Isothymusin, a Potential Inhibitor of Cancer Cell Proliferation: An In Silico and In Vitro Investigation

Author(s): Shilpi Singh, Priyanka Kumari, Yusuf Hussain, Suaib Luqman, Abha Meena*, Deepika Kanaojia

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 21 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Since centuries plant-based compounds are known for the treatment of cancer in both traditional and contemporary medicine. The problems like target non-specificity and toxicity are well-known regarding anticancer drugs. Therefore, target specific search of novel entities is constant. Isothymusin is a dimethoxy, trihydroxy flavone present in plants like Ocimum sanctum, and Limnophilla geoffrayi. There are limited reports available on the anticancer potential of isothymusin.

Objectives: The effects of isothymusin on redox status, cell cytotoxicity, and targets involved in the promotion and progression of the cancer cells have been investigated.

Methods: Antiproliferative efficacy was evaluated by MTT, Neutral Red Uptake, and Sulforhodamine-B assays. The spectrophotometric methods were adopted to study the effect against selected targets. Redox activity was assessed by in vitro antioxidant assays and the interaction study, ADMET profiling, and toxicity assessments were done in silico.

Results: Isothymusin scavenges the radicals, i.e., DPPH and nitric oxide with moderate ferric reducing potential. It affected the proliferation of leukemia, colon, skin, and breast cancer cell lines by more than 50% but moderately affected prostate, kidney, lung, hepatic, and breast adenocarcinoma (up to 48%). Isothymusin inhibited the enzymes associated with the promotion stage of cancer, including cycloxygenase- 2 and lipoxygenase-5. Additionally, it also inhibited the activity of proliferation markers like cathepsin- D, dihydrofolate reductase, hyaluronidase, and ornithine-decarboxylase. Besides, in silico studies supported the in vitro enzyme inhibition assays outcome. Toxicity studies showed promising results of chemical descriptors and non-skin-irritant, moderate ocular-irritancy, and in vitro Ames test confirmed non-mutagenic nature.

Conclusion: Isothymusin showed radical scavenging and anti-proliferative activities, which may be taken up as a phytochemical lead for the synthesis of analogues possessing enhanced anticancer potential.

Keywords: Isothymusin, Cancer, DPPH, Nitric oxide, Antiproliferative, MTT.

[1]
Hollman, P.C.H.; Katan, M.B. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed. Pharmacother., 1997, 51(8), 305-310.
[http://dx.doi.org/10.1016/S0753-3322(97)88045-6] [PMID: 9436520]
[2]
Maurya, P.; Singh, S.; Gupta, M.M.; Luqman, S. Characterization of bioactive constituents from the gum resin of Gardenia lucida and its pharmacological potential. Biomed. Pharmacother., 2017, 85, 444-456.
[http://dx.doi.org/10.1016/j.biopha.2016.11.049] [PMID: 27899258]
[3]
Kelm, M.A.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine, 2000, 7(1), 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X] [PMID: 10782484]
[4]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[5]
Suksamrarn, A.; Chotipong, A.; Suavansri, T.; Boongird, S.; Timsuksai, P.; Vimuttipong, S.; Chuaynugul, A. Antimycobacterial activity and cytotoxicity of flavonoids from the flowers of Chromolaena odorata. Arch. Pharm. Res., 2004, 27(5), 507-511.
[http://dx.doi.org/10.1007/BF02980123] [PMID: 15202555]
[6]
Jayasinghe, C.; Gotoh, N.; Aoki, T.; Wada, S. Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem., 2003, 51(15), 4442-4449.
[http://dx.doi.org/10.1021/jf034269o] [PMID: 12848523]
[7]
Ahmad, A.; Singh, D.K.; Fatima, K.; Tandon, S.; Luqman, S. New constituents from the roots of Oenothera biennis and their free radical scavenging and ferric reducing activity. Ind. Crops Prod., 2014, 58, 125-132.
[http://dx.doi.org/10.1016/j.indcrop.2014.04.008]
[8]
Luqman, S.; Kumar, R.; Kaushik, S.; Srivastava, S.; Darokar, M.P.; Khanuja, S.P.S. Antioxidant Potential of the Root of Vetiveria Zizanioides (L.) Nash. Indian J Biochem Biophys, 2009, Vol. 46, 1. [February 2009]
[9]
Nooreen, Z.; Singh, S.; Singh, D.K.; Tandon, S.; Ahmad, A.; Luqman, S. Characterization and evaluation of bioactive polyphenolic constituents from Zanthoxylum armatum DC., a traditionally used plant. Biomed. Pharmacother., 2017, 89, 366-375.
[http://dx.doi.org/10.1016/j.biopha.2017.02.040] [PMID: 28242546]
[10]
Singh, S.; Dubey, V.; Singh, D.K.; Fatima, K.; Ahmad, A.; Luqman, S. Antiproliferative and antimicrobial efficacy of the compounds isolated from the roots of Oenothera biennis L. J. Pharm. Pharmacol., 2017, 69(9), 1230-1243.
[http://dx.doi.org/10.1111/jphp.12753] [PMID: 28555835]
[11]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[12]
Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc., 2008, 3(7), 1125-1131.
[http://dx.doi.org/10.1038/nprot.2008.75] [PMID: 18600217]
[13]
Luqman, S.; Masood, N.; Srivastava, S.; Dubey, V. A modified spectrophotometric and methodical approach to find novel inhibitors of ornithine decarboxylase enzyme: a path through the maze. Protoc. Exch., 2013.
[http://dx.doi.org/10.1038/protex.2013.045]
[14]
Dorfman, A.; Roseman, S.; Moses, F.E.; Ludowieg, J.; Mayeda, M. The biosynthesis of hyaluronic acid by group A Streptococcus. II. Origin of the N-acetylglucosamine moiety. J. Biol. Chem., 1955, 212(2), 583-591.
[PMID: 14353858]
[15]
Hillcoat, B.L.; Kawai, M.; McCulloch, P.B.; Rosenfeld, J.; Williams, C.K. A sensitive assay of 5-fluorouracil in plasma by gas chromatography-mass spectrometry. Br. J. Clin. Pharmacol., 1976, 3(1), 135-143.
[http://dx.doi.org/10.1111/j.1365-2125.1976.tb00580.x] [PMID: 973935]
[16]
Kulmacz, R.J.; Lands, W.E.; Prostaglandin, H. Prostaglandin H synthase. Stoichiometry of heme cofactor. J. Biol. Chem., 1984, 259(10), 6358-6363.
[PMID: 6427213]
[17]
Lu, W.; Zhao, X.; Xu, Z.; Dong, N.; Zou, S.; Shen, X.; Huang, J. Development of a new colorimetric assay for lipoxygenase activity. Anal. Biochem., 2013, 441(2), 162-168.
[http://dx.doi.org/10.1016/j.ab.2013.06.007] [PMID: 23811155]
[18]
Girija, C.R.; Karunakar, P.; Poojari, C.S.; Begum, N.S.; Syed, A.A. Molecular docking studies of curcumin derivatives with multiple protein targets for procarcinogen activating enzyme inhibition. J. Proteomics Bioinform., 2010, 3, 200-203.
[http://dx.doi.org/10.4172/jpb.1000140]
[19]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[20]
Alam, S.; Khan, F. Virtual screening, Docking, ADMET and System Pharmacology studies on Garcinia caged Xanthone derivatives for Anticancer activity. Sci. Rep., 2018, 8(1), 5524.
[http://dx.doi.org/10.1038/s41598-018-23768-7] [PMID: 29615704]
[21]
Kalani, K.; Agarwal, J.; Alam, S.; Khan, F.; Pal, A.; Srivastava, S.K. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra. PLoS One, 2013, 8(9), e74761
[http://dx.doi.org/10.1371/journal.pone.0074761] [PMID: 24086367]
[22]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[23]
Morré, D.J.; Sun, E.; Geilen, C.; Wu, L-Y.; de Cabo, R.; Krasagakis, K.; Orfanos, C.E.; Morré, D.M. Capsaicin inhibits plasma membrane NADH oxidase and growth of human and mouse melanoma lines. Eur. J. Cancer, 1996, 32A(11), 1995-2003.
[http://dx.doi.org/10.1016/0959-8049(96)00234-1] [PMID: 8943687]
[24]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[25]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[26]
Ames, B.N.; Kammen, H.O.; Yamasaki, E. Hair dyes are mutagenic: identification of a variety of mutagenic ingredients. Proc. Natl. Acad. Sci. USA, 1975, 72(6), 2423-2427.
[http://dx.doi.org/10.1073/pnas.72.6.2423] [PMID: 1094469]
[27]
Ahmed, M.; Khan, M.I.; Khan, M.R.; Muhammad, N.; Khan, A.U.; Khan, R.A. Role of medicinal plants in oxidative stress and cancer. Sci. Rep., 2013, 2, 641-644.
[28]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[29]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[30]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[31]
Duffy, M.J. Use of biomarkers in screening for cancer. EJIFCC, 2010, 21(1), 1-12.
[PMID: 27683350]
[32]
Duffy, M.J. Use of biomarkers in screening for cancer. Adv. Exp. Med. Biol., 2015, 867, 27-39.
[http://dx.doi.org/10.1007/978-94-017-7215-0_3] [PMID: 26530358]
[33]
Ringleb, J.; Strack, E.; Angioni, C.; Geisslinger, G.; Steinhilber, D.; Weigert, A.; Brüne, B. Apoptotic cancer cells suppress 5-lipoxygenase in tumor-associated macrophages. J. Immunol., 2018, 200(2), 857-868.
[http://dx.doi.org/10.4049/jimmunol.1700609] [PMID: 29229677]
[34]
Harris, S.G.; Padilla, J.; Koumas, L.; Ray, D.; Phipps, R.P. Prostaglandins as modulators of immunity. Trends Immunol., 2002, 23(3), 144-150.
[http://dx.doi.org/10.1016/S1471-4906(01)02154-8] [PMID: 11864843]
[35]
Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010., 2010. (Online ahead of Print)
[http://dx.doi.org/10.1155/2010/215158]
[36]
Schnell, J.R.; Dyson, H.J.; Wright, P.E. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 119-140.
[http://dx.doi.org/10.1146/annurev.biophys.33.110502.133613] [PMID: 15139807]
[37]
Serra, M.; Reverter-Branchat, G.; Maurici, D.; Benini, S.; Shen, J-N.; Chano, T.; Hattinger, C-M.; Manara, M-C.; Pasello, M.; Scotlandi, K.; Picci, P. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann. Oncol., 2004, 15(1), 151-160.
[http://dx.doi.org/10.1093/annonc/mdh004] [PMID: 14679136]
[38]
Dicker, K.T.; Gurski, L.A.; Pradhan-Bhatt, S.; Witt, R.L.; Farach-Carson, M.C.; Jia, X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater., 2014, 10(4), 1558-1570.
[http://dx.doi.org/10.1016/j.actbio.2013.12.019] [PMID: 24361428]
[39]
Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev., 2011, 91(1), 221-264.
[http://dx.doi.org/10.1152/physrev.00052.2009] [PMID: 21248167]
[40]
Alam, S.; Khan, F. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα. Drug Des. Devel. Ther., 2014, 8, 183-195.
[PMID: 24516330]
[41]
Bergström, C.A.S.; Charman, W.N.; Porter, C.J.H. Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv. Drug Deliv. Rev., 2016, 101, 6-21.
[http://dx.doi.org/10.1016/j.addr.2016.02.005] [PMID: 26928657]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 21
Year: 2020
Page: [1898 - 1909]
Pages: 12
DOI: 10.2174/1568026620666200710103636
Price: $65

Article Metrics

PDF: 18
HTML: 3