Activation of Caspase-3 by Terpenoids and Flavonoids in Different Types of Cancer Cells

Author(s): Nusrat Masood, Vijaya Dubey, Suaib Luqman*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 21 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Caspase-3 is accountable for the execution of apoptosis. Recently, it has gained attention as a promising target for the discovery of natural products as anticancer agents.

Methods: We examined the efficacy of two different sets of natural products (terpenoids and flavonoids) towards caspase-3 activity adopting in silico, cell-free and cell-based activity and real-time gene expression analysis.

Results: It was observed that terpenes activate caspase-3 activity in both the cell-free and cell-based systems, which was supported by the gene expression analysis, binding energy and activation constant. Flavonoids’ action, however, was limited to the cell-based system and transcriptional regulation suggesting their indirect association, which enhanced the enzyme activity and up-regulated the expression of mRNA levels in the cells. Among the tested natural products, (+) carvone was observed to be the best activator of caspase-3 in K562 (34.4 μM), WRL-68 (22.3 μM), HeLa (18.7 μM), MCF-7 (39.4 μM) and MDA-MB-231 cell lines (45.1 μM).

Conclusion: Overall, terpenoids have a persistent activation of caspase-3 in all the investigated systems, while flavonoids circuitously affect the enzyme activity.

Keywords: Caspase-3, Flavonoids, Terpenoids, Molecular interaction, Binding energy, Activation constant.

[1]
Alnemri, E.S.; Livingston, D.J.; Nicholson, D.W.; Salvesen, G.; Thornberry, N.A.; Wong, W.W.; Yuan, J. Human ICE/CED-3 protease nomenclature. Cell, 1996, 87(2), 171.
[http://dx.doi.org/10.1016/S0092-8674(00)81334-3] [PMID: 8861900]
[2]
Boland, K.; Flanagan, L.; Prehn, J.H. Paracrine control of tissue regeneration and cell proliferation by Caspase-3. Cell Death Dis., 2013, 4,e725
[http://dx.doi.org/10.1038/cddis.2013.250] [PMID: 23846227]
[3]
Koomägi, R.; Volm, M. Relationship between the expression of caspase-3 and the clinical outcome of patients with non-small cell lung cancer. Anticancer Res., 2000, 20(1B), 493-496.
[PMID: 10769711]
[4]
Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[5]
Juraver-Geslin, H.A.; Durand, B.C. Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis, 2015, 53(2), 203-224.
[http://dx.doi.org/10.1002/dvg.22844] [PMID: 25619400]
[6]
Carlile, G.W.; Smith, D.H.; Wiedmann, M. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood, 2004, 103(11), 4310-4316.
[http://dx.doi.org/10.1182/blood-2003-09-3362] [PMID: 14976035]
[7]
Kuida, K.; Zheng, T.S.; Na, S.; Kuan, C.; Yang, D.; Karasuyama, H.; Rakic, P.; Flavell, R.A. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 1996, 384(6607), 368-372.
[http://dx.doi.org/10.1038/384368a0] [PMID: 8934524]
[8]
Woo, M.; Hakem, R.; Soengas, M.S.; Duncan, G.S.; Shahinian, A.; Kägi, D.; Hakem, A.; McCurrach, M.; Khoo, W.; Kaufman, S.A.; Senaldi, G.; Howard, T.; Lowe, S.W.; Mak, T.W. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev., 1998, 12(6), 806-819.
[http://dx.doi.org/10.1101/gad.12.6.806] [PMID: 9512515]
[9]
Mannick, J.B.; Hausladen, A.; Liu, L.; Hess, D.T.; Zeng, M.; Miao, Q.X.; Kane, L.S.; Gow, A.J.; Stamler, J.S. Fas-induced caspase denitrosylation. Science, 1999, 284(5414), 651-654.
[http://dx.doi.org/10.1126/science.284.5414.651] [PMID: 10213689]
[10]
Yang, B.; Ye, D.; Wang, Y. Caspase-3 as a therapeutic target for heart failure. Expert Opin. Ther. Targets, 2013, 17(3), 255-263.
[http://dx.doi.org/10.1517/14728222.2013.745513] [PMID: 23294432]
[11]
Chen, H.; Yang, X.; Feng, Z.; Tang, R.; Ren, F.; Wei, K.; Chen, G. Prognostic value of Caspase-3 expression in cancers of digestive tract: a meta-analysis and systematic review. Int. J. Clin. Exp. Med., 2015, 8(7), 10225-10234.
[PMID: 26379814]
[12]
Ferreira-Dias, G.; Mateus, L.; Costa, A.S.; Solá, S.; Ramalho, R.M.; Castro, R.E.; Rodrigues, C.M. Progesterone and caspase-3 activation in equine cyclic corpora lutea. Reprod. Domest. Anim., 2007, 42(4), 380-386.
[http://dx.doi.org/10.1111/j.1439-0531.2006.00795.x] [PMID: 17635775]
[13]
Kania, J.; Konturek, S.J.; Marlicz, K.; Hahn, E.G.; Konturek, P.C. Expression of survivin and caspase-3 in gastric cancer. Dig. Dis. Sci., 2003, 48(2), 266-271.
[http://dx.doi.org/10.1023/A:1021915124064] [PMID: 12643601]
[14]
Linder, M.; Tschernig, T. Vasculogenic mimicry: Possible role of effector caspase-3, caspase-6 and caspase-7. Ann. Anat., 2016, 204, 114-117.
[http://dx.doi.org/10.1016/j.aanat.2015.11.007] [PMID: 26704356]
[15]
Mirzayans, R.; Andrais, B.; Kumar, P.; Murray, D. The growing complexity of cancer cell response to dna-damaging agents: caspase 3 mediates cell death or survival? Int. J. Mol. Sci., 2016, 17(5),E708
[http://dx.doi.org/10.3390/ijms17050708] [PMID: 27187358]
[16]
Ideo, A.; Hashimoto, K.; Shimada, J.; Kawase, M.; Sakagami, H. Type of cell death induced by alpha-trifluoromethyl acyloins in oral squamous cell carcinoma. Anticancer Res., 2009, 29(1), 175-181.
[PMID: 19331148]
[17]
Arisan, E.D.; Kutuk, O.; Tezil, T.; Bodur, C.; Telci, D.; Basaga, H. Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells. Breast Cancer Res. Treat., 2010, 119(2), 271-281.
[http://dx.doi.org/10.1007/s10549-009-0343-z] [PMID: 19238538]
[18]
Azab, S.S.; Salama, S.A.; Abdel-Naim, A.B.; Khalifa, A.E.; El-Demerdash, E.; Al-Hendy, A. 2-Methoxyestradiol and multidrug resistance: can 2-methoxyestradiol chemosensitize resistant breast cancer cells? Breast Cancer Res. Treat., 2009, 113(1), 9-19.
[http://dx.doi.org/10.1007/s10549-008-9898-3] [PMID: 18228136]
[19]
Cheah, Y.H.; Nordin, F.J.; Tee, T.T.; Azimahtol, H.L.; Abdullah, N.R.; Ismail, Z. Antiproliferative property and apoptotic effect of xanthorrhizol on MDA-MB-231 breast cancer cells. Anticancer Res., 2008, 28(6A), 3677-3689.
[PMID: 19189649]
[20]
Tian, H.Y.; Li, Z.X.; Li, H.Y.; Wang, H.J.; Zhu, X.W.; Dou, Z.H. Effects of 14 single herbs on the induction of caspase-3 in tumor cells: a brief review. Chin. J. Integr. Med., 2013, 19(8), 636-640.
[http://dx.doi.org/10.1007/s11655-013-1539-y] [PMID: 23893135]
[21]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[22]
Gurtu, V.; Kain, S.R.; Zhang, G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal. Biochem., 1997, 251(1), 98-102.
[http://dx.doi.org/10.1006/abio.1997.2220] [PMID: 9300088]
[23]
Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; Vandesompele, J.; Wittwer, C.T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem., 2009, 55(4), 611-622.
[http://dx.doi.org/10.1373/clinchem.2008.112797] [PMID: 19246619]
[24]
Fuhrmann, J.; Rurainski, A.; Lenhof, H.P.; Neumann, D. A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J. Comput. Chem., 2010, 31(9), 1911-1918.
[http://dx.doi.org/10.1002/jcc.21478] [PMID: 20082382]
[25]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[26]
Jamali, T.; Kavoosi, G.; Safavi, M.; Ardestani, S.K. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci. Rep., 2018, 8(1), 15787.
[http://dx.doi.org/10.1038/s41598-018-34055-w] [PMID: 30361692]
[27]
Purkait, K.; Chatterjee, S.; Karmakar, S.; Mukherjee, A. Alteration of steric hindrance modulates glutathione resistance and cytotoxicity of three structurally related Ru(II)-p-cymene complexes. Dalton Trans., 2016, 45(20), 8541-8555.
[http://dx.doi.org/10.1039/C5DT04781A] [PMID: 27120485]
[28]
Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[29]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[30]
Gopalakrishnan, T.; Ganapathy, S.; Veeran, V.; Namasivayam, N. Preventive effect of D-carvone during DMBA induced mouse skin tumorigenesis by modulating xenobiotic metabolism and induction of apoptotic events. Biomed. Pharmacother., 2019, 111, 178-187.
[http://dx.doi.org/10.1016/j.biopha.2018.12.071] [PMID: 30583225]
[31]
Yu, Z.; Wang, W.; Xu, L.; Dong, J.; Jing, Y. d-Limonene and d-carvone induce apoptosis in HL-60 cells through activation of caspase-8. Asian J. Tradit. Med., 2008, 3, 134-143.
[32]
Nicholson, D.W.; Ali, A.; Thornberry, N.A.; Vaillancourt, J.P.; Ding, C.K.; Gallant, M.; Gareau, Y.; Griffin, P.R.; Labelle, M.; Lazebnik, Y.A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature, 1995, 376(6535), 37-43.
[http://dx.doi.org/10.1038/376037a0] [PMID: 7596430]
[33]
Sulpizi, M.; Rothlisberger, U.; Carloni, P. Molecular dynamics studies of caspase-3. Biophys. J., 2003, 84(4), 2207-2215.
[http://dx.doi.org/10.1016/S0006-3495(03)75026-7] [PMID: 12668429]
[34]
Kim, M.O.; McCammon, J.A. Computation of pH-dependent binding free energies. Biopolymers, 2016, 105(1), 43-49.
[http://dx.doi.org/10.1002/bip.22702] [PMID: 26202905]
[35]
Meergans, T.; Hildebrandt, A.K.; Horak, D.; Haenisch, C.; Wendel, A. The short prodomain influences caspase-3 activation in HeLa cells. Biochem. J., 2000, 349(Pt 1), 135-140.
[http://dx.doi.org/10.1042/bj3490135] [PMID: 10861221]
[36]
Schipper, J.L.; MacKenzie, S.H.; Sharma, A.; Clark, A.C. A bifunctional allosteric site in the dimer interface of procaspase-3. Biophys. Chem., 2011, 159(1), 100-109.
[http://dx.doi.org/10.1016/j.bpc.2011.05.013] [PMID: 21645959]
[37]
Kim, Y.M.; Talanian, R.V.; Billiar, T.R. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem., 1997, 272(49), 31138-31148.
[http://dx.doi.org/10.1074/jbc.272.49.31138] [PMID: 9388267]
[38]
Jiang, Z.L.; Fletcher, N.M.; Diamond, M.P.; Abu-Soud, H.M.; Saed, G.M. S-nitrosylation of caspase-3 is the mechanism by which adhesion fibroblasts manifest lower apoptosis. Wound Repair Regen., 2009, 17(2), 224-229.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00459.x] [PMID: 19320891]
[39]
Crespo, I.; García-Mediavilla, M.V.; Almar, M.; González, P.; Tuñón, M.J.; Sánchez-Campos, S.; González-Gallego, J. Differential effects of dietary flavonoids on reactive oxygen and nitrogen species generation and changes in antioxidant enzyme expression induced by proinflammatory cytokines in Chang Liver cells. Food Chem. Toxicol., 2008, 46(5), 1555-1569.
[http://dx.doi.org/10.1016/j.fct.2007.12.014] [PMID: 18234413]
[40]
Kim, K.Y.; Seol, J.Y.; Jeon, G.A.; Nam, M.J. The combined treatment of aspirin and radiation induces apoptosis by the regulation of bcl-2 and caspase-3 in human cervical cancer cell. Cancer Lett., 2003, 189(2), 157-166.
[http://dx.doi.org/10.1016/S0304-3835(02)00519-0] [PMID: 12490308]
[41]
Yang, S.; Zhou, Q.; Yang, X. Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells. Biochim. Biophys. Acta, 2007, 1773(6), 903-911.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.021] [PMID: 17490757]
[42]
Kang, J.W.; Kim, J.H.; Song, K.; Kim, S.H.; Yoon, J.H.; Kim, K.S. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytother. Res., 2010, 24(Suppl. 1), S77-S82.
[http://dx.doi.org/10.1002/ptr.2913] [PMID: 19585476]
[43]
Duquette, S.C.; Fischer, C.D.; Feener, T.D.; Muench, G.P.; Morck, D.W.; Barreda, D.R.; Nickerson, J.G.; Buret, A.G. Anti-inflammatory effects of retinoids and carotenoid derivatives on caspase-3-dependent apoptosis and efferocytosis of bovine neutrophils. Am. J. Vet. Res., 2014, 75(12), 1064-1075.
[http://dx.doi.org/10.2460/ajvr.75.12.1064] [PMID: 25419806]
[44]
Chacha, M. Terpenoids from the roots of Ceriops tagal induces apoptosis through activation of caspase-3 enzyme. Int. J. Biol. Chem. Sci., 2011, 5(2), 402-409.
[http://dx.doi.org/10.4314/ijbcs.v5i2.72057]
[45]
Luo, Y.; Smith, J.V.; Paramasivam, V.; Burdick, A.; Curry, K.J.; Buford, J.P.; Khan, I.; Netzer, W.J.; Xu, H.; Butko, P. Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12197-12202.
[http://dx.doi.org/10.1073/pnas.182425199] [PMID: 12213959]
[46]
Paramasivam, A.; Sambantham, S.; Shabnam, J.; Raghunandha-kumar, S.; Anandan, B.; Rajiv, R.; Vijayashree Priyadharsini, J.; Jayaraman, G. Anti-cancer effects of thymoquinone in mouse neuroblastoma (Neuro-2a) cells through caspase-3 activation with down-regulation of XIAP. Toxicol. Lett., 2012, 213(2), 151-159.
[http://dx.doi.org/10.1016/j.toxlet.2012.06.011] [PMID: 22732633]
[47]
Park, E.J.; Zhao, Y.Z.; Kim, Y.C.; Sohn, D.H. Bakuchiol-induced caspase-3-dependent apoptosis occurs through c-Jun NH2-terminal kinase-mediated mitochondrial translocation of Bax in rat liver myofibroblasts. Eur. J. Pharmacol., 2007, 559(2-3), 115-123.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.024] [PMID: 17292878]
[48]
Patel, P.B.; Thakkar, V.R. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines. Nutr. Cancer, 2014, 66(3), 453-462.
[http://dx.doi.org/10.1080/01635581.2014.884230] [PMID: 24611509]
[49]
Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F.; Dodaro, D.; Passalacqua, N.G.; Statti, G.; Menichini, F. In vitro cytotoxic effects of Senecio stabianus Lacaita (Asteraceae) on human cancer cell lines. Nat. Prod. Res., 2009, 23(18), 1707-1718.
[http://dx.doi.org/10.1080/14786410802194151] [PMID: 19921589]
[50]
Gu, Y.; Ting, Z.; Qiu, X.; Zhang, X.; Gan, X.; Fang, Y.; Xu, X.; Xu, R. Linalool preferentially induces robust apoptosis of a variety of leukemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicology, 2010, 268(1-2), 19-24.
[http://dx.doi.org/10.1016/j.tox.2009.11.013] [PMID: 19922762]
[51]
Aydın, E.; Türkez, H.; Keleş, M.S. Potential anticancer activity of carvone in N2a neuroblastoma cell line. Toxicol. Ind. Health, 2015, 31(8), 764-772.
[http://dx.doi.org/10.1177/0748233713484660] [PMID: 23552268]
[52]
Crowell, P.L.; Siar Ayoubi, A.; Burke, Y.D. Antitumorigenic effects of limonene and perillyl alcohol against pancreatic and breast cancer. Adv. Exp. Med. Biol., 1996, 401, 131-136.
[http://dx.doi.org/10.1007/978-1-4613-0399-2_10] [PMID: 8886131]
[53]
Ji, J.; Zhang, L.; Wu, Y.Y.; Zhu, X.Y.; Lv, S.Q.; Sun, X.Z. Induction of apoptosis by d-limonene is mediated by a caspase-dependent mitochondrial death pathway in human leukemia cells. Leuk. Lymphoma, 2006, 47(12), 2617-2624.
[http://dx.doi.org/10.1080/00268970600909205] [PMID: 17169807]
[54]
Kawamori, T.; Tanaka, T.; Hirose, Y.; Ohnishi, M.; Mori, H. Inhibitory effects of d-limonene on the development of colonic aberrant crypt foci induced by azoxymethane in F344 rats. Carcinogenesis, 1996, 17(2), 369-372.
[http://dx.doi.org/10.1093/carcin/17.2.369] [PMID: 8625465]
[55]
Ferraz, R.P.; Bomfim, D.S.; Carvalho, N.C.; Soares, M.B.; da Silva, T.B.; Machado, W.J.; Prata, A.P.; Costa, E.V.; Moraes, V.R.; Nogueira, P.C.; Bezerra, D.P. Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine, 2013, 20(7), 615-621.
[http://dx.doi.org/10.1016/j.phymed.2013.01.015] [PMID: 23453306]
[56]
Attoub, S.; Sperandio, O.; Raza, H.; Arafat, K.; Al-Salam, S.; Al Sultan, M.A.; Al Safi, M.; Takahashi, T.; Adem, A. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam. Clin. Pharmacol., 2013, 27(5), 557-569.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01056.x] [PMID: 22788741]
[57]
Joshi, S.; Chanotiya, C.S.; Agarwal, G.; Prakash, O.; Pant, A.K.; Mathela, C.S. Terpenoid compositions, and antioxidant and antimicrobial properties of the rhizome essential oils of different Hedychium species. Chem. Biodivers., 2008, 5(2), 299-309.
[http://dx.doi.org/10.1002/cbdv.200890027] [PMID: 18293443]
[58]
Beker, R.; Dafni, A.; Eisikowitch, D.; Ravid, U. Volatiles of two chemotypes of Majorana syriaca L. (Labiatae) as olfactory cues for the honeybee. Oecologia, 1989, 79(4), 446-451.
[http://dx.doi.org/10.1007/BF00378659] [PMID: 28313476]
[59]
Deb, D.D.; Parimala, G.; Saravana Devi, S.; Chakraborty, T. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem. Biol. Interact., 2011, 193(1), 97-106.
[http://dx.doi.org/10.1016/j.cbi.2011.05.009] [PMID: 21640085]
[60]
Yin, Q.H.; Yan, F.X.; Zu, X.Y.; Wu, Y.H.; Wu, X.P.; Liao, M.C.; Deng, S.W.; Yin, L.L.; Zhuang, Y.Z. Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology, 2012, 64(1), 43-51.
[http://dx.doi.org/10.1007/s10616-011-9389-y] [PMID: 21938469]
[61]
Desai, T.H.; Joshi, S.V. In silico evaluation of apoptogenic potential and toxicological profile of triterpenoids. Indian J. Pharmacol., 2019, 51(3), 181-207.
[http://dx.doi.org/10.4103/ijp.IJP_90_18] [PMID: 31391686]
[62]
Kashaw, S.K.; Agarwal, S.; Mishra, M.; Sau, S.; Iyer, A.K. Molecular docking analysis of caspase-3 activators as potential anticancer agents. Curr Comput Aided Drug Des, 2019, 15(1), 55-66.
[http://dx.doi.org/10.2174/1573409914666181015150731] [PMID: 30324892]
[63]
Cade, C.; Swartz, P.; MacKenzie, S.H.; Clark, A.C. Modifying caspase-3 activity by altering allosteric networks. Biochemistry, 2014, 53(48), 7582-7595.
[http://dx.doi.org/10.1021/bi500874k] [PMID: 25343534]
[64]
Hardy, J.A.; Lam, J.; Nguyen, J.T.; O’Brien, T.; Wells, J.A. Discovery of an allosteric site in the caspases. Proc. Natl. Acad. Sci. USA, 2004, 101(34), 12461-12466.
[http://dx.doi.org/10.1073/pnas.0404781101] [PMID: 15314233]
[65]
Maciag, J.J.; Mackenzie, S.H.; Tucker, M.B.; Schipper, J.L.; Swartz, P.; Clark, A.C. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Proc. Natl. Acad. Sci. USA, 2016, 113(41), E6080-E6088.
[http://dx.doi.org/10.1073/pnas.1603549113] [PMID: 27681633]
[66]
Fraternale, D.; Ricci, D.; Calcabrini, C.; Guescini, M.; Martinelli, C.; Sestili, P. Cytotoxic activity of essential oils of aerial parts and ripe fruits of Echinophora spinosa (Apiaceae). Nat. Prod. Commun., 2013, 8(11), 1645-1649.
[http://dx.doi.org/10.1177/1934578X1300801137] [PMID: 24427963]
[67]
Rubio, S.; León, F.; Quintana, J.; Cutler, S.; Estévez, F. Cell death triggered by synthetic flavonoids in human leukemia cells is amplified by the inhibition of extracellular signal-regulated kinase signaling. Eur. J. Med. Chem., 2012, 55, 284-296.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.028] [PMID: 22867530]
[68]
Moungjaroen, J.; Nimmannit, U.; Callery, P.S.; Wang, L.; Azad, N.; Lipipun, V.; Chanvorachote, P.; Rojanasakul, Y. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J. Pharmacol. Exp. Ther., 2006, 319(3), 1062-1069.
[http://dx.doi.org/10.1124/jpet.106.110965] [PMID: 16990509]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 21
Year: 2020
Page: [1876 - 1887]
Pages: 12
DOI: 10.2174/1568026620666200710101859
Price: $65

Article Metrics

PDF: 21
HTML: 5