Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction

Author(s): Xian Tan, Yang Yu, Kaiwen Duan, Jingbo Zhang, Pingping Sun* and Hui Sun*

Volume 20, Issue 21, 2020

Page: [1858 - 1867] Pages: 10

DOI: 10.2174/1568026620666200710101307

Price: $65

Abstract

Anticancer drug screening can accelerate drug discovery to save the lives of cancer patients, but cancer heterogeneity makes this screening challenging. The prediction of anticancer drug sensitivity is useful for anticancer drug development and the identification of biomarkers of drug sensitivity. Deep learning, as a branch of machine learning, is an important aspect of in silico research. Its outstanding computational performance means that it has been used for many biomedical purposes, such as medical image interpretation, biological sequence analysis, and drug discovery. Several studies have predicted anticancer drug sensitivity based on deep learning algorithms. The field of deep learning has made progress regarding model performance and multi-omics data integration. However, deep learning is limited by the number of studies performed and data sources available, so it is not perfect as a pre-clinical approach for use in the anticancer drug screening process. Improving the performance of deep learning models is a pressing issue for researchers. In this review, we introduce the research of anticancer drug sensitivity prediction and the use of deep learning in this research area. To provide a reference for future research, we also review some common data sources and machine learning methods. Lastly, we discuss the advantages and disadvantages of deep learning, as well as the limitations and future perspectives regarding this approach.

Keywords: Deep learning, Cancer, Cancer cell lines, Anticancer drug screening, Computational biology, Bioinformatics.

Graphical Abstract
[1]
Mirnezami, R.; Nicholson, J.; Darzi, A. Preparing for precision medicine. N. Engl. J. Med., 2012, 366(6), 489-491.
[http://dx.doi.org/10.1056/NEJMp1114866] [PMID: 22256780]
[2]
Tannock, I.F.; Hickman, J.A. Limits to personalized cancer medicine. N. Engl. J. Med., 2016, 375(13), 1289-1294.
[http://dx.doi.org/10.1056/NEJMsb1607705] [PMID: 27682039]
[3]
Prasad, V. Perspective: The precision-oncology illusion. Nature, 2016, 537(7619), S63.
[http://dx.doi.org/10.1038/537S63a] [PMID: 27602743]
[4]
Subbiah, V.; Kurzrock, R. Debunking the delusion that precision oncology is an illusion. Oncologist, 2017, 22(8), 881-882.
[http://dx.doi.org/10.1634/theoncologist.2017-0040] [PMID: 28550030]
[5]
Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The cancer genome. Nature, 2009, 458(7239), 719-724.
[http://dx.doi.org/10.1038/nature07943] [PMID: 19360079]
[6]
Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; Kiezun, A.; Hammerman, P.S.; McKenna, A.; Drier, Y.; Zou, L.; Ramos, A.H.; Pugh, T.J.; Stransky, N.; Helman, E.; Kim, J.; Sougnez, C.; Ambrogio, L.; Nickerson, E.; Shefler, E.; Cortés, M.L.; Auclair, D.; Saksena, G.; Voet, D.; Noble, M.; DiCara, D.; Lin, P.; Lichtenstein, L.; Heiman, D.I.; Fennell, T.; Imielinski, M.; Hernandez, B.; Hodis, E.; Baca, S.; Dulak, A.M.; Lohr, J.; Landau, D.A.; Wu, C.J.; Melendez-Zajgla, J.; Hidalgo-Miranda, A.; Koren, A.; McCarroll, S.A.; Mora, J.; Crompton, B.; Onofrio, R.; Parkin, M.; Winckler, W.; Ardlie, K.; Gabriel, S.B.; Roberts, C.W.M.; Biegel, J.A.; Stegmaier, K.; Bass, A.J.; Garraway, L.A.; Meyerson, M.; Golub, T.R.; Gordenin, D.A.; Sunyaev, S.; Lander, E.S.; Getz, G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499(7457), 214-218.
[http://dx.doi.org/10.1038/nature12213] [PMID: 23770567]
[7]
Zack, T.I.; Schumacher, S.E.; Carter, S.L.; Cherniack, A.D.; Saksena, G.; Tabak, B.; Lawrence, M.S.; Zhsng, C.Z.; Wala, J.; Mermel, C.H.; Sougnez, C.; Gabriel, S.B.; Hernandez, B.; Shen, H.; Laird, P.W.; Getz, G.; Meyerson, M.; Beroukhim, R. Pan-cancer patterns of somatic copy number alteration. Nat. Genet., 2013, 45(10), 1134-1140.
[http://dx.doi.org/10.1038/ng.2760] [PMID: 24071852]
[8]
Cortes-Ciriano, I.; Mervin, L.H.; Bender, A. Current trends in drug sensitivity prediction. Curr. Pharm. Des., 2016, 22(46), 6918-6927.
[http://dx.doi.org/10.2174/1381612822666161026154430] [PMID: 27784247]
[9]
Pauli, C.; Hopkins, B.D.; Prandi, D.; Shaw, R.; Fedrizzi, T.; Sboner, A.; Sailer, V.; Augello, M.; Puca, L.; Rosati, R.; McNary, T.J.; Churakova, Y.; Cheung, C.; Triscott, J.; Pisapia, D.; Rao, R.; Mosquera, J.M.; Robinson, B.; Faltas, B.M.; Emerling, B.E.; Gadi, V.K.; Bernard, B.; Elemento, O.; Beltran, H.; Demichelis, F.; Kemp, C.J.; Grandori, C.; Cantley, L.C.; Rubin, M.A. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov., 2017, 7(5), 462-477.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1154] [PMID: 28331002]
[10]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[11]
Tan, A.C.; Gilbert, D. Ensemble machine learning on gene expression data for cancer classification. Appl. Bioinformatics, 2003, 2(3)(Suppl.), S75-S83.
[PMID: 15130820]
[12]
Zupan, B.; Demsar, J.; Kattan, M.W.; Beck, J.R.; Bratko, I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif. Intell. Med., 2000, 20(1), 59-75.
[http://dx.doi.org/10.1016/S0933-3657(00)00053-1] [PMID: 11185421]
[13]
Riddick, G.; Song, H.; Ahn, S.; Walling, J.; Borges-Rivera, D.; Zhang, W.; Fine, H.A. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics, 2011, 27(2), 220-224.
[http://dx.doi.org/10.1093/bioinformatics/btq628] [PMID: 21134890]
[14]
Knowles, D.A.; Bouchard, G.; Plevritis, S. Sparse discriminative latent characteristics for predicting cancer drug sensitivity from genomic features. PLOS Comput. Biol., 2019, 15(5)e1006743
[http://dx.doi.org/10.1371/journal.pcbi.1006743] [PMID: 31136571]
[15]
Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One, 2013, 8(4)e61318
[http://dx.doi.org/10.1371/journal.pone.0061318] [PMID: 23646105]
[16]
Hussain, S.; Ferzund, J.; Ul-Haq, R. Prediction of drug target sensitivity in cancer cell lines using apache spark. J. Comput. Biol., 2019, 26(8), 882-889.
[http://dx.doi.org/10.1089/cmb.2018.0102] [PMID: 31120327]
[17]
Dhruba, S.R.; Rahman, R.; Matlock, K.; Ghosh, S.; Pal, R. Application of transfer learning for cancer drug sensitivity prediction. BMC Bioinformatics, 2018, 19(Suppl. 17), 497.
[http://dx.doi.org/10.1186/s12859-018-2465-y] [PMID: 30591023]
[18]
Chen, T.H.; Sun, W. Prediction of cancer drug sensitivity using high-dimensional omic features. Biostatistics, 2017, 18(1), 1-14.
[http://dx.doi.org/10.1093/biostatistics/kxw022] [PMID: 27324412]
[19]
Kim, D.C.; Wang, X.; Yang, C.R.; Gao, J.X. A framework for personalized medicine: prediction of drug sensitivity in cancer by proteomic profiling. Proteome Sci., 2012, 10(Suppl. 1), S13.
[http://dx.doi.org/10.1186/1477-5956-10-S1-S13] [PMID: 22759571]
[20]
Suphavilai, C.; Bertrand, D.; Nagarajan, N. Predicting cancer drug response using a recommender system. Bioinformatics, 2018, 34(22), 3907-3914.
[http://dx.doi.org/10.1093/bioinformatics/bty452] [PMID: 29868820]
[21]
Zhang, L.; Chen, X.; Guan, N.N.; Liu, H.; Li, J.Q. A Hybrid interpolation weighted collaborative filtering method for anti-cancer drug response prediction. Front. Pharmacol., 2018, 9, 1017.
[http://dx.doi.org/10.3389/fphar.2018.01017] [PMID: 30258362]
[22]
Wei, D.; Liu, C.; Zheng, X.; Li, Y. Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model. BMC Bioinformatics, 2019, 20(1), 44.
[http://dx.doi.org/10.1186/s12859-019-2608-9] [PMID: 30670007]
[23]
Ruffalo, M.; Stojanov, P.; Pillutla, V.K.; Varma, R.; Bar-Joseph, Z. Reconstructing cancer drug response networks using multitask learning. BMC Syst. Biol., 2017, 11(1), 96.
[http://dx.doi.org/10.1186/s12918-017-0471-8] [PMID: 29017547]
[24]
Zhang, F.; Wang, M.; Xi, J.; Yang, J.; Li, A. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Sci. Rep., 2018, 8(1), 3355.
[http://dx.doi.org/10.1038/s41598-018-21622-4] [PMID: 29463808]
[25]
Yang, J.; Li, A.; Li, Y.; Guo, X.; Wang, M. A novel approach for drug response prediction in cancer cell lines via network representation learning. Bioinformatics, 2019, 35(9), 1527-1535.
[http://dx.doi.org/10.1093/bioinformatics/bty848] [PMID: 30304378]
[26]
Stanfield, Z.; Coşkun, M.; Koyutürk, M. Drug response prediction as a link prediction problem. Sci. Rep., 2017, 7, 40321.
[http://dx.doi.org/10.1038/srep40321] [PMID: 28067293]
[27]
Speyer, G.; Mahendra, D.; Tran, H.J.; Kiefer, J.; Schreiber, S.L.; Clemons, P.A.; Dhruv, H.; Berens, M.; Kim, S. Differential pathway dependency discovery associated with drug response across cancer cell lines. Pac. Symp. Biocomput., 2017, 22, 497-508.
[http://dx.doi.org/10.1142/9789813207813_0046] [PMID: 27897001]
[28]
Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O. Deep learning for computational biology. Mol. Syst. Biol., 2016, 12(7), 878.
[http://dx.doi.org/10.15252/msb.20156651] [PMID: 27474269]
[29]
Korotcov, A.; Tkachenko, V.; Russo, D.P.; Ekins, S. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol. Pharm., 2017, 14(12), 4462-4475.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00578] [PMID: 29096442]
[30]
Wang, Y.; Li, M.; Zheng, R. Using deep neural network to predict drug sensitivity of cancer cell lines. In: Intelligent Computing Theories and Application; Springer: Berlin, 2018.
[http://dx.doi.org/10.1007/978-3-319-95933-7_27]
[31]
Xia, F.; Shukla, M.; Brettin, T.; Garcia-Cardona, C.; Cohn, J.; Allen, J.E.; Maslov, S.; Holbeck, S.L.; Doroshow, J.H.; Evrard, Y.A.; Stahlberg, E.A.; Stevens, R.L. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinformatics, 2018, 19(Suppl. 18), 486.
[http://dx.doi.org/10.1186/s12859-018-2509-3] [PMID: 30577754]
[32]
Chiu, Y.C.; Chen, H.H.; Zhang, T.; Zhang, S.; Gorthi, A.; Wang, L.J.; Huang, Y.; Chen, Y. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med. Genomics, 2019, 12(Suppl. 1), 18.
[http://dx.doi.org/10.1186/s12920-018-0460-9] [PMID: 30704458]
[33]
Li, M.; Wang, Y.; Zheng, R. DeepDSC: A deep learning method to predict drug sensitivity of cancer cell lines. IEEE/ACM Trans. Comput. Biol. Bioinform., 2019. (Online ahead of print)
[http://dx.doi.org/10.1109/TCBB.2019.2919581]
[34]
Chang, Y.; Park, H.; Yang, H.J.; Lee, S.; Lee, K.Y.; Kim, T.S.; Jung, J.; Shin, J.M. Cancer drug response profile scan (cdrscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci. Rep., 2018, 8(1), 8857.
[http://dx.doi.org/10.1038/s41598-018-27214-6] [PMID: 29891981]
[35]
Liu, P.; Li, H.; Li, S.; Leung, K.S. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinformatics, 2019, 20(1), 408.
[http://dx.doi.org/10.1186/s12859-019-2910-6] [PMID: 31357929]
[36]
Su, R.; Liu, X.; Wei, L.; Zou, Q. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Methods, 2019, 166, 91-102.
[http://dx.doi.org/10.1016/j.ymeth.2019.02.009] [PMID: 30772464]
[37]
Williams, S.P.; McDermott, U. The pursuit of therapeutic biomarkers with high-throughput cancer cell drug screens. Cell Chem. Biol., 2017, 24(9), 1066-1074.
[http://dx.doi.org/10.1016/j.chembiol.2017.06.011] [PMID: 28736238]
[38]
Covell, D.G.; Huang, R.; Wallqvist, A. Anticancer medicines in development: assessment of bioactivity profiles within the National Cancer Institute anticancer screening data. Mol. Cancer Ther., 2007, 6(8), 2261-2270.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0787] [PMID: 17699723]
[39]
Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M.F.; Monahan, J.E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F.A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I.H.; Cheng, J.; Yu, G.K.; Yu, J.; Aspesi, P., Jr; de Silva, M.; Jagtap, K.; Jones, M.D.; Wang, L.; Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R.C.; Liefeld, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J.P.; Gabriel, S.B.; Getz, G.; Ardlie, K.; Chan, V.; Myer, V.E.; Weber, B.L.; Porter, J.; Warmuth, M.; Finan, P.; Harris, J.L.; Meyerson, M.; Golub, T.R.; Morrissey, M.P.; Sellers, W.R.; Schlegel, R.; Garraway, L.A. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391), 603-607.
[http://dx.doi.org/10.1038/nature11003] [PMID: 22460905]
[40]
Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; Ramaswamy, S.; Futreal, P.A.; Haber, D.A.; Stratton, M.R.; Benes, C.; McDermott, U.; Garnett, M.J. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res., 2013, 41(Database issue), D955-D961.
[PMID: 23180760]
[41]
Seashore-Ludlow, B.; Rees, M.G.; Cheah, J.H.; Cokol, M.; Price, E.V.; Coletti, M.E.; Jones, V.; Bodycombe, N.E.; Soule, C.K.; Gould, J.; Alexander, B.; Li, A.; Montgomery, P.; Wawer, M.J.; Kuru, N.; Kotz, J.D.; Hon, C.S.; Munoz, B.; Liefeld, T.; Dančík, V.; Bittker, J.A.; Palmer, M.; Bradner, J.E.; Shamji, A.F.; Clemons, P.A.; Schreiber, S.L. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov., 2015, 5(11), 1210-1223.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0235] [PMID: 26482930]
[42]
Holbeck, S.L.; Camalier, R.; Crowell, J.A.; Govindharajulu, J.P.; Hollingshead, M.; Anderson, L.W.; Polley, E.; Rubinstein, L.; Srivastava, A.; Wilsker, D.; Collins, J.M.; Doroshow, J.H. The National Cancer Institute ALMANAC: A comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res., 2017, 77(13), 3564-3576.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0489] [PMID: 28446463]
[43]
Bouhaddou, M.; DiStefano, M.S.; Riesel, E.A.; Carrasco, E.; Holzapfel, H.Y.; Jones, D.C.; Smith, G.R.; Stern, A.D.; Somani, S.S.; Thompson, T.V.; Birtwistle, M.R. Drug response consistency in CCLE and CGP. Nature, 2016, 540(7631), E9-E10.
[http://dx.doi.org/10.1038/nature20580] [PMID: 27905419]
[44]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[45]
Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 2001, 29(1), 308-311.
[http://dx.doi.org/10.1093/nar/29.1.308] [PMID: 11125122]
[46]
Oughtred, R; Chatr-aryamontri, A; Breitkreutz, B.J. BioGRID: A resource for studying biological interactions in yeast. Cold Spring Harb. Protoc.,, 2016, 2016(1) , pdb.top080754
[http://dx.doi.org/10.1101/pdb.top080754]
[47]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[48]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[49]
Li, Q.; Cheng, T.; Wang, Y.; Bryant, S.H. PubChem as a public resource for drug discovery. Drug Discov. Today, 2010, 15(23-24), 1052-1057.
[http://dx.doi.org/10.1016/j.drudis.2010.10.003] [PMID: 20970519]
[50]
van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; McLaren-Douglas, A.; Blokker, J.; Jaksani, S.; Bartfeld, S.; Volckman, R.; van Sluis, P.; Li, V.S.; Seepo, S.; Sekhar Pedamallu, C.; Cibulskis, K.; Carter, S.L.; McKenna, A.; Lawrence, M.S.; Lichtenstein, L.; Stewart, C.; Koster, J.; Versteeg, R.; van Oudenaarden, A.; Saez-Rodriguez, J.; Vries, R.G.; Getz, G.; Wessels, L.; Stratton, M.R.; McDermott, U.; Meyerson, M.; Garnett, M.J.; Clevers, H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4), 933-945.
[http://dx.doi.org/10.1016/j.cell.2015.03.053] [PMID: 25957691]
[51]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[52]
Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw., 2015, 61, 85-117.
[http://dx.doi.org/10.1016/j.neunet.2014.09.003] [PMID: 25462637]
[53]
Tara, N. In:; Auto-encoder bottleneck features using deep belief networks, Proceedings of the Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on IEEE, Hubei, China,. 2012.
[54]
Krizhevsky, A. ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems , 2012, 25(2)
[http://dx.doi.org/10.1145/3065386]
[55]
Ozturk, K.; Dow, M.; Carlin, D.E.; Bejar, R.; Carter, H. The emerging potential for network analysis to inform precision cancer medicine. J. Mol. Biol., 2018, 430(18 Pt A), 2875-2899.
[http://dx.doi.org/10.1016/j.jmb.2018.06.016] [PMID: 29908887]
[56]
Sidorov, P.; Naulaerts, S.; Ariey-Bonnet, J.; Pasquier, E.; Ballester, P.J. Predicting synergism of cancer drug combinations using nci-almanac data. Front Chem., 2019, 7, 509.
[http://dx.doi.org/10.3389/fchem.2019.00509] [PMID: 31380352]
[57]
Preuer, K.; Lewis, R.P.I.; Hochreiter, S.; Bender, A.; Bulusu, K.C.; Klambauer, G. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics, 2018, 34(9), 1538-1546.
[http://dx.doi.org/10.1093/bioinformatics/btx806] [PMID: 29253077]
[58]
Bayer, I.; Groth, P.; Schneckener, S. Prediction errors in learning drug response from gene expression data - influence of labeling, sample size, and machine learning algorithm. PLoS One, 2013, 8(7)e70294
[http://dx.doi.org/10.1371/journal.pone.0070294] [PMID: 23894636]
[59]
Goodspeed, A.; Heiser, L.M.; Gray, J.W.; Costello, J.C. Tumor-derived cell lines as molecular models of cancer pharmacogenomics. Mol. Cancer Res., 2016, 14(1), 3-13.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0189] [PMID: 26248648]
[60]
Borrell, B. How accurate are cancer cell lines? Nature, 2010, 463(7283), 858.
[http://dx.doi.org/10.1038/463858a] [PMID: 20164888]
[61]
Hafner, M.; Niepel, M.; Chung, M.; Sorger, P.K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods, 2016, 13(6), 521-527.
[http://dx.doi.org/10.1038/nmeth.3853] [PMID: 27135972]
[62]
Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des., 2016, 30(8), 595-608.
[http://dx.doi.org/10.1007/s10822-016-9938-8] [PMID: 27558503]
[63]
Kalinin, A.A.; Higgins, G.A.; Reamaroon, N.; Soroushmehr, S.; Allyn-Feuer, A.; Dinov, I.D.; Najarian, K.; Athey, B.D. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics, 2018, 19(7), 629-650.
[http://dx.doi.org/10.2217/pgs-2018-0008] [PMID: 29697304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy