 108, 1-35.
Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem., 2004, 32, 33-177.
Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal. B, 2004, 49, 1-14.
Neppolian, B.; Mine, S.; Horiuchi, Y.; Bianchi, C.L.; Matsuoka, M.; Dionysiou, D.D.; Anpo, M. Efficient photocatalytic degradation of organics present in gas and liquid phases using Pt-TiO2/Zeolite (H-ZSM). Chemosphere, 2016, 153, 237-243.
[http://dx.doi.org/10.1016/j.chemosphere.2016.03.063 PMID: 27016820]
Kaneko, M.; Okura, I. Photocatalysis Science and Technology, Springer, Japan. J. Alloys Compd., 2002, 509, 1648-1660.
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semi-conductor photocatalysis. Chem. Rev., 1995, 95, 69-96.
Tang, W.Z.H. an Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution. Chemosphere, 1995, 31, 4171-4183.
Gerven, T.V.; Mul, G.; Moulijn, J.; Stankiewicz, A. A review of intensification of photocatalytic processes. Chem. Eng. Process., 2007, 46, 781-789.
Stafford, U.; Gray, K.A.; Kamat, P.V. Photocatalytic degradation of organic contaminants: Halophenols and related model compounds. Heterogeneous Chem. Rev., 1996, 3, 77-104.
Linsebigler, A.L.; Lu, G.; Yates, J.T. Jr Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95, 735-758.
Chen, L.C.; Chou, T.C. Photo decolorization of methyl orange using silver ion modified TiO2 as photocatalyst. Ind. Eng. Chem. Res., 1994, 33, 1436-1443.
Li, Y.; Li, X.; Li, J.; Yin, J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res., 2006, 40(6), 1119-1126.
[http://dx.doi.org/10.1016/j.watres.2005.12.042 PMID: 16503343]
Wang, X.H.; Li, J.G.; Kamiyama, H.; Moriyoshi, Y.; Ishigaki, T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B, 2006, 110(13), 6804-6809.
[http://dx.doi.org/10.1021/jp060082z PMID: 16570988]
Augugliaro, V.; Baiocchi, C.; Prevot, A.B.; García-López, E.; Loddo, V.; Malato, S.; Marcí, G.; Palmisano, L.; Pazzi, M.; Pramauro, E. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere, 2002, 49(10), 1223-1230.
[http://dx.doi.org/10.1016/S0045-6535(02)00489-7 PMID: 12489718]
Sleiman, M.; Vildozo, D.; Ferronato, C.; Chovelon, J.M. Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach. Appl. Catal. B, 2007, 77, 1-11.
Reddy, M.P.; Venugopal, A.; Subrahmanyam, M. Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension. Appl. Catal. B, 2007, 69, 164-170.
Chakrabarti, S.; Dutta, B.K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semi-conductor catalyst. J. Hazard. Mater., 2004, 112(3), 269-278.
[http://dx.doi.org/10.1016/j.jhazmat.2004.05.013 PMID: 15302448]
Saquib, M.; Tariq, M.A.; Faisal, M.; Muneer, M. Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination, 2008, 219, 301-311.
Silva, C.G.; Wang, W.; Faria, J.L. Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation. J. Photochem. Photobiol. A Chem., 2006, 181, 314-324.
Su, C.; Hong, B.Y.; Tseng, C.M. Sol-gel preparation and photocatalysis of titanium dioxide. Catal. Today, 2004, 96, 119-126.
Stylidi, M.; Kondarides, D.I.; Verykios, X.E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Appl. Catal. B, 2004, 47, 189-201.
Sun, J.; Wang, X.; Sun, J.; Sun, R.; Sun, S.; Qiao, L. Photocatalytic degradation and kinetics of orange G using nano-sized Sn (IV)/TiO2/AC photocatalyst, Journal ofMolecular Catalysis A. Chemical, 2006, 260, 241-246.
Madhavan, J.; Maruthamuthu, P.; Murugesan, S.; Anandan, S. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent. Appl. Catal. B, 2008, 83, 8-14.
Franco, A.; Neves, M.C.; Carrott, M.M.; Mendonça, M.H.; Pereira, M.I.; Monteiro, O.C. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. J. Hazard. Mater., 2009, 161(1), 545-550.
[http://dx.doi.org/10.1016/j.jhazmat.2008.03.133 PMID: 18495340]
Janus, M.; Morawski, A.W. New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition. Appl. Catal. B, 2007, 75, 118-123.
Wilcoxon, J.P.; Thurston, T.R.; Martin, J.E. Applications of metal and semi-conductor nanoclusters as thermal and photo-catalysts. Nanostruct. Mater., 1999, 12, 993-997.
Liotta, L.F.; Gruttadauria, M.; Di Carlo, G.; Perrini, G.; Librando, V. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J. Hazard. Mater., 2009, 162(2-3), 588-606.
[http://dx.doi.org/10.1016/j.jhazmat.2008.05.115 PMID: 18586389]
Ikehata, K.; El-Din, M.G. Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: A review. J. Environ. Eng. Sci., 2006, 5, 81-135.
Marci, G.; Sclafani, A.; Augugliaro, V.; Palmisano, L.; Schiavello, M. Influence of some aromatic and aliphatic compounds on the rate of photodegradation of phenol in aqueous suspensions of TiO2. J. Photochem. Photobiol. Chem., 1995, 89, 69-74.
Di Paola, A.; Garcia-Lopez, E.; Ikeda, S.; Marci, G.; Ohtani, B.; Palmisano, L. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal. Today, 2002, 75, 87-93.
Dubrovinsky, L.; Sharp, T.G.; Saxena, S.K.; Chen, M.; Chen, M. El Goresy A. A monoclinic post-stishovite polymorph of silica in the shergotty meteorite. Science, 2000, 288(5471), 1632-1635.
[http://dx.doi.org/10.1126/science.288.5471.1632 PMID: 10834840]
El Goresy, A.; Chen, M.; Gillet, P.; Dubrovinsky, L.; Graup, G.; Ahuja, R. A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany. Earth Planet. Sci. Lett., 2001, 192, 485-495.
Winkler, J.T.; Bohling, M.W.; Tillson, D.M.; Wright, J.C.; Ballagas, A.J. Portosystemic shunts: diagnosis, prognosis, and treatment of 64 cases (1993–2001). J. Am. Anim. Hosp. Assoc., 2003, 39, 169-185.
Meacock, G.; Taylor, K.D.; Knowles, M.J.; Himonides, A. Himonides. The improved whitening of minced cod flesh using dispersed titanium dioxide. J. Sci. Food Agric. 73, 1997, 221-225.
Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L. Photocatalysis: a promising route for 21st century organic chemistry. Chem. Commun. , 2007, 1(33), 3425-3437.
[http://dx.doi.org/10.1039/b700395c PMID: 17700873]
Shahmoradi, B.; Soga, K.; Ananda, S.; Somashekar, R.; Byrappa, K. Modification of neodymium-doped ZnO hybrid nanoparticles under mild hydrothermal conditions. Nanoscale, 2010, 2(7), 1160-1164.
[http://dx.doi.org/10.1039/c0nr00069h PMID: 20648343]
Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res., 2010, 44(10), 2997-3027.
[http://dx.doi.org/10.1016/j.watres.2010.02.039 PMID: 20378145]
Hu, K.; Xiao, X.; Cao, X.; Hao, R.; Zuo, X.; Zhang, X.; Nan, J. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor. J. Hazard. Mater., 2011, 192, 514-520.
Zhang, X.; Pan, J.H.; Du, A.J.; Fu, W.; Sun, D.D.; Leckie, J.O. Combination of one-dimensional TiO(2) nanowire photocatalytic oxidation with microfiltration for water treatment. Water Res., 2009, 43(5), 1179-1186.
[http://dx.doi.org/10.1016/j.watres.2008.12.021 PMID: 19157486]
Hu, A.; Zhang, X.; Oakes, K.D.; Peng, P.; Zhou, Y.N.; Servos, M.R. Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J. Hazard. Mater., 2011, 189(1-2), 278-285.
[http://dx.doi.org/10.1016/j.jhazmat.2011.02.033 PMID: 21377796]
Barka, N.; Qourzal, S.; Assabbane, A.; Nounah, A.; Ait-Ichou, Y. Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper. J. Photochem. Photobiol. Chem., 2008, 195, 346-351.
Albu, S.P.; Ghicov, A.; Macak, J.M.; Hahn, R.; Schmuki, P. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett., 2007, 7(5), 1286-1289.
[http://dx.doi.org/10.1021/nl070264k PMID: 17455983]
Sato, S.; White, J.M. Photodecomposition of water over Pt/TiO2 catalysts. Chem. Phys. Lett., 1980, 72, 83-86.
Takeda, N.; Ohtani, M.; Torimoto, T.; Kuwabata, S.; Yoneyama, H. Evaluation of diffusibility of adsorbed propionaldehyde on titanium dioxide-loaded adsorbent photocatalyst films from its photodecomposition rate. J. Phys. Chem. B, 1997, 101, 2644-2649.
Anpo, M.; Shima, T.; Kodama, S.; Kubokawa, Y. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J. Phys. Chem., 2000, 91, 4305-4310.
Takeuchi, M.; Tsujimaru, K.; Sakamoto, K.; Matsuoka, M.; Yamashita, H.; Anpo, M. Anpo, Effect of Pt loading on the photocatalytic reactivity of titanium oxide thin films prepared by ion engineering techniques. J. Chem. Interm., 2003, 29, 619-629.
Park, H.; Lee, J.; Choi, W. Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity. Catal. Today, 2006, 111, 259-265.
Neppolian, B.; Jung, H.; Choi, H. Photocatalytic degradation of 4-chlorophenol using TiO2 and Pt-TiO2 nanoparticles prepared by sol-gel method. J. Advan. Oxid. Technol., 2007, 10, 369-374.
Becker, J.; Raghupathi, K.R.J.St. Pierre, D. Zhao, R.T. Koodali, Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J. Phys. Chem. C, 2011, 115, 13844-13850.
Umar, A.; Chauhan, M.S.; Chauhan, S.; Kumar, R.; Kumar, G.; Al-Sayari, S.A.; Al-Hajry, A. Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process: structural, optical and photocatalytic properties. J. Colloid Interface Sci., 2011, 363, 521-528.
Zhang, X.; Qin, J.; Hao, R.; Wang, L.; Shen, X.; Yu, R.; Liu, R. Carbon-doped ZnO nanostructures: facile synthesis and visible light photocatalytic applications. J. Phys. Chem. C, 2015, 119, 20544-20554.
Li, B.; Wang, Y. Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J. Phys. Chem. C, 2009, 114, 890-896.
Goldberger, J.; Sirbuly, D.J.; Law, M.; Yang, P. ZnO nanowire transistors. J. Phys. Chem. B, 2005, 109(1), 9-14.
[http://dx.doi.org/10.1021/jp0452599 PMID: 16850973]
Wang, J.X.; Sun, X.W.; Huang, H.; Lee, Y.C.; Tan, O.K.; Yu, M.B.; Kwong, D.L. A two-step hydrothermally grown ZnO microtube array for CO gas sensing. Appl. Phys. Mater. Sci. Process., 2007, 1, 88.
Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523), 1897-1899.
[http://dx.doi.org/10.1126/science.1060367 PMID: 11397941]
Jiang, C.Y.; Sun, X.W.; Lo, G.Q.; Kwong, D.L.; Wang, J.X. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett., 2007, 90263501
Maeda, K.; Teramura, K.; Saito, N.; Inoue, Y.; Domen, K. Improvement of photocatalytic activity of (Ga1− x Znx) (N1− x Ox) solid solution for overall water splitting by CO-loading Cr and another transition metal. J. Catal., 2006, 243, 303-308.
Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J.; Zhu, Y. Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorg. Chem., 2007, 46(16), 6675-6682.
[http://dx.doi.org/10.1021/ic062394m PMID: 17622132]
Mohan Kumar, G.; Raman, V.; Kawakita, J.; Ilanchezhiyan, P.; Jayavel, R. Fabrication of polypyrrole/ZnCoO nanohybrid systems for solar cell applications. Dalton Trans., 2010, 39(35), 8325-8330.
[http://dx.doi.org/10.1039/c0dt00167h PMID: 20697647]
Pearton, S.J.; Norton, D.P.; Ip, K.; Heo, Y.W.; Steiner, T. Recent progress in processing and properties of ZnO. Prog. Mater. Sci., 2005, 50, 293-340.
Zhao, X.; Qi, L. Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr(VI) removal. Nanotechnology, 2012, 23(23)235604
[http://dx.doi.org/10.1088/0957-4484/23/23/235604] [PMID: 22595896]
Marci, G.; Augugliaro, V.; Lopez-Munoz, M.J.; Martín, C.; Palmisano, L.; Rives, V.; Venezia, A.M. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. Surface, bulk characterization, and 4-nitrophenol photo degradation in liquid-solid regime. J. Phys. Chem. B, 2001, 105, 1033-1040.
Behnajady, M.A.; Modirshahla, N.; Hamzavi, R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater., 2006, 133(1-3), 226-232.
[http://dx.doi.org/10.1016/j.jhazmat.2005.10.022 PMID: 16310945]
Chen, C.; Liu, P.; Lu, C. Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chem. Eng. J., 2008, 144, 509-513.
Jamalluddin, N.A.; Abdullah, A.Z. Effect of pH and catalyst dosage on the leaching of Fe from Fe (III) doped zeolite Y used for sonocatalytic degradation of Acid Red B. Res. J. Chem. Environ., 2011, 15, 860-865.
Channabasavaraj, W.; Reddy, R. A review on characterization and application of fly ash zeolites. International Journal of Development Research, 2017, 07(08), 14294-14300.
Cundy, C.S.; Cox, P.A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater., 2005, 82, 1-78.
Moliner, M.; Rey, F.; Corma, A. Towards the rational design of efficient organic structure‐directing agents for zeolite synthesis. J. GesellschaftDeutscher Chemiker, 2013, 52, 13880-13889.
Cejka, J.; Morris, R.E.; Serrano, D.P. Catalysis on zeolites. Catal. Sci. Technol., 2016, 6, 2465-2466.
Weitkamp, J. Zeolites and catalysis. Solid State Ion., 2000, 131, 175-188.
k. Shams, S.J. Mir Mohammadi, Preparation of 5A zeolite monolith granular extrudates using kaolin: Investigation of the effect of binder on sieving/adsorption properties using a mixture of linear and branched paraffin hydrocarbons. Microporous Mesoporous Mater., 2007, 106, 268-277.
Misaelides, P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater., 2011, 144, 15-18.
Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework types Elsevier Published on behalf of the Structure Commission of the International Zeolite Association; , 2007.
Chatti, R.; Rayalu, S.S.; Dubey, N.; Labhsetwar, N.; Devotta, S. Solar-based photoreduction of methyl orange using zeolite supported photocatalytic materials. Sol. Energy Mater. Sol. Cells, 2007, 91, 180-190.
Alvaro, M.; Carbonell, E.; Garcia, H. Photocatalytic degradation of sulphurcontaining aromatic compounds in the presence of zeolite-bound 2,4,6- triphenylpyrylium and 2,4,6-triphenylthiapyrylium. Appl. Catal. B, 2004, 51, 195-202.
Panpa, W.; Sujaridworakun, P.; Jinawath, S. Photocatalytic activity of TiO2/ZSM-5composites in the presence of SO42-ion. Appl. Catal. B, 2008, 80, 271-276.
Granados-Oliveros, G.; Paez-Mozo, E.A.; Ortega, F.M.; Ferronato, C.; Chovelon, J.M. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl. Catal. B, 2009, 89, 448-454.
Aprile, C.; Corma, A.; Garcia, H. Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale. Phys. Chem. Chem. Phys., 2008, 10(6), 769-783.
[http://dx.doi.org/10.1039/B712168G PMID: 18231679]
Anandan, S. Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors. Dyes Pigments, 2008, 76, 535-541.
Vaughan, P.A. The crystal structure of the zeolite ferrierite. Acta Crystallogr., 1966, 21, 983-990.
Corma, A.; Puche, M.; Rey, F.; Sankar, G.; Teat, S.J. Zeolite Structure (ITQ‐13) with Three Sets of Medium‐Pore Crossing Channels Formed by 9‐and 10‐Rings. J. Gesellschaft Deutscher Chemiker., 2003, 42, 1156-1159.
Meier, W.M. The crystal structure of mordenite (ptilolite). Z. Kristallogr. Cryst. Mater., 1961, 115, 439-450.
Shannon, M.D.; Casci, J.L.; Cox, P.A.; Andrews, S.J. Structure of the two-dimensional medium-pore high-silica zeolite NU-87. Nature, 1991, 353, 417-420.
Lobo, R.F.; Pan, M.; Chan, I.; Li, H.X.; Medrud, R.C.; Zones, S.I.; Crozier, P.A.; Davis, M.E. SSZ-26 and SSZ-33: two molecular sieves with intersecting 10-and 12-ring pores. Science, 1993, 262(5139), 1543-1546.
[http://dx.doi.org/10.1126/science.262.5139.1543 PMID: 17829383]
Corma, A.; Rey, F.; Valencia, S.; Jordá, J.L.; Rius, J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nat. Mater., 2003, 2(7), 493-497.
[http://dx.doi.org/10.1038/nmat921 PMID: 12819773]
Paillaud, J.L.; Harbuzaru, B.; Patarin, J.; Bats, N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings. Science, 2004, 304(5673), 990-992.
[http://dx.doi.org/10.1126/science.1098242 PMID: 15143276]
Corma, A.; Diaz-Cabanas, M.J.; Rey, F.; Nicolopoulus, S.; Boulahya, K. ITQ-15: The first ultra large pore zeolite with a bi-directional pore system formed by intersecting 14-and 12-ring channels, and its catalytic implications. Chem. Commun., 2004, 1, 1356-1357.
Corma, A.; Díaz-Cabañas, M.J.; Jordá, J.L.; Martínez, C.; Moliner, M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 2006, 443(7113), 842-845.
[http://dx.doi.org/10.1038/nature05238 PMID: 17051215]
Casci, J.L. Zeolite molecular sieves: Preparation and scale-up. Microporous Mesoporous Mater., 2005, 52, 217-226.
Schmidt, F. New catalyst preparation technologies-observed from an industrial viewpoint. Appl. Catal. A Gen., 2001, 221, 15-21.
Blissett, R.S.; Rowson, N.A. A review of the multi-component utilisation of coal fly ash. Fuel, 2012, 9, 1-23.
Banerjee, S.; Sharma, G.C.; Chattopadhyaya, M.; Sharma, Y.C. Kinetic and equi-librium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH). J. Environ. Chem. Eng., 2014, 2, 1870-1880.
Ding, J.; Ma, S.; Shen, S.; Xie, Z.; Zheng, S.; Zhang, Y. Research and industrialization progress of recovering alumina from fly ash: A concise review. Waste Manag., 2017, 60, 375-387.
[http://dx.doi.org/10.1016/j.wasman.2016.06.009 PMID: 27346594]
Bukhari, S.S.; Behin, J.; Kazemian, H.; Rohani, S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel, 2015, 140, 250-266.
Cho, H.; Oh, D.; Kim, K. A study on removal characteristics of heavy metals from aqueous solution by fly ash. J. Hazard. Mater., 2005, 127(1-3), 187-195.
[http://dx.doi.org/10.1016/j.jhazmat.2005.07.019 PMID: 16125307]
Sun, Z.; Li, C.; Wu, D. Removal of methylene blue from aqueous solution by adsorption onto zeolite synthesized from coal fly ash and its thermal regeneration. J. Chem. Technol. Biotechnol., 2010, 85, 845-850.
Martinez, C.; Corma, A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev., 2011, 255, 1558-1580.
Wang, Z.; Yu, J.; Xu, R. Needs and trends in rational synthesis of zeolitic materials. Chem. Soc. Rev., 2012, 41(5), 1729-1741.
[http://dx.doi.org/10.1039/C1CS15150A PMID: 22108910]
Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage., 2011, 92(3), 407-418.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011 PMID: 21138785]
Kitano, M.; Matsuoka, M.; Ueshima, M.; Anpo, M. Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A Gen., 2007, 325, 1-14.
Alvaro, M.; Carbonell, E.; Atienzar, P.; García, H. A novel concept for photovoltaic cells: clusters of titanium dioxide encapsulated within zeolites as photoactive semi-conductors A European Journal of Chemical Physics and Physical Chemistry 7, 2006, 1996-2002.
Corma, A.; Garcia, H. Zeolite-based photocatalysts. Chem. Commun. , 2004, 1(13), 1443-1459.
[http://dx.doi.org/10.1039/b400147h PMID: 15216329]
Atienzar, P.; Valencia, S.; Corma, A.; Garcia, H. Titanium‐ containing zeolites and microporous molecular sieves as photovoltaic solar cells A European Journal of Chemical Physics and Physical Chemistry 8, 2007, 1115-1119.
Kusić, H.; Koprivanac, N.; Selanec, I. Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. Chemosphere, 2006, 65(1), 65-73.
[http://dx.doi.org/10.1016/j.chemosphere.2006.02.053 PMID: 16600328]
Sanjuan, A.; Aguirre, G.; Alvaro, M.; Garcia, H. 2, 4, 6-Triphenylpyrylium ion encapsulated in Y zeolite as photocatalyst: A co-operative contribution of the zeolite host to the photodegradation of 4-chlorophenoxy acetic acid using solar light. Appl. Catal. B, 1998, 15, 247-257.
Noorjahan, M.; Kumari, V.D.; Subrahmanyam, M.; Panda, L.; Immobilized Fe, H.Y. III an efficient and stable photo-Fenton catalyst. Appl. Catal. B, 2005, 57, 291-298.
Kawai, T.; Tsutsumi, K. Adsorption characteristics of surfactants and phenol on modified zeolites from their aqueous solutions. Colloid Polym. Sci., 1995, 273, 787-792.
Melian-Cabrera, I.; Kapteijn, F.; Moulijn, J.A. Innovations in the synthesis of Fe-(exchanged)-zeolites. Catal. Today, 2005, 110, 255-263.
Liu, C.J.; Li, S.G.; Pang, W.Q.; Che, C.M. Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve MCM-41 for alkene oxidation. Chem. Commun. , 1997, 1, 65-66.
Karimipour, G.; Rezaei, M.; Ashouri, D. Zeolite encapsulated Fe-poprhyrin for catalytic oxidation with iodobenzene diacetate (PhI (OAc) 2). J. Mex. Chem. Soc., 2013, 57, 276-282.
Barros, V.P.; Faria, A.L.; MacLeod, T.C.; Moraes, L.A.; Assis, M.D. Iron porphyrin immobilized onto montmorillonite as a biomimetical model for azo dye oxidation. Int. Biodeterior. Biodegradation, 2008, 61, 337-344.
Szulbinski, W.S.; Kincaid, J.R. Synthesis and spectroscopic characterization of zinc tetra (3, 4-pyridine) porphyrazine entrapped within the supercages of Y-zeolite. Inorg. Chem., 1998, 37(19), 5014-5020.
[http://dx.doi.org/10.1021/ic971118s PMID: 11670671]
Nikazar, M.; Gholivand, K.; Mahanpoor, K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination, 2008, 219, 293-300.
Chen, H.; Matsumoto, A.; Nishimiya, N.; Tsutsumi, K. Preparation and characterization of TiO2 incorporated Y-zeolite. Colloids Surf. A Physicochem. Eng. Asp., 1999, 157, 295-305.
Kim, Y.; Yoon, M. TiO2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium. J. Mol. Catal. Chem., 2001, 168, 257-263.
Serra, A.C.; Docal, C.; Gonsalves, A.D.A.R. Efficient azo dye degradation by hydrogen peroxide oxidation with metalloporphyrins as catalysts. J. Mol. Catal. Chem., 2005, 238, 192-198.
Manea, F.; Orha, C. Carbon-/Zeolite-Supported TiO2 for Sorption/Photocatalysis Applications in Water Treatment; Photocatalysts - Applications and Attributes, Sher Bahadar Khan and Kalsoom Akhtar, IntechOpen, 2018.
Emmert, F.L.; Thomas, J.; Hon, B.; Gengenbach, A.J. Metalloporphyrin catalyzed oxidation of methyl yellow and related azo compounds. Inorg. Chim. Acta, 2008, 361, 2243-2251.
Wahab, H.S.; Hussain, A.A. Photocatalytic oxidation of phenol red onto nanocrystalline TiO2 particles. Journal of Nanostructure in Chemistry, 2016, 6, 261-274.
Aleboyeh, A.; Aleboyeh, H.; Moussa, Y. “Critical” effect of hydrogen peroxide in photochemical oxidative decolourisation of dyes: Acid orange 8, Acid blue 74 and methyl orange. Dyes Pigments, 2003, 57, 67-75.
Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res., 2004, 8, 553-597.
Hai, F.I.; Yamamoto, K.; Fukushi, K. Hybrid treatment systems for dye wastewater. Crit. Rev. Environ. Sci. Technol., 2007, 37, 315-377.
Kavitha, V.; Palanivelu, K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 2004, 55(9), 1235-1243.
[http://dx.doi.org/10.1016/j.chemosphere.2003.12.022 PMID: 15081764]
Catrinescu, C.; Neamtu, M.; Yediler, A.; Macoveanu, M.; Kettrup, A. Catalytic wet peroxide oxidation of an azo dye, reactive yellow 84, over Fe-exchanged ultra-stable Y-zeolite. Environ. Eng. Manag. J., 2002, 1, 202-206.
Feng, J.; Hu, X.; Yue, P.L. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Res., 2006, 40(4), 641-646.
[http://dx.doi.org/10.1016/j.watres.2005.12.021 PMID: 16448683]
Ma, Y.S.; Sung, C.F.; Lin, J.G. Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes: Effect of system parameters and kinetic study. J. Hazard. Mater., 2010, 178(1-3), 320-325.
[http://dx.doi.org/10.1016/j.jhazmat.2010.01.081 PMID: 20153110]
Elmorsi, T.M.; Riyad, Y.M.; Mohamed, Z.H.; Abd El Bary, H.M. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J. Hazard. Mater., 2010, 174(1-3), 352-358.
[http://dx.doi.org/10.1016/j.jhazmat.2009.09.057 PMID: 19825508]
AlHamedi, F.H.; Rauf, M.A.; Ashraf, S.S. Degradation studies of Rhodamine B in the presence of UV/H2O2. Desalination, 2009, 239, 159-166.
Gul, S.; Ozcan-Yıldırım, O. Degradation of reactive red 194 and reactive yellow 145 azo dyes by O3 and H2O2/UV-C processes. Chem. Eng. J., 2009, 155, 684-690.
Tehrani-Bagha, A.R.; Mahmoodi, N.M.; Menger, F.M. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, 2010, 260, 34-38.
Chamarro, E.; Marco, A.; Esplugas, S. Use of Fenton reagent to improve organic chemical biodegradability. Water Res., 2001, 35(4), 1047-1051.
[http://dx.doi.org/10.1016/S0043-1354(00)00342-0 PMID: 11235870]
Masarwa, A.; Rachmilovich-Calis, S.; Meyerstein, N.; Meyerstein, D. Oxidation of organic substrates in aerated aqueous solutions by the fenton reagent. Coord. Chem. Rev., 2005, 249, 1937-1943.
Bouasla, C.; Samar, M.E.H.; Ismail, F. Degradation of methyl violet 6B dye by the Fenton process. Desalination, 2010, 254, 35-41.
Monteagudo, J.M.; Duran, A.; San Martin, I.; Aguirre, M. Catalytic degradation of Orange II in a ferrioxalate-assisted photo-fenton process using a combined UV-A/C-solar pilot-plant system. Appl. Catal. B, 2010, 95, 120-129.
Abdessalem, A.K.; Bellakhal, N.; Oturan, N.; Dachraoui, M.; Oturan, M.A. Treatment of a mixture of three pesticides by photo-and electro-fenton processes. Desalination, 2010, 250, 450-455.
Modirshahla, N.; Behnajady, M.A.; Ghanbary, F. Decolorization and mineralization of C.I acid yellow 23 by fenton and photo-fenton processes. Dyes Pigments, 2007, 73, 305-310.
Rauf, M.A.; Meetani, M.A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J., 2010, 157, 373-378.
Xu, R.; Li, J.; Wang, J.; Wang, X.; Liu, B.; Wang, B.; Zhang, X. Photocatalytic degradation of organic dyes under solar light irradiation combined with Er3+: YAlO3/Fe-and Co-doped TiO2 coated composites. Sol. Energy Mater. Sol. Cells, 2010, 94, 1157-1165.
Zhang, W.; Zhang, J.; Chen, Z.; Wang, T. Photocatalytic degradation of methylene blue by ZnGa2O4 thin films. Catal. Commun., 2009, 10, 1781-1785.
Habibi, M.H.; Talebian, N. Photocatalytic degradation of an azo dye X6G in water: a comparative study using nanostructured indium tin oxide and titanium oxide thin films. Dyes Pigments, 2007, 73, 186-194.
Wang, X.; Yao, Z.; Wang, J.; Guo, W.; Li, G. Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation. Ultrason. Sonochem., 2008, 15(1), 43-48.
[http://dx.doi.org/10.1016/j.ultsonch.2007.01.008 PMID: 17382572]
Song, S.; Ying, H.; He, Z.; Chen, J. Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis. Chemosphere, 2007, 66(9), 1782-1788.
[http://dx.doi.org/10.1016/j.chemosphere.2006.07.090 PMID: 16973203]
Ghodbane, H.; Hamdaoui, O. Intensification of sonochemical decolorization of anthraquinonic dye Acid Blue 25 using carbon tetrachloride. Ultrason. Sonochem., 2009, 16(4), 455-461.
[http://dx.doi.org/10.1016/j.ultsonch.2008.12.005 PMID: 19153057]
Merouani, S.; Hamdaoui, O.; Saoudi, F.; Chiha, M. Sonochemical degradation of Rhodamine B in aqueous phase: effects of additives. Chem. Eng. J., 2010, 158, 550-557.
Mohamed, K.A.; Basfar, A.A.; Al-Shahrani, A.A. Gamma-ray induced degradation of diazinon and atrazine in natural groundwaters. J. Hazard. Mater., 2009, 166(2-3), 810-814.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.081 PMID: 19131163]
Dajka, K.; Takacs, E.; Solpan, D.; Wojnarovits, L.; Guven, O. High-energy irradiation treatment of aqueous solutions of CI reactive black 5 azo dye: pulse radiolysis experiments. Radiat. Phys. Chem., 2003, 67, 535-538.
Andronic, L.; Enesca, A.; Vladuta, C.; Duta, A. Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes. Chem. Eng. J., 2009, 152, 64-71.
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photo catalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63, 515-582.
Mohamed, M.M.; Al-Esaimi, M.M. Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: degradation of methylene blue dye. J. Mol. Catal. Chem., 2006, 255, 53-61.
El-Bahy, Z.M.; Ismail, A.A.; Mohamed, R.M. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J. Hazard. Mater., 2009, 166(1), 138-143.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.022 PMID: 19097702]
Chen, C.; Wang, Z.; Ruan, S.; Zou, B.; Zhao, M.; Wu, F. Photocatalytic degradation of C.I acid orange 52 in the presence of Zn-doped TiO2 prepared by a stearic acid gel method. Dyes Pigments, 2008, 77, 204-209.
Litter, M.I.; Candal, R.J. Meichtry, Advanced oxidation technologies: Sustainable solutions for environmental treatments; CRC Press 9, 2014, 2164-0645.
Herrmann, J.M.; Guillard, C.; Pichat, P. Heterogeneous photocatalysis: An emerging technology for water treatment. Catal. Today, 1993, 17, 7-20.
Kozhevnikov, I.V. Sustainable heterogeneous acid catalysis by heteropoly acids. J. Mol. Catal. Chem., 2007, 262, 86-92.
Hou, Z.; Okuhara, T. Synthesis of diphenylmethane from formalin and benzene in a biphasic system with 12-tungstophosphoric acid. Chem. Commun. , 2001, 1(17), 1686-1687.
[http://dx.doi.org/10.1039/b104321h PMID: 12240444]
Babu, N.S.; Lingaiah, N.; Gopinath, R.; Sankar Reddy, P.S.; Sai Prasad, P.S. Characterization and reactivity of alumina-supported Pd catalysts for the room-temperature hydrodechlorination of chlorobenzene. J. Phys. Chem. C, 2007, 111, 6447-6453.
Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev., 2001, 30, 62-69.
Kormali, P.; Troupis, A.; Triantis, T.; Hiskia, A.; Papaconstantinou, E. photocatalysis by polyoxometallates and TiO2: A comparative study. Catal. Today, 2007, 124, 149-155.
Abdullah, F.H.; Rauf, M.A.; Ashraf, S.S. Kinetics and optimization of photolytic decolouration of carmine by UV/H2O2. Dyes Pigments, 2007, 75, 194-198.
Şolpan, D.; Guven, O.; Takacs, E.; Wojnarovits, L.; Dajka, K. High-energy irradiation treatment of aqueous solutions of azo dyes: steady-state gamma radiolysis experiments. Radiat. Phys. Chem., 2003, 67, 531-534.
Fabbri, D.; Prevot, A.B.; Zelano, V.; Ginepro, M.; Pramauro, E. Removal and degradation of aromatic compounds from a highly polluted site by coupling soil washing with photocatalysis. Chemosphere, 2008, 71(1), 59-65.
[http://dx.doi.org/10.1016/j.chemosphere.2007.10.028 PMID: 18061238]
Galindo, C.; Jacques, P.; Kalt, A. Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74), Journal of Photochemistry andPhotobiology A. Chemistry, 2001, 141, 47-56.
Huling, S.G.; Arnold, R.G.; Sierka, R.A.; Jones, P.K.; Fine, D.D. Contaminant adsorption and oxidation via fenton reaction. J. Environ. Eng., 2000, 126, 595-600.
Meetani, M.A.; Hisaindee, S.M.; Abdullah, F.; Ashraf, S.S.; Rauf, M.A. Liquid chromatography tandem mass spectrometry analysis of photodegradation of a diazo compound: a mechanistic study. Chemosphere, 2010, 80(4), 422-427.
[http://dx.doi.org/10.1016/j.chemosphere.2010.04.065 PMID: 20529695]
Bayramoglu, G.; Altintas, B.; Arica, M.Y. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation exchange resins. Chem. Eng. J., 2009, 152, 339-346.
Ahmad, A.L.; Puasa, S.W. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chem. Eng. J., 2007, 132, 257-265.
Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Vial, C.; Barkaoui, M. Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chem. Eng. J., 2009, 149, 207-214.
Eyvaz, M.; Kirlaroglu, M.; Aktas, T.S.; Yuksel, E. The effects of alternating current electrocoagulation on dye removal from aqueous solutions. Chem. Eng. J., 2009, 153, 16-22.
Saien, J.; Asgari, M.; Soleymani, A.R.; Taghavinia, N. Photocatalytic decomposition of direct red 16 and kinetics analysis in a conic body packed bed reactor with nanostructure titania coated raschig rings. Chem. Eng. J., 2009, 151, 295-301.
Mao, C.C.; Weng, H.S. Promoting effect of adding carbon black to TiO2 for aqueous photocatalytic degradation of methyl orange. Chem. Eng. J., 2009, 155, 744-749.
Wang, C.; Li, J.; Sun, X.; Wang, L.; Sun, X. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. J. Environ. Sci. (China), 2009, 21(1), 127-136.
[http://dx.doi.org/10.1016/S1001-0742(09)60022-X PMID: 19402411]
Petkowicz, D.I.; Pergher, S.B.; Da Silva, C.D.S.; Da Rocha, Z.N.; Dos Santos, J.H. Catalytic photodegradation of dyes by in situ zeolite-supported titania. Chem. Eng. J., 2010, 158, 505-512.
Marchena, C.L.; Lerici, L.; Renzini, S.; Pierella, L.; Pizzio, L. Synthesis and characterization of a novel tungstosilicic acid immobilized on zeolites catalyst for the photodegradation of methyl orange. Appl. Catal. B, 2016, 188, 23-30.
Suwannaruang, T.; Rivera, K.K.P.; Neramittagapong, A.; Wantala, K. Effects of hydrothermal temperature and time on uncalcined TiO2 synthesis for reactive red 120 photocatalytic degradation. Surf. Coat. Tech., 2015, 271, 192-200.
Carneiro, P.A.; Osugi, M.E.; Sene, J.J.; Anderson, M.A.; Zanoni, M.V.B. Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes. Electrochim. Acta, 2004, 49, 3807-3820.
Bergamini, R.B.; Azevedo, E.B.; De Araujo, L.R.R. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: decolorization kinetics. Chem. Eng. J., 2009, 149, 215-220.
Arabzadeh, A.; Salimi, A. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. J. Colloid Interface Sci., 2016, 479, 43-54.
[http://dx.doi.org/10.1016/j.jcis.2016.06.036 PMID: 27348482]
Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater., 2009, 170(2-3), 520-529.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.039 PMID: 19505759]
Mahalakshmi, M.; Vishnu Priya, S.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hbeta zeolite-supported TiO2. J. Hazard. Mater., 2009, 161(1), 336-343.
[http://dx.doi.org/10.1016/j.jhazmat.2008.03.098 PMID: 18455297]
Comparelli, R.; Fanizza, E.; Curri, M.L.; Cozzoli, P.D.; Mascolo, G.; Agostiano, A. UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Appl. Catal. B, 2005, 60, 1-11.
Zhu, C.; Wang, L.; Kong, L.; Yang, X.; Wang, L.; Zheng, S.; Chen, F. MaiZhi, F.; Zong, H. Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution. Chemosphere, 2000, 41(3), 303-309.
[http://dx.doi.org/10.1016/S0045-6535(99)00487-7 PMID: 11057591]
Ajmal, A.; Majeed, I.; Malik, R.N.; Iqbal, M.; Nadeem, M.A.; Hussain, I.; Nadeem, M.A. Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders. J. Environ. Chem. Eng., 2016, 4, 2138-2146.
Olya, M.E.; Pirkarami, A.; Soleimani, M.; Bahmaei, M. Photoelectrocatalytic degradation of acid dye using Ni-TiO2 with the energy supplied by solar cell: mechanism and economical studies. J. Environ. Manage., 2013, 121, 210-219.
[http://dx.doi.org/10.1016/j.jenvman.2013.01.041 PMID: 23562912]
Duta, A.; Visa, M. Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash-TiO2 composite. J. Photochem. Photobiol. Chem., 2015, 306, 21-30.
Muruganandham, M.M. Swaminathan Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology. Dyes Pigments, 2004, 63, 315-321.
Ghosh, D.; Bhattacharyya, K.G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci., 2002, 20, 295-300.
Tang, C.; Chen, V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Res., 2004, 38(11), 2775-2781.
[http://dx.doi.org/10.1016/j.watres.2004.03.020 PMID: 15207608]
Sudrajat, H.; Babel, S. A novel visible light active N-doped ZnO for photocatalytic degradation of dyes. J. Water Process Eng., 2017, 16, 309-318.
Sobana, N.; Swaminathan, M. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53. Sol. Energy Mater. Sol. Cells, 2007, 91, 727-734.
Rahman, Q.L.; Ahmad, M.; Misra, S.K.; Lohani, M. Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater. Lett., 2013, 91, 170-174.
Dhatshanamurthi, P.; Shanthi, M. Enhanced photocatalytic degradation of azo dye in aqueous solutions using Ba-Ag-ZnO nanocomposite for self-sensitized under sunshine irradiation. Int. J. Hydrogen Energy, 2017, 42, 5523-5536.
Kocakusakoglu, A.; Daglar, M.; Konyar, M.; Yatmaz, H.C.; Ozturk, K. Photocatalytic activity of reticulated ZnO porous ceramics in degradation of azo dye molecules. J. Eur. Ceram. Soc., 2015, 35, 2845-2853.
Daneshvar, N.; Sorkhabi, H.A.; Kasiri, M.B. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J. Hazard. Mater., 2004, 112(1-2), 55-62.
[http://dx.doi.org/10.1016/j.jhazmat.2004.03.021 PMID: 15225930]
Hadjltaief, H.B.; Zina, M.B.; Galvez, M.E.; Da Costa, P. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO-TiO2 catalysts. J. Photochem. Photobiol. Chem., 2016, 315, 25-33.
Yassıtepe, E.; Yatmaz, H.C.; Ozturk, C.; Ozturk, K.; Duran, C. Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions. J. Photochem. Photobiol. Chem., 2008, 198, 1-6.
Ahmad, R.; Tripathy, N.; Jung, D.U.; Hahn, Y.B. Highly sensitive hydrazine chemical sensor based on ZnO nanorods field-effect transistor. Chem. Commun. , 2014, 50(15), 1890-1893.
[http://dx.doi.org/10.1039/c3cc48197b PMID: 24402677]
Guesh, K.; Mayoral, A.; Marquez-Alvarez, C.; Chebude, Y.; Diaz, I. Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous Mesoporous Mater., 2016, 225, 88-97.
Ilinoiu, E.C.; Pode, R.; Manea, F.; Colar, L.A.; Jakab, A.; Orha, C.; Sfarloaga, P. Photocatalytic activity of a nitrogen-doped TiO2 modified zeolite in the degradation of reactive yellow 125 azo dye. J. Taiwan Inst. Chem. Eng., 2013, 44, 270-278.
Nagarjuna, R.; Roy, S.; Ganesan, R. Polymerizable sol-gel precursor mediated synthesis of TiO2 supported zeolite-4A and its photodegradation of methylene blue. Microporous Mesoporous Mater., 2015, 211, 1-8.
Nezamzadeh-Ejhieh, A.; Shahriari, E. Photocatalytic decolorization of methyl green using Fe (II)-o-phenanthroline as supported onto zeolite Y. J. Ind. Eng. Chem., 2014, 20, 2719-2726.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 11 July, 2020
Page: [82 - 97]
Pages: 16
DOI: 10.2174/1573411016999200711143225
Price: $65

Article Metrics

PDF: 20