Therapeutic Targets and Computational Approaches on Drug Development for COVID-19

Author(s): Anusuya Shanmugam, Nisha Muralidharan, Devadasan Velmurugan, M. Michael Gromiha*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 24 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

World Health Organization declared coronavirus disease (COVID-19) caused by SARS coronavirus-2 (SARS-CoV-2) as pandemic. Its outbreak started in China in Dec 2019 and rapidly spread all over the world. SARS-CoV-2 has infected more than 800,000 people and caused about 35,000 deaths so far, moreover, no approved drugs are available to treat COVID-19. Several investigations have been carried out to identify potent drugs for COVID-19 based on drug repurposing, potential novel compounds from ligand libraries, natural products, short peptides, and RNAseq analysis. This review is focused on three different aspects; (i) targets for drug design (ii) computational methods to identify lead compounds and (iii) drugs for COVID-19. It also covers the latest literature on various hit molecules proposed by computational methods and experimental techniques.

Keywords: Coronavirus, SARS-CoV-2, COVID-19, Chymotrypsin-like protease, Papain-like protease, Polymerase, Spike protein, Drug repurposing.

[1]
Li, J.Y.; You, Z.; Wang, Q.; Zhou, Z.J.; Qiu, Y.; Luo, R.; Ge, X.Y. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect., 2020, 22(2), 80-85.
[http://dx.doi.org/10.1016/j.micinf.2020.02.002 ] [PMID: 32087334]
[2]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8 ] [PMID: 32007145]
[3]
World Health Organization. Coronavirus disease 2019: Naming the coronavirus disease (COVID-19) and the virus that causes it, 2019. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
[4]
World Health Organization. Coronaviruses. Available from: https://www.who.int/healthtopics/
[5]
World Health Organization. Health Topics: Coronavirus. 2020.Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
[6]
World Health Organization. Novel Coronavirus (COVID-19) Situation. Available from: https://experience.arcgis.com/experience/ 685d0ace521648f8a5beeeee1b9125cd
[7]
U.S. Food and Drug Administration. Emergency Preparedness and Response: Novel coronavirus (COVID-19). Available from: https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/novel-coronavirus-covid-19
[8]
Clinical Trials Arena. Coronavirus treatment: Vaccines/drugs in the pipeline for Covid-19. Available from: https://www.clinicaltrialsarena.com/analysis/coronavirus-mers-cov-drugs/
[9]
Wu, R.; Wang, L.; Kuo, H.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; Poiani, G.J.; Amorosa, L.; Brunetti, L.; Kong, A.N. An Update on Current Therapeutic Drugs Treating COVID-19. Curr. Pharmacol. Rep., 2020, 6, 56-70.
[http://dx.doi.org/10.1007/s40495-020-00216-7 ] [PMID: 32395418]
[10]
Clinical Trials Arena. Gilead launches remdesivir’s Phase III trials in Covid-19 patients., Available from: https://www.clinicaltrialsarena.com/news/gilead-remdesivir-phaseiii-covid-19/
[11]
National Institute of Health. News Releases: NIH clinical trial of remdesivir to treat COVID-19 begins. Available from: https://www.nih.gov/news-events/news-releases/nih-clinical-trial-remdesivir-treat-covid-19-begins
[12]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today, 2020, 25(4), 668-688.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015 ] [PMID: 32006468]
[13]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902 ] [PMID: 31987001]
[14]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681 ] [PMID: 31967327]
[15]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(15), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008 ] [PMID: 32292689]
[16]
Harrison, C. Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol., 2020, 38(4), 379-381.
[http://dx.doi.org/10.1038/d41587-020-00003-1 ] [PMID: 32205870]
[17]
Arya, R.; Das, A.; Prashar, V.; Kumar, M. Potential inhibitors against papain-like protease of novel coronavirus (sars-cov-2) from fda approved drugs. ChemRxiv, 2020. (in press)
[http://dx.doi.org/10.26434/chemrxiv.11860011.v2]
[18]
Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; Zhang, X.C.; Liao, M.; Bartlam, M.; Rao, Z. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J. Virol., 2008, 82(5), 2515-2527.
[http://dx.doi.org/10.1128/JVI.02114-07 ] [PMID: 18094151]
[19]
Thiel, V.; Ivanov, K.A.; Putics, Á.; Hertzig, T.; Schelle, B.; Bayer, S.; Weißbrich, B.; Snijder, E.J.; Rabenau, H.; Doerr, H.W.; Gorbalenya, A.E.; Ziebuhr, J. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol., 2003, 84(Pt 9), 2305-2315.
[http://dx.doi.org/10.1099/vir.0.19424-0 ] [PMID: 12917450]
[20]
Fehr, A.R.; Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1 ] [PMID: 25720466]
[21]
Deng, X.; StJohn, S.E.; Osswald, H.L.; O’Brien, A.; Banach, B.S.; Sleeman, K.; Ghosh, A.K.; Mesecar, A.D.; Baker, S.C. Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. J. Virol., 2014, 88(20), 11886-11898.
[http://dx.doi.org/10.1128/JVI.01528-14 ] [PMID: 25100843]
[22]
Zhao, Q.; Weber, E.; Yang, H. Recent developments on coronavirus main protease/3C like protease inhibitors. Recent Pat Antiinfect Drug Discov, 2013, 8(2), 150-156.
[http://dx.doi.org/10.2174/1574891X113089990017 ] [PMID: 23879823]
[23]
Ziebuhr, J.; Snijder, E.J.; Gorbalenya, A.E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol., 2000, 81(Pt 4), 853-879.
[http://dx.doi.org/10.1099/0022-1317-81-4-853 ] [PMID: 10725411]
[24]
Ziebuhr, J. Molecular biology of severe acute respiratory syndrome coronavirus. Curr. Opin. Microbiol., 2004, 7(4), 412-419.
[http://dx.doi.org/10.1016/j.mib.2004.06.007 ] [PMID: 15358261]
[25]
Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J., 2002, 21(13), 3213-3224.
[http://dx.doi.org/10.1093/emboj/cdf327 ] [PMID: 12093723]
[26]
Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G.F.; Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13190-13195.
[http://dx.doi.org/10.1073/pnas.1835675100 ] [PMID: 14585926]
[27]
Shi, J.; Wei, Z.; Song, J. Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors. J. Biol. Chem., 2004, 279(23), 24765-24773.
[http://dx.doi.org/10.1074/jbc.M311744200 ] [PMID: 15037623]
[28]
Yamamoto, N.; Yang, R.; Yoshinaka, Y.; Amari, S.; Nakano, T.; Cinatl, J.; Rabenau, H.; Doerr, H.W.; Hunsmann, G.; Otaka, A.; Tamamura, H.; Fujii, N.; Yamamoto, N. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun., 2004, 318(3), 719-725.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.083 ] [PMID: 15144898]
[29]
Ivanov, K.A.; Thiel, V.; Dobbe, J.C.; van der Meer, Y.; Snijder, E.J.; Ziebuhr, J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol., 2004, 78(11), 5619-5632.
[http://dx.doi.org/10.1128/JVI.78.11.5619-5632.2004 ] [PMID: 15140959]
[30]
Adedeji, A.O.; Lazarus, H. Biochemical characterization of middle east respiratory syndrome coronavirus helicase. MSphere, 2016, 1(5), e00235-e16.
[http://dx.doi.org/10.1128/mSphere.00235-16 ] [PMID: 27631026]
[31]
Patel, S.S.; Picha, K.M. Structure and function of hexameric helicases. Annu. Rev. Biochem., 2000, 69, 651-697.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.651 ] [PMID: 10966472]
[32]
Lohman, T.M. Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol. Microbiol., 1992, 6(1), 5-14.
[http://dx.doi.org/10.1111/j.1365-2958.1992.tb00831.x ] [PMID: 1310794]
[33]
Lüking, A.; Stahl, U.; Schmidt, U. The protein family of RNA helicases. Crit. Rev. Biochem. Mol. Biol., 1998, 33(4), 259-296.
[http://dx.doi.org/10.1080/10409239891204233 ] [PMID: 9747670]
[34]
Briguglio, I.; Piras, S.; Corona, P.; Carta, A. Inhibition of RNA helicases of ssRNA(+) virus belonging to flaviviridae, coronaviridae and picornaviridae families. Int. J. Med. Chem., 2011, 2011, 213135.
[http://dx.doi.org/10.1155/2011/213135 ] [PMID: 27516903]
[35]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081 ] [PMID: 22578462]
[36]
Adedeji, A.O.; Singh, K.; Calcaterra, N.E.; DeDiego, M.L.; Enjuanes, L.; Weiss, S.; Sarafianos, S.G. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob. Agents Chemother., 2012, 56(9), 4718-4728.
[http://dx.doi.org/10.1128/AAC.00957-12 ] [PMID: 22733076]
[37]
Mirza, M.U.; Froeyen, M. Structural elucidation of SARS-CoV-2 vital proteins: computational methods reveal potential drug candidates against Main protease, Nsp12 RNA-dependent RNA polymerase and Nsp13 helicase; Preprints, 2020.
[38]
Hao, W.; Wojdyla, J.A.; Zhao, R.; Han, R.; Das, R.; Zlatev, I.; Manoharan, M.; Wang, M.; Cui, S. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathog., 2017, 13(6), e1006474.
[http://dx.doi.org/10.1371/journal.ppat.1006474 ] [PMID: 28651017]
[39]
Sawicki, S.G. Coronavirus Genome Replication. In: Viral Genome Replication; Cameron, C.E.; Gotte, M.; Raney, K., Eds.; Springer US: New York, 2009; pp. 25-39.
[http://dx.doi.org/10.1007/b135974_2]
[40]
Xu, X.; Liu, Y.; Weiss, S.; Arnold, E.; Sarafianos, S.G.; Ding, J. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res., 2003, 31(24), 7117-7130.
[http://dx.doi.org/10.1093/nar/gkg916 ] [PMID: 14654687]
[41]
Bressanelli, S.; Tomei, L.; Rey, F.A.; De Francesco, R. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol., 2002, 76(7), 3482-3492.
[http://dx.doi.org/10.1128/JVI.76.7.3482-3492.2002 ] [PMID: 11884572]
[42]
Holmes, K.V. SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest., 2003, 111(11), 1605-1609.
[http://dx.doi.org/10.1172/JCI18819 ] [PMID: 12782660]
[43]
Gaurav, A.; Al-Nema, M. Polymerases of Coronaviruses: Structure, Function, and Inhibitors. Viral Polymerases; Academic Press: Cambridge, 2019, pp. 271-300.
[http://dx.doi.org/10.1016/B978-0-12-815422-9.00010-3]
[44]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056 ] [PMID: 32094225]
[45]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0 ] [PMID: 32020029]
[46]
Xiao, X.; Dimitrov, D.S. The SARS-CoV S glycoprotein. Cell. Mol. Life Sci., 2004, 61(19-20), 2428-2430.
[http://dx.doi.org/10.1007/s00018-004-4257-y ] [PMID: 15526150]
[47]
Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301 ] [PMID: 27578435]
[48]
Qian, Z.; Dominguez, S.R.; Holmes, K.V. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS One, 2013, 8(10), e76469.
[http://dx.doi.org/10.1371/journal.pone.0076469 ] [PMID: 24098509]
[49]
Simmons, G.; Reeves, J.D.; Rennekamp, A.J.; Amberg, S.M.; Piefer, A.J.; Bates, P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4240-4245.
[http://dx.doi.org/10.1073/pnas.0306446101 ] [PMID: 15010527]
[50]
Song, W.; Gui, M.; Wang, X.; Xiang, Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog., 2018, 14(8), e1007236.
[http://dx.doi.org/10.1371/journal.ppat.1007236 ] [PMID: 30102747]
[51]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011 ] [PMID: 22816037]
[52]
Wikimedia Commons: 3D medical animation corona virus. Available from: https://commons.wikimedia.org/wiki/File:3D_medical_animation_corona_virus.jpg#filelinks
[53]
Walls, A.C.; Tortorici, M.A.; Bosch, B.J.; Frenz, B.; Rottier, P.J.M.; DiMaio, F.; Rey, F.A.; Veesler, D. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature, 2016, 531(7592), 114-117.
[http://dx.doi.org/10.1038/nature16988 ] [PMID: 26855426]
[54]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145 ] [PMID: 14647384]
[55]
Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.; Zaki, A.; Fouchier, R.A.; Thiel, V.; Drosten, C.; Rottier, P.J.; Osterhaus, A.D.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254.
[http://dx.doi.org/10.1038/nature12005 ] [PMID: 23486063]
[56]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5 ] [PMID: 32009228]
[57]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480 ] [PMID: 16166518]
[58]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20 ] [PMID: 31996437]
[59]
Wu, K.; Peng, G.; Wilken, M.; Geraghty, R.J.; Li, F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J. Biol. Chem., 2012, 287(12), 8904-8911.
[http://dx.doi.org/10.1074/jbc.M111.325803 ] [PMID: 22291007]
[60]
Gurwitz, D. Angiotensin receptor blockers as tentative SARS-CoV- 2 therapeutics. Drug Dev. Res., 2020. (Online ahead of Print)
[http://dx.doi.org/10.1002/ddr.21656] [PMID: 32129518]
[61]
Diaz, J.H. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J. Travel Med., 2020, 27(3), taaa041.
[http://dx.doi.org/10.1093/jtm/taaa041] [PMID: 32186711]
[62]
World Health Organization. Emergencies: WHO characterizes COVID-19 as a pandemic. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
[63]
U.S. Food Drug Administration. Coronavirus Disease 2019 (COVID-19) Frequently Asked Questions, 2019.Available from: https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/coronavirus-disease-2019-covid-19-frequently-asked-questions
[65]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J., 2016, 14, 177-184.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004 ] [PMID: 27293534]
[66]
Scavone, C.; Brusco, S.; Bertini, M.; Sportiello, L.; Rafaniello, C.; Zoccoli, A.; Berrino, L.; Racagni, G.; Rossi, F.; Capuano, A. Current pharmacological treatments for COVID-19: What’s next? Br. J. Pharmacol., 2020. (Online ahead of Print)
[http://dx.doi.org/10.1111/bph.15072] [PMID: 32329520]
[67]
Kanakaveti, V.; Shanmugam, A.; Ramakrishnan, C.; Anoosha, P.; Sakthivel, R.; Rayala, S.K.; Gromiha, M.M. Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery. Adv. Protein Chem. Struct. Biol., 2020, 121, 25-47.
[http://dx.doi.org/10.1016/bs.apcsb.2019.11.013 ] [PMID: 32312424]
[68]
Anusuya, S.; Velmurugan, D.; Gromiha, M.M. Identification of dengue viral RNA-dependent RNA polymerase inhibitor using computational fragment-based approaches and molecular dynamics study. J. Biomol. Struct. Dyn., 2016, 34(7), 1512-1532.
[http://dx.doi.org/10.1080/07391102.2015.1081620 ] [PMID: 26262439]
[69]
Anusuya, S.; Gromiha, M.M. Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: molecular docking, molecular dynamics simulation, and binding free energy calculation. J. Biomol. Struct. Dyn., 2017, 35(13), 2895-2909.
[http://dx.doi.org/10.1080/07391102.2016.1234416 ] [PMID: 27608509]
[70]
Mortier, J.; Dhakal, P.; Volkamer, A. Truly Target-Focused Pharmacophore Modeling: A Novel Tool for Mapping Intermolecular Surfaces Molecules, 2018, 23(8), e1959.
[http://dx.doi.org/10.3390/molecules23081959]
[71]
Koes, D.R.; Camacho, C.J. Shape-based virtual screening with volumetric aligned molecular shapes. J. Comput. Chem., 2014, 35(25), 1824-1834.
[http://dx.doi.org/10.1002/jcc.23690 ] [PMID: 25049193]
[72]
Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol., 2017, 1607, 627-641.
[http://dx.doi.org/10.1007/978-1-4939-7000-1_26 ] [PMID: 28573592]
[73]
Anusuya, S.; Gromiha, M.M. Structural basis of flavonoids as dengue polymerase inhibitors: insights from QSAR and docking studies. J. Biomol. Struct. Dyn., 2019, 37(1), 104-115.
[http://dx.doi.org/10.1080/07391102.2017.1419146 ] [PMID: 29254451]
[74]
Kanakaveti, V.; Sakthivel, R.; Rayala, S.K.; Gromiha, M.M. Importance of functional groups in predicting the activity of small molecule inhibitors for Bcl-2 and Bcl-xL. Chem. Biol. Drug Des., 2017, 90(2), 308-316.
[http://dx.doi.org/10.1111/cbdd.12952 ] [PMID: 28112863]
[75]
Anoosha, P.; Sakthivel, R.; Gromiha, M.M. Investigating mutation-specific biological activities of small molecules using quantitative structure-activity relationship for epidermal growth factor receptor in cancer. Mutat. Res., 2017, 806, 19-26.
[http://dx.doi.org/10.1016/j.mrfmmm.2017.08.003 ] [PMID: 28938109]
[76]
Anderson, A.C. The process of structure-based drug design. Chem. Biol., 2003, 10(9), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.002 ] [PMID: 14522049]
[77]
RCSB. Protein Data Bank. Structure: 6Y2E. Available from: https://www.rcsb.org/structure/6Y2E
[78]
RCSB. Protein Data Bank. Structure: 6Y84. Available from: https://www.rcsb.org/structure/6Y84
[79]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058 ] [PMID: 32155444]
[80]
Kumari, M.; Chandra, S.; Tiwari, N.; Subbarao, N. High Throughput Virtual Screening to Identify Novel natural product Inhibitors for MethionyltRNA-Synthetase of Brucella melitensis. Bioinformation, 2017, 13(1), 8-16.
[http://dx.doi.org/10.6026/97320630013008 ] [PMID: 28479744]
[81]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445 ] [PMID: 25262799]
[82]
Chen, Y.W.; Yiu, C.B.; Wong, K.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129.
[http://dx.doi.org/10.12688/f1000research.22457.2 ] [PMID: 32194944]
[83]
Zhang, D.H.; Wu, K.L.; Zhang, X.; Deng, S.Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005 ] [PMID: 32113846]
[84]
Xinhuanet: China Focus: Chinese researchers select 30 drug candidates to fight novel coronavirus, 2020.Available from: http://www.xinhuanet.com/english/2020-01/28/c_138739394.htm
[85]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012 ] [PMID: 32147628]
[86]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248, 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477 ] [PMID: 32119961]
[87]
Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid identification of potential inhibitors of sars-cov-2 main protease by deep docking of 1.3 billion compounds. Mol. Inform., 2020.
[http://dx.doi.org/10.1002/minf.202000028 ] [PMID: 32162456]
[88]
Ul Qamar, M.T.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020. (in press)
[http://dx.doi.org/10.1016/j.jpha.2020.03.009 ] [PMID: 32296570]
[89]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, X.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure-based drug design, virtual screening and high-throughput screening rapidly identify antiviral leads targeting COVID-19. bioRxiv, 2020. (in press)
[http://dx.doi.org/10.1101/2020.02.26.964882]
[90]
Nikiforov, P.O.; Surade, S.; Blaszczyk, M.; Delorme, V.; Brodin, P.; Baulard, A.R.; Blundell, T.L.; Abell, C. A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters. Org. Biomol. Chem., 2016, 14(7), 2318-2326.
[http://dx.doi.org/10.1039/C5OB02630J ] [PMID: 26806381]
[91]
Bienstock, R.J. Computational methods for fragment-based ligand design: growing and linking. Methods Mol. Biol., 2015, 1289, 119-135.
[http://dx.doi.org/10.1007/978-1-4939-2486-8_10 ] [PMID: 25709037]
[92]
Kashyap, A.; Singh, P.K.; Silakari, O. Counting on Fragment Based Drug Design Approach for Drug Discovery. Curr. Top. Med. Chem., 2018, 18(27), 2284-2293.
[http://dx.doi.org/10.2174/1568026619666181130134250 ] [PMID: 30499406]
[93]
Wasko, M.J.; Pellegrene, K.A.; Madura, J.D.; Surratt, C.K. A role for fragment-based drug design in developing novel lead compounds for central nervous system targets. Front. Neurol., 2015, 6, 197.
[http://dx.doi.org/10.3389/fneur.2015.00197 ] [PMID: 26441817]
[94]
Batool, M.; Ahmad, B.; Choi, S. A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci., 2019, 20(11), e2783.
[http://dx.doi.org/10.3390/ijms20112783 ] [PMID: 31174387]
[95]
Congreve, M.; Carr, R.; Murray, C.; Jhoti, H.A. ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877.
[http://dx.doi.org/10.1016/S1359-6446(03)02831-9 ] [PMID: 14554012]
[96]
Howes, L. Crystal structures of the novel coronavirus protease guide drug development. . Chem. Eng. News: Drug Discovery, 2020.Available from: https://cen.acs.org/pharmaceuticals/drug-discovery/Crystal-structures-novel-coronavirus-protease/98/web/2020/03
[97]
Diamond: For Scientists - COVID-19: Main protease structure and XChem fragment screen. Available from https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem.html
[98]
Tang, B.; He, F.; Liu, D.; Fang, M.; Wu, Z.; Xu, D. AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. bioRxiv, 2020. (in press)
[http://dx.doi.org/10.1101/2020.03.03.972133 ] [PMID: 32511346]
[99]
Guner, O.F. The impact of pharmacophore modeling in drug design. IDrugs, 2005, 8(7), 567-572.
[PMID: 15973565]
[100]
Yang, S.Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today, 2010, 15(11-12), 444-450.
[http://dx.doi.org/10.1016/j.drudis.2010.03.013 ] [PMID: 20362693]
[101]
Kaserer, T.; Beck, K.R.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore models and pharmacophore-based virtual screening: concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules, 2015, 20(12), 22799-22832.
[http://dx.doi.org/10.3390/molecules201219880 ] [PMID: 26703541]
[102]
Huang, H.; Zhang, G.; Zhou, Y.; Lin, C.; Chen, S.; Lin, Y.; Mai, S.; Huang, Z. Reverse screening methods to search for the protein targets of chemopreventive compounds. Front Chem., 2018, 6, 138.
[http://dx.doi.org/10.3389/fchem.2018.00138 ] [PMID: 29868550]
[103]
Sastry, G.M.; Dixon, S.L.; Sherman, W. Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J. Chem. Inf. Model., 2011, 51(10), 2455-2466.
[http://dx.doi.org/10.1021/ci2002704 ] [PMID: 21870862]
[104]
Fischer, A.; Sellner, M.; Neranjan, S.; Lill, M.A.; Smiesko, M. Inhibitors for novel coronavirus proteaseidentified by virtual screening of 687 million compounds. ChemRxiv, 2020. (in press)
[http://dx.doi.org/10.26434/chemrxiv.11923239.v1]
[105]
Hodos, R.A.; Kidd, B.A.; Khader, S.; Readhead, B.P.; Dudley, J.T. Computational approaches to drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210.
[http://dx.doi.org/10.1002/wsbm.1337 ] [PMID: 27080087]
[106]
Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci., 2018, 14(10), 1232-1244.
[http://dx.doi.org/10.7150/ijbs.24612 ] [PMID: 30123072]
[107]
Mercorelli, B.; Palù, G.; Loregian, A. Drug repurposing for viral infectious diseases: how far are we? Trends Microbiol., 2018, 26(10), 865-876.
[http://dx.doi.org/10.1016/j.tim.2018.04.004 ] [PMID: 29759926]
[108]
Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658 ] [PMID: 14985565]
[110]
Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J. Biomol. Struct. Dyn., 2020, 1-6.
[http://dx.doi.org/10.1080/07391102.2020.1752802 ] [PMID: 32248766]
[111]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0 ] [PMID: 32127666]
[112]
Mulangu, S.; Dodd, L.E.; Davey, R.T., Jr; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; Ali, R.; Coulibaly, S.; Levine, A.C.; Grais, R.; Diaz, J.; Lane, H.C.; Muyembe-Tamfum, J.J.; Sivahera, B.; Camara, M.; Kojan, R.; Walker, R.; Dighero-Kemp, B.; Cao, H.; Mukumbayi, P.; Mbala-Kingebeni, P.; Ahuka, S.; Albert, S.; Bonnett, T.; Crozier, I.; Duvenhage, M.; Proffitt, C.; Teitelbaum, M.; Moench, T.; Aboulhab, J.; Barrett, K.; Cahill, K.; Cone, K.; Eckes, R.; Hensley, L.; Herpin, B.; Higgs, E.; Ledgerwood, J.; Pierson, J.; Smolskis, M.; Sow, Y.; Tierney, J.; Sivapalasingam, S.; Holman, W.; Gettinger, N.; Vallée, D.; Nordwall, J. PALM writing group; palm consortium study team. a randomized, controlled trial of ebola virus disease therapeutics. N. Engl. J. Med., 2019, 381(24), 2293-2303.
[http://dx.doi.org/10.1056/NEJMoa1910993 ] [PMID: 31774950]
[113]
Jordan, P.C.; Stevens, S.K.; Deval, J. Nucleosides for the treatment of respiratory RNA virus infections. Antivir. Chem. Chemother., 2018, 26, 2040206618764483.
[http://dx.doi.org/10.1177/2040206618764483 ] [PMID: 29562753]
[114]
Koren, G.; King, S.; Knowles, S.; Phillips, E. Ribavirin in the treatment of SARS: A new trick for an old drug? CMAJ, 2003, 168(10), 1289-1292.
[PMID: 12743076]
[115]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37 ] [PMID: 26868298]
[116]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938 ] [PMID: 32171740]
[117]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69 ] [PMID: 16115318]
[118]
Woo, A.S.J.; Kwok, R.; Ahmed, T. Alpha-interferon treatment in hepatitis B. Ann. Transl. Med., 2017, 5(7), 159.
[http://dx.doi.org/10.21037/atm.2017.03.69 ] [PMID: 28480195]
[119]
Maughan, A.; Ogbuagu, O. Pegylated interferon alpha 2a for the treatment of hepatitis C virus infection. Expert Opin. Drug Metab. Toxicol., 2018, 14(2), 219-227.
[http://dx.doi.org/10.1080/17425255.2018.1421173 ] [PMID: 29271660]
[120]
Lin, L.T.; Chen, T.Y.; Lin, S.C.; Chung, C.Y.; Lin, T.C.; Wang, G.H.; Anderson, R.; Lin, C.C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry BMC microbial, 2013, 13, 187.
[http://dx.doi.org/10.1186/1471-2180-13-187]
[121]
Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med., 2014, 4(1), 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335 ] [PMID: 24872930]
[122]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002 ] [PMID: 16115693]
[123]
Chen, Z.; Nakamura, T. Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytother. Res., 2004, 18(7), 592-594.
[http://dx.doi.org/10.1002/ptr.1485 ] [PMID: 15305324]
[124]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential inhibitor of covid-19 main protease (mpro); from several medicinal plant compounds by molecular docking study. Preprints, 2020. (Online ahead of print)


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 24
Year: 2020
Page: [2210 - 2220]
Pages: 11
DOI: 10.2174/1568026620666200710105507
Price: $65

Article Metrics

PDF: 26
HTML: 4