Biological Evaluation of Selected 1,2,3-triazole Derivatives as Antibacterial and Antibiofilm Agents

Author(s): Lialyz Soares Pereira André, Renata Freire Alves Pereira, Felipe Ramos Pinheiro, Aislan Cristina Rheder Fagundes Pascoal, Vitor Francisco Ferreira, Fernando de Carvalho da Silva, Daniel Tadeu Gomes Gonzaga, Dora Cristina Silva Costa, Tainara Ribeiro, Daniela Sachs, Fábio Aguiar-Alves*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 24 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Resistance to antimicrobial agents is a major public health problem, being Staphylococcus aureus prevalent in infections in hospital and community environments and, admittedly, related to biofilm formation in biotic and abiotic surfaces. Biofilms form a complex and structured community of microorganisms surrounded by an extracellular matrix adhering to each other and to a surface that gives them even more protection from and resistance against the action of antimicrobial agents, as well as against host defenses.

Methods: Aiming to control and solve these problems, our study sought to evaluate the action of 1,2,3- triazoles against a Staphylococcus aureus isolate in planktonic and in the biofilm form, evaluating the activity of this triazole through Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. We have also performed cytotoxic evaluation and Scanning Electron Microscopy (SEM) of the biofilms under the treatment of the compound. The 1,2,3-triazole DAN 49 showed bacteriostatic and bactericidal activity (MIC and MBC 128 μg/mL). In addition, its presence interfered with the biofilm formation stage (1/2 MIC, p <0.000001) and demonstrated an effect on young preformed biofilm (2 MICs, p <0.05).

Results: Scanning Electron Microscopy images showed a reduction in the cell population and the appearance of deformations on the surface of some bacteria in the biofilm under treatment with the compound.

Conclusion: Therefore, it was possible to conclude the promising anti-biofilm potential of 1,2,3-triazole, demonstrating the importance of the synthesis of new compounds with biological activity.

Keywords: Heterocycles, Azoles, MRSA, Biofilm, Antibacterial, Antibiofilm agent.

[1]
CDC; The biggest antibiotic-resistant threats in the U.S., Available from:. https://www.cdc.gov/drugresistance/biggest-threats.html2019.
[2]
Ferreira, F.A.; Souza, R.R.; de Sousa Moraes, B.; de Amorim Ferreira, A.M.; Américo, M.A.; Fracalanzza, S.E.L.; Dos Santos Silva Couceiro, J.N.; Sá Figueiredo, A.M. Impact of agr dysfunction on virulence profiles and infections associated with a novel methicillin-resistant Staphylococcus aureus (MRSA) variant of the lineage ST1-SCCmec IV. BMC Microbiol., 2013, 13, 93.
[http://dx.doi.org/10.1186/1471-2180-13-93 ] [PMID: 23622558]
[3]
Zobell, C.E.; Anderson, D.Q. Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol. Bull., 1936, 71(2), 324-342.
[4]
Hoiby, N. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scand. J. Respir. Dis., 1977, 58(2), 65-79.
[PMID: 411327]
[5]
Lam, J.; Chan, R.; Lam, K.; Costerton, J.W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun., 1980, 28(2), 546-556.
[PMID: 6772562]
[6]
Marrie, T.J.; Nelligan, J.; Costerton, J.W. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation, 1982, 66(6), 1339-1341.
[http://dx.doi.org/10.1161/01.CIR.66.6.1339 ] [PMID: 7139907]
[7]
Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol., 1995, 49, 711-745.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.003431 ] [PMID: 8561477]
[8]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284(5418), 1318-1322.
[9]
Cui, J.; Jin, J.; Chaudhary, A.S.; Hsieh, Y.H.; Zhang, H.; Dai, C.; Damera, K.; Chen, W.; Tai, P.C.; Wang, B. Design, synthesis and evaluation of triazole-pyrimidine analogues as SecA inhibitors. ChemMedChem, 2016, 11(1), 43-56.
[10]
Thomas, K.D.; Adhikari, A.V.; Shetty, N.S. Design, synthesis and antimicrobial activities of some new quinoline derivatives carrying 1,2,3-triazole moiety. Eur. J. Med. Chem., 2010, 45(9), 3803-3810.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.030 ] [PMID: 20542604]
[11]
Cafici, L.; Pirali, T.; Condorelli, F.; Del Grosso, E.; Massarotti, A.; Sorba, G.; Canonico, P.L.; Tron, G.C.; Genazzani, A.A. Solution-phase parallel synthesis and biological evaluation of combretatriazoles. J. Comb. Chem., 2008, 10(5), 732-740.
[http://dx.doi.org/10.1021/cc800090d ] [PMID: 18681482]
[12]
Colombano, G.; Travelli, C.; Galli, U.; Caldarelli, A.; Chini, M.G.; Canonico, P.L.; Sorba, G.; Bifulco, G.; Tron, G.C.; Genazzani, A.A. A novel potent nicotinamide phosphoribosyltransferase inhibitor synthesized via click chemistry. J. Med. Chem., 2010, 53(2), 616-623.
[http://dx.doi.org/10.1021/jm9010669 ] [PMID: 19961183]
[13]
Kamal, A.; Shankaraiah, N.; Devaiah, V.; Laxma Reddy, K.; Juvekar, A.; Sen, S.; Kurian, N.; Zingde, S. Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click’ chemistry: DNA-binding affinity and anticancer activity. Bioorg. Med. Chem. Lett., 2008, 18(4), 1468-1473.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.063 ] [PMID: 18207392]
[14]
Moret, V.; Laras, Y.; Cresteil, T.; Aubert, G.; Ping, D.Q.; Di, C.; Barthélémy-Requin, M.; Béclin, C.; Peyrot, V.; Allegro, D.; Rolland, A.; De Angelis, F.; Gatti, E.; Pierre, P.; Pasquini, L.; Petrucci, E.; Testa, U.; Kraus, J.L. Discovery of a new family of bis-8-hydroxyquinoline substituted benzylamines with pro-apoptotic activity in cancer cells: synthesis, structure-activity relationship, and action mechanism studies. Eur. J. Med. Chem., 2009, 44(2), 558-567.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.042 ] [PMID: 18485536]
[15]
Rashad, A.E.; El-Sayed, W.A.; Mohamed, A.M.; Ali, M.M. Synthesis of new quinoline derivatives as inhibitors of human tumor cells growth. Arch. Pharm. (Weinheim), 2010, 343(8), 440-448.
[http://dx.doi.org/10.1002/ardp.201000002 ] [PMID: 20803621]
[16]
Arafa, R.K.; Hegazy, G.H.; Piazza, G.A.; Abadi, A.H. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur. J. Med. Chem., 2013, 63, 826-832.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.008 ] [PMID: 23584545]
[17]
Hussein, M.A.; Shaker, R.M.; Ameen, M.A.; Mohammed, M.F. Synthesis, anti-inflammatory, analgesic, and antibacterial activities of some triazole, triazolothiadiazole, and triazolothiadiazine derivatives. Arch. Pharm. Res., 2011, 34(8), 1239-1250.
[http://dx.doi.org/10.1007/s12272-011-0802-z ] [PMID: 21910044]
[18]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 2010, 18(23), 8243-8256.
[http://dx.doi.org/10.1016/j.bmc.2010.10.009 ] [PMID: 21044845]
[19]
Gill, C.; Jadhav, G.; Shaikh, M.; Kale, R.; Ghawalkar, A.; Nagargoje, D.; Shiradkar, M. Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6244-6247.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.096 ] [PMID: 18930654]
[20]
Song, M-X.; Rao, B.Q.; Cheng, B.B.; Wu, Y.; Zeng, H.; Luo, Y.G.; Deng, X.Q. Design, Synthesis and Evaluation of the Antidepressant and Anticonvulsant Activities of Triazole-Containing Benzo[d]oxazoles. CNS Neurol. Disord. Drug Targets, 2017, 16(2), 187-198.
[http://dx.doi.org/10.2174/1871527315666160822112501 ] [PMID: 27549143]
[21]
Teixeira, L.A.; Resende, C.A.; Ormonde, L.R.; Rosenbaum, R.; Figueiredo, A.M.; de Lencastre, H.; Tomasz, A. Geographic spread of epidemic multiresistant Staphylococcus aureus clone in Brazil. J. Clin. Microbiol., 1995, 33(9), 2400-2404.
[http://dx.doi.org/10.1128/JCM.33.9.2400-2404.1995 ] [PMID: 7494036]
[22]
Gonzaga, D.; Senger, M.R. da Silva, Fde.C.; Ferreira, V.F.; Silva, F.P., Jr 1-Phenyl-1H- and 2-phenyl-2H-1,2,3-triazol derivatives: design, synthesis and inhibitory effect on alpha-glycosidases. Eur. J. Med. Chem., 2014, 74, 461-476.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.039 ] [PMID: 24487194]
[23]
CLSI. M100, Performance standards for antimicrobial susceptibility testing; Clinical and Laboratory Standards Institute, 2017.
[24]
Pereira, C.A.; Romeiro, R.L.; Costa, A.C.; Machado, A.K.; Junqueira, J.C.; Jorge, A.O. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med. Sci., 2011, 26(3), 341-348.
[http://dx.doi.org/10.1007/s10103-010-0852-3 ] [PMID: 21069408]
[25]
Ribeiro, S.M.; Felício, M.R.; Boas, E.V.; Gonçalves, S.; Costa, F.F.; Samy, R.P.; Santos, N.C.; Franco, O.L. New frontiers for anti-biofilm drug development. Pharmacol. Ther., 2016, 160, 133-144.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.006 ] [PMID: 26896562]
[26]
Velázquez, S.; Alvarez, R.; Pérez, C.; Gago, F.; De Clercq, E.; Balzarini, J.; Camarasa, M.J. Regiospecific synthesis and anti-human immunodeficiency virus activity of novel 5-substituted N-alkylcarbamoyl and N,N-dialkylcarbamoyl 1,2,3-triazole-TSAO analogues. Antivir. Chem. Chemother., 1998, 9(6), 481-489.
[http://dx.doi.org/10.1177/095632029800900604 ] [PMID: 9865386]
[27]
Genin, M.J.; Allwine, D.A.; Anderson, D.J.; Barbachyn, M.R.; Emmert, D.E.; Garmon, S.A.; Graber, D.R.; Grega, K.C.; Hester, J.B.; Hutchinson, D.K.; Morris, J.; Reischer, R.J.; Ford, C.W.; Zurenko, G.E.; Hamel, J.C.; Schaadt, R.D.; Stapert, D.; Yagi, B.H. Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem., 2000, 43(5), 953-970.
[http://dx.doi.org/10.1021/jm990373e ] [PMID: 10715160]
[28]
Wilkinson, B.L.; Long, H.; Sim, E.; Fairbanks, A.J. Synthesis of Arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6265-6267.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.082 ] [PMID: 18926698]
[29]
Bezouska, K. Design, functional evaluation and biomedical applications of carbohydrate dendrimers (glycodendrimers). J. Biotechnol., 2002, 90(3-4), 269-290.
[PMID: 12071229]
[30]
Jeffres, M.N. The whole price of vancomycin: toxicities, troughs, and time. Drugs, 2017, 77(11), 1143-1154.
[http://dx.doi.org/10.1007/s40265-017-0764-7 ] [PMID: 28573434]
[31]
López, D.; Vlamakis, H.; Kolter, R. Biofilms. Cold Spring Harb. Perspect. Biol., 2010, 2(7), a000398.
[http://dx.doi.org/10.1101/cshperspect.a000398 ] [PMID: 20519345]
[32]
Otto, M. Staphylococcal Biofilms. Microbiol. Spectr., 2018, 6(4)
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0023-2018.]
[33]
Kullar, R.; Sakoulas, G.; Deresinski, S.; van Hal, S.J. When sepsis persists: a review of MRSA bacteraemia salvage therapy. J. Antimicrob. Chemother., 2016, 71(3), 576-586.
[http://dx.doi.org/10.1093/jac/dkv368 ] [PMID: 26565015]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 24
Year: 2020
Page: [2186 - 2191]
Pages: 6
DOI: 10.2174/1568026620666200710104737
Price: $65

Article Metrics

PDF: 22
HTML: 3