Antioxidant Activity of Encapsulated Extracts and Bioactives from Natural Sources

Author(s): Odinei H. Gonçalves, Thaysa F.M. Moreira, Anielle de Oliveira, Lívia Bracht, Rafael P. Ineu, Fernanda V. Leimann*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 31 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

The low water solubility and low bioavailability of natural bioactive substances such as polyphenols and flavonoids, either in pure form or extracts, are a major concern in the pharmaceutical field and even on the food development sector. Although encapsulation has demonstrated success in addressing these drawbacks, it is important to evaluate the antioxidant activity of the encapsulated compounds. This article reviews the encapsulation of bioactive compounds from natural sources focusing their antioxidant activity after encapsulation. Attention is given to the methods and wall materials used, and the antioxidant activity methodologies (classical in vitro techniques such as DPPH, ORAC, FRAP and others, as well as in vivo/ex vivo tests to evaluate endogenous antioxidant enzymes or oxidative stress) applied to assess the antioxidant capacity are also comprehensively summarized.

Keywords: Nanoparticles, microparticles, encapsulation, spray drying, extracts, nanotechnology.

[1]
Granato D, Nunes DS, Barba FJ. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci Technol 2017; 62: 13-22.
[2]
Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med 2010; 31: 446-67.
[3]
Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 2004; 24: 851-74.
[4]
Yang B, Liu H, Yang J, Gupta VK, Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Technol 2018; 79: 116-24.
[5]
Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm 2019; 570, 118642
[6]
Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem 2019; •••: 299.
[7]
Sahebkar A, Serban MC, Ursoniu S, Banach M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2015; 18: 898-909.
[8]
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81: 230-42.
[9]
Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. 11th International Congress on Engineering and Food. Procedia Food Sci 2011; 1: 1806-15.
[10]
Silva ACD, Santos PDDF, Silva JTDP, Leimann FV, Bracht L, Gonçalves OH. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci Technol 2018; 72: 74-82.
[11]
Nagula RL, Wairkar S. Recent advances in topical delivery of flavonoids: A review. J Control Release 2019; 296: 190-201.
[12]
Fang Z, Bhandari B. Encapsulation of polyphenols - A review. Trends Food Sci Technol 2010; 21: 510-23.
[13]
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel) 2017; 6.
[14]
Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem 2017; 237: 623-31.
[15]
Busch VM, Pereyra-Gonzalez A, Šegatin N, Santagapita PR, Poklar Ulrih N, Buera MP. Propolis encapsulation by spray drying: Characterization and stability. LWT 2017; 75: 227-35.
[16]
Jansen-Alves C, Maia DSV, Krumreich FD, et al. Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocoll 2019; 87: 703-11.
[17]
Isik BS, Altay F, Capanoglu E. The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chem 2018; 265: 260-73.
[18]
Mao C-F, Zhang X-R, Johnson A, He J-L, Kong Z-L. Modulation of Diabetes Mellitus-Induced Male Rat Reproductive Dysfunction with Micro-Nanoencapsulated Echinacea purpurea Ethanol Extract. BioMed Res Int 2018; 2018: 1-17.
[19]
Rocha-Parra DF, Lanari MC, Zamora MC, Chirife J. Influence of storage conditions on phenolic compounds stability, antioxidant capacity and colour of freeze-dried encapsulated red wine. LWT 2016; 70: 162-70.
[20]
da Rosa CG, Borges CD, Zambiazi RC, et al. Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). LWT 2014; 58: 527-33.
[21]
Santos SS, Rodrigues LM, Costa SC, Madrona GS. Antioxidant compounds from blackberry (Rubus fruticosus) pomace: Microencapsulation by spray-dryer and pH stability evaluation. Food Packag Shelf Life 2019; 20, 100177
[22]
Taofiq O, Heleno SA, Calhelha RC, et al. Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Ind Crops Prod 2018; 124: 44-52.
[23]
Alemán A, Marín D, Taladrid D, Montero P, Carmen Gómez-Guillén M. Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Res Int 2019; 119: 665-74.
[24]
Pereira MC, Oliveira DA, Hill LE, et al. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chem 2018; 240: 396-404.
[25]
Cabral BRP, de Oliveira PM, Gelfuso GM, et al. Improving stability of antioxidant compounds from Plinia cauliflora (jabuticaba) fruit peel extract by encapsulation in chitosan microparticles. J Food Eng 2018; 238: 195-201.
[26]
Barroso MR, Barros L, Dueñas M, et al. Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: Chemical characterization, microencapsulation and incorporation into a moisturizer. Ind Crops Prod 2014; 53: 330-6.
[27]
Ribeiro A, Ruphuy G, Lopes JC, et al. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients. Food Chem 2015; 188: 612-8.
[28]
Wattanathorn J, Kawvised S, Thukham-mee W. Encapsulated mulberry fruit extract alleviates changes in an animal model of menopause with metabolic syndrome. Oxid Med Cell Longev 2019; 1: 1-23.
[29]
Gomes S, Finotelli PV, Sardela VF, et al. Microencapsulated Brazil nut (Bertholletia excelsa) cake extract powder as an added-value functional food ingredient. LWT 2019; 116, 108495
[30]
Pilatti-Riccio D, dos Santos DF, Meinhart AD, Knapp MA, Hackbart HC dos S, Pinto VZ. Impact of the use of saccharides in the encapsulation of Ilex paraguariensis extract. Food Res Int 2019; 125, 108600
[31]
Athmouni K, Belhaj D, Gammoudi S, El Feki A, Ayadi H. Nano-encapsulation using macrocyclic carbohydrate polymers (β-cyclodextrins) of Periploca angustifolia extract: Physical stability and protective effect against cadmium-induced alterations in HepG2 cells. Int J Biol Macromol 2019; 125: 711-20.
[32]
Francisco CRL, Heleno SA, Fernandes IPM, et al. Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chem 2018; 245: 845-53.
[33]
Zhang J, Zhang C, Chen X, Quek SY. Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. J Food Eng 2020; 269, 109744
[34]
Alezandro MR, Granato D, Genovese MI. Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Res Int 2013; 54: 650-9.
[35]
Calloni C, Agnol RD, Martínez LS, de Siqueira Marcon F, Moura S, Salvador M. Jaboticaba (Plinia trunciflora (O. Berg) Kausel) fruit reduces oxidative stress in human fibroblasts cells (MRC-5). Food Res Int 2015; 70: 15-22.
[36]
Cui L, Liu X, Tian Y, et al. Flavonoids, flavonoid subclasses, and esophageal cancer risk: A meta-analysis of epidemiologic studies. Nutrients 2016; •••: 8.
[37]
Alipour B, Rashidkhani B, Edalati S. Dietary flavonoid intake, total antioxidant capacity and lipid oxidative damage: A cross-sectional study of Iranian women. Nutrition 2016; 32: 566-72.
[38]
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab (Lond) 2015; 12: 1-20.
[39]
Wang W, Sun C, Mao L, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol 2016; 56: 21-38.
[40]
Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother Res 2015; 29: 323-31.
[41]
Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother 2018; 106: 1513-26.
[42]
Roy P, Parveen S, Ghosh P, Ghatak K, Dasgupta S. Biochimie Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in Ribonuclease A. Biochimie 2019; 162: 185-97.
[43]
Khan H, Ullah H, Martorell M, et al. Flavonoids nanoparticles in cancer: Treatment, preention and clinical prospects. Semin Cancer Biol 2019.
[44]
Tzankova V, Aluani D, Kondeva-Burdina M, et al. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 2017; 92: 569-79.
[45]
Aluani D, Tzankova V, Kondeva-Burdina M, et al. Evaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 2017; 103: 771-82.
[46]
Bonechi C, Donati A, Tamasi G, Leone G, et al. Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress. Biophys Chem 2018; 233: 55-63.
[47]
Diamantis DA, Ramesova S, Chatzigiannis CM, et al. Exploring the oxidation and iron binding profile of a cyclodextrin encapsulated quercetin complex unveiled a controlled complex dissociation through a chemical stimulus. Biochim Biophys Acta, Gen Subj 2018; 1862: 1913-24.
[48]
El-Fattah AIA, Fathy MM, Ali ZY, El-Garawany AERA, Mohamed EK. Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem Biol Interact 2017; 271: 30-8.
[49]
Hatahet T, Morille M, Hommoss A, Dorandeu C, Müller RH, Bégu S. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety. Eur J Pharm Biopharm 2016; 102: 51-63.
[50]
Lee GH, Lee SJ, Jeong SW, et al. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf B Biointerfaces 2016; 143: 511-7.
[51]
Pivetta TP, Silva LB, Kawakami CM, et al. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J Drug Deliv Sci Technol 2019; 53, 101148
[52]
Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 2008; 174: 27-37.
[53]
Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress. Rev Neurosci 2019; 406: 1-21.
[54]
Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes. Trends Food Sci Technol 2019; 88: 445-58.
[55]
Freitas PD, Santos D, Rafael C, et al. The nanoencapsulation of curcuminoids extracted from Curcuma longa L. and an evaluation of their cytotoxic, enzymatic, antioxidant and anti-inflammatory activities. Food Funct 2019; 10: 573-82.
[56]
El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 2019; 177: 389-98.
[57]
Li J, Zhou Y, Zhang W, Bao C, Xie Z. Relief of oxidative stress and cardiomyocyte apoptosis by using curcumin nanoparticles. Colloids Surf B Biointerfaces 2017; 153: 174-82.
[58]
Silva de Sá I, Peron AP, Leimann FV, et al. In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food Chem Toxicol 2019; 125: 29-37.
[59]
Guo X, Li W, Wang H, Fan YY, et al. Preparation, characterization, release and antioxidant activity of curcumin-loaded amorphous calcium phosphate nanoparticles. J Non-Cryst Solids 2018; 500: 317-25.
[60]
Ahmad M, Taweel GMA, Hidayathulla S. Nano-composites chitosan-curcumin synergistically inhibits the oxidative stress induced by toxic metal cadmium. Int J Biol Macromol 2018; 108: 591-7.
[61]
Akolade JO, Oloyede HOB, Salawu MO, Amuzat AO, Ganiyu AI, Onyenekwe PC. Influence of formulation parameters on encapsulation and release characteristics of curcumin loaded in chitosan-based drug delivery carriers. J Drug Deliv Sci Technol 2018; 45: 11-9.
[62]
Sorasitthiyanukarn FN, Muangnoi C, Thaweesest W, Rojsitthisak P, Rojsitthisak P. Enhanced cytotoxic, antioxidant and anti-inflammatory activities of curcumin diethyl disuccinate using chitosan-tripolyphosphate nanoparticles. J Drug Deliv Sci Technol 2019; 53, 101118
[63]
Bollimpelli VS, Kumar P, Kumari S, Kondapi AK. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 2016; 95: 37-45.
[64]
Gupta P, Jordan CT, Mitov MI, Butterfield DA, Hilt JZ, Dziubla TD. Controlled curcumin release via conjugation into PBAE nanogels enhances mitochondrial protection against oxidative stress. Int J Pharm 2016; 511: 1012-21.
[65]
Khayyal MT, El-Hazek RM, El-Sabbagh WA, Frank J, Behnam D, Abdel-Tawab M. Micellar solubilisation enhances the antiinflammatory activities of curcumin and boswellic acids in rats with adjuvant-induced arthritis. Nutrition 2018; 54: 189-96.
[66]
Liu C, Yang X, Wu W, et al. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocoll 2018; 77: 834-42.
[67]
Muraoka Júnior M, Pascoato De Oliveira T, Hess Gonçalves O, et al. Substitution of synthetic antioxidant by curcumin microcrystals in mortadella formulations. Food Chem 2019; 300, 125231
[68]
Gonnet M, Lethuaut L, Boury F. New trends in encapsulation of liposoluble vitamins. J Control Release 2010; 146: 276-90.
[69]
Hensley K, Benaksas EJ, Bolli R, et al. New perspectives on vitamin E: g -tocopherol and carboxyethylhydroxychroman metabolites in biology and medicine. Free Radic Biol Med 2004; 36: 1-15.
[70]
Feng W, Yue C, Ni Y, Liang L. Preparation and characterization of emulsion- fi lled gel beads for the encapsulation and protection of resveratrol and α -tocopherol. Food Res Int 2018; 108: 161-71.
[71]
Cheng K, Niu Y, Zheng XC, et al. A Comparison of natural (D- α-tocopherol) and synthetic (DL-α-tocopherol acetate) vitamin E supplementation on the growth performance, meat quality and oxidative status of broilers. Asian-Australas J Anim Sci 2016; 29: 681-8.
[72]
Zakharova IO, Sokolova TV, Vlasova YA, Bayunova LV, Rychkova MP, Avrova NF. α-Tocopherol at nanomolar concentration protects cortical neurons against oxidative stress. Int J Mol Sci 2017; 18: 1-25.
[73]
Niki E, Komuro E, Takahashi M, Uranoz S, Itos E, Teraoe K. Oxidative hemolysis of erythrocytes and its inhibition by free radical scavengers. J Biol Chem 1988; 263: 19809-14.
[74]
Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 2014; 66: 3-12.
[75]
Saito Y, Yoshida Y, Akazawa T, Takahashi K, Niki E. Cell death caused by selenium deficiency and protective effect of antioxidants. J Biol Chem 2003; 278: 39428-34.
[76]
Saito Y, Nishio K, Ogawa Y, et al. Free Radical Biology & Medicine Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures : Tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic Biol Med 2010; 49: 1542-9.
[77]
Yılmaz S, Kaya E, Comakli S. Vitamin E (α tocopherol) attenuates toxicity and oxidative stress induced by aflatoxin in rats. Adv Clin Exp Med 2017.
[78]
Kara Y. Effects of N - nitro L - arginine methyl ester and α - tocopherol on testicular oxidative stress caused by exposure to cigarette smoke. Andrologia 2019; •••: 1-7.
[79]
Leskovec J, Levart A, Peri L, Ðuki M, Pirman T, Salobir J. Antioxidative effects of supplementing linseed oil-enriched diets with α -tocopherol, ascorbic acid, selenium, or their combination on carcass and meat quality in broilers. Poult Sci 2019; •••: 1-9.
[80]
Lima LNGALBBBT, Bertolla FKORP. Effect of in vitro vitamin E (alpha- tocopherol) supplementation in human spermatozoon submitted to oxidative stress. Andrologia 2018; •••: 1-7.
[81]
Riffel APK, Santos MCQ, De Souza JA, Scheid T, Horst A, Kolberg C. Treatment with ascorbic acid and a -tocopherol modulates oxidative-stress markers in the spinal cord of rats with neuropathic pain. Braz J Med Biol Res 2018; 51: 1-11.
[82]
Aan J, Helwa N, Nor E, et al. Comparing palm oil tocotrienol rich fraction with a -tocopherol supplementation on oxidative stress in healthy older adults. Clin Nutr ESPEN 2017; 21: 1-12.
[83]
Koriem KMM, Arbid MS, Gomaa NE. Supplementation of α-tocopherol attenuates minerals disturbance, oxidative stress and apoptosis occurring in favism. Indian J Clin Biochem 2017; 32: 446-52.
[84]
Thaís J, Maria J, Geiss T, et al. Nanoencapsulation of lutein and its effect on mice’s declarative memory. Mater Sci Eng C 2017; 76: 1005-11.
[85]
Alhowyan AA, Altamimi MA, Abul M, Arif A. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies. J Microbiol Methods 2019; 161: 87-95.
[86]
Aytac Z, Uyar T. Antioxidant activity and photostability of a-tocopherol/b-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur Polym J 2016; 79: 140-9.
[87]
Cassano R, Mellace S, Marrelli M, Conforti F, Trombino S. α-Tocopheryl linolenate solid lipid nanoparticles for the encapsulation, protection, and release of the omega-3 polyunsaturated fatty acid: in vitro anti-melanoma activity evaluation. Colloids Surf B Biointerfaces 2017; 151: 128-33.
[88]
Kamezaki C, Nakashima A, Yamada A, et al. Synergistic antioxidative effect of astaxanthin and tocotrienol by co-encapsulated in liposomes. J Clin Biochem Nutr 2016; 59: 100-6.
[89]
Caddeo C, Manca ML, Peris JE, et al. Tocopherol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration. Int J Pharm 2018; 551: 34-41.
[90]
Qu Y, Tang J, Liu L, Song LL, Chen S, Gao Y. α-Tocopherol liposome loaded chitosan hydrogel to suppress oxidative stress injury in cardiomyocytes. Int J Biol Macromol 2019; 125: 1192-202.
[91]
Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG. Coumarins - An Important Class of Phytochemicals.Phytochem - Isol Characterisation Role Hum Heal. 1st ed. London: IntechOpen 2015; pp. 113-40.
[92]
Lake B. Coumarin Metabolism, Toxicity and Carcinogenicity: Relevance for Human Risk Assessment. Food Chem Toxicol 1999; 37: 423-53.
[93]
Jain PK, Joshi H. Coumarin: Chemical and Pharmacological Profile. J Appl Pharm Sci 2012; 02: 236-40.
[94]
Malik A, Kushnoor A, Saini V, Singhal S, Kumar S, Chand Yadav Y. Analytical method development of nutraceutical: umbelliferone. Pharma Sci Monitor 2012; 3: 67-73.
[95]
Ittadwar PA, Puranik PK. Novel umbelliferone phytosomes: development and optimization using experimental design approach and evaluation of photo-protective and antioxidant activity. Int J Pharm Pharm Sci 2017; 9: 218.
[96]
Lacy A. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr Pharm Des 2004; 10: 3797-811.
[97]
Wardrop D, Keeling D. The story of the discovery of heparin and warfarin. Br J Haematol 2008; 141: 757-63.
[98]
Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. Umbelliferone - An antioxidant isolated from Acacia nilotica (L.). Willd Ex Del Food Chem 2010; 120: 825-30.
[99]
Al-Majedy YK, Kadhum AAH, Al-Amiery AA, Mohamad AB. Coumarins: The Antimicrobial agents. Syst Rev Pharm 2017; 8: 62-70.
[100]
Klenkar J, Molnar M. Natural and synthetic coumarins as potential anticancer agents. J Chem Pharm Res 2015; 7: 1223-38.
[101]
Yao Y, Li H, Li L. Coumarins as potential antidiabetic agentes. J Pharm Pharmacol 2017; 69: 1253-64.
[102]
Gupta JK, Sharma PK, Dudhe R, et al. Analgesic study of novel pyrimidine derivatives linked with coumarin moiety. Med Chem Res 2012; 21: 1625-32.
[103]
Jameel E, Umar T, Kumar J, Hoda N. Coumarin: a privileged scaffold for the design and development of antineurodegenerative agents. Chem Biol Drug Des 2016; 87: 21-38.
[104]
Ouyang L, Dan Y, Shao Z, et al. Effect of umbelliferone on adjuvant-induced arthritis in rats by MAPK/NF-κB pathway. Drug Des Devel Ther 2019; 13: 1163-70.
[105]
Thomas V, Giles D, Basavarajaswamy G, Das A, Patel A. Coumarin derivatives as anti-inflammatory and anticancer agents. Anticancer Agents Med Chem 2017; 17: 415-23.
[106]
Traykova M, Kostova I. Coumarin Derivatives and Oxidative Stress. Int J Pharmacol 2005; 1: 29-32.
[107]
Witaicenis A, Seito LN, Chagas S, et al. Phytomedicine Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 2014; 21: 240-6.
[108]
Germoush MO, Othman SI, Al-Qaraawi MA, et al. Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats. Biomed Pharmacother 2018; 102: 392-402.
[109]
Sim M-O, Lee H-I, Ham JR, Seo K-I, Kim M-J, Lee M-K. Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats. Nutr Res Pract 2015; 9: 364-9.
[110]
Mahmoud AM, Hozayen WG, Hasan IH, Shaban E, Bin-Jumah M. Umbelliferone ameliorates CCl4-induced liver fibrosis in rats by upregulating PPARγ and Attenuating Oxidative Stress, Inflammation, and TGF-β1/Smad3 Signaling. Inflammation 2019; 42: 1103-16.
[111]
Lacatusu I, Badea N, Murariu A, Oprea O, Bojin D, Meghea A. Antioxidant Activity of Solid Lipid Nanoparticles Loaded with Umbelliferone Antioxidant Activity of Solid Lipid Nanoparticles Loaded with Umbelliferone. Soft Mater 2013; 11: 75-84.
[112]
Venkatachalam G, Srinivasan D, Doble M. Cyclic β-(1, 2)-glucan production by Rhizobium meliloti MTCC 3402. Process Biochem 2013; 48: 1848-54.
[113]
Ricci A, Olejar KJ, Parpinello GP, Kilmartin PA, Versari A. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl Spectrosc Rev 2015; 50: 407-42.
[114]
Ren Y, Li X, Han B, et al. Improved anti-colorectal carcinomatosis effect of tannic acid co-loaded with oxaliplatin in nanoparticles encapsulated in thermosensitive hydrogel. Eur J Pharm Sci 2019; 128: 279-89.
[115]
Larrañaga A, Isa ILM, Patil V, et al. Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomater 2018; 67: 21-31.
[116]
Badhani B, Sharma N, Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 2015; 5: 27540-57.
[117]
Kosuru RY, Roy A, Das SK, Bera S. Gallic Acid and Gallates in Human Health and Disease: Do Mitochondria Hold the Key to Success? Mol Nutr Food Res 2018; 62: 1-10.
[118]
Gim SY, Hong S, Kim MJ, Lee JH. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils. J Food Sci 2017; 82: 1608-13.
[119]
Chaiittianan R, Sripanidkulchai B. Development of a nanoemulsion of Phyllanthus emblica L. branch extract. Drug Dev Ind Pharm 2014; 40: 1597-606.
[120]
Ho S, Thoo YY, Young DJ, Siow LF. Cyclodextrin encapsulated catechin: Effect of pH, relative humidity and various food models on antioxidant stability. LWT 2017; 85: 232-9.
[121]
Żyżelewicz D, Oracz J, Kaczmarska M, Budryn G, Grzelczyk J. Preparation and characterization of inclusion complex of (+)-catechin with β-cyclodextrin. Food Res Int 2018; 113: 263-8.
[122]
Samanta A, Chanda S, Bandyopadhyay B, Das N. Establishment of drug delivery system nanocapsulated with an antioxidant (+)-catechin hydrate and sodium meta borate chelator against sodium fluoride induced oxidative stress in rats. J Trace Elem Med Biol 2016; 33: 54-67.
[123]
Pool H, Luna-barcenas G, Mcclements DJ, Mendoza S. Development of polymethacrylate nanospheres as targeted delivery systems for catechin within the gastrointestinal tract. J Nanopart Res 2017.
[124]
Pool H, Quintanar D, Figueroa JDD, et al. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J Nanomater 2012; 1: 1-12.
[125]
Yao Y, Xie Y, Hong C, Li G, Shen H, Ji G. Development of a myricetin/hydroxypropyl-β-cyclodextrin inclusion complex: Preparation, characterization, and evaluation. Carbohydr Polym 2014; 110: 329-37.
[126]
Peanparkdee M, Yamauchi R, Iwamoto S. Stability of bioactive compounds from Thai Riceberry bran extract encapsulated within gelatin matrix during in vitro gastrointestinal digestion. Colloids Surf A Physicochem Eng Asp 2018; 546: 136-42.
[127]
Dalcin AJF, Vizzotto BS, Bochi GV, et al. Nanoencapsulation of the flavonoid dihydromyricetin protects against the genotoxicity and cytotoxicity induced by cationic nanocapsules. Colloids Surf B Biointerfaces 2019; 173: 798-805.
[128]
Song X, Gan K, Qin S, et al. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Sci Rep 2019; 9: 1-11.
[129]
Sechi M, Syed DN, Pala N, et al. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α -glucosidase inhibition activities. Mater Sci Eng C 2016; 68: 594-602.
[130]
Roussaki M, Gaitanarou A, Diamanti PC, et al. Encapsulation of the natural antioxidant aureusidin in biodegradable PLA nanoparticles. Polym Degrad Stabil 2014; 108: 182-7.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 31
Year: 2020
Published on: 16 September, 2020
Page: [3847 - 3861]
Pages: 15
DOI: 10.2174/1381612826666200707131500
Price: $65

Article Metrics

PDF: 22
HTML: 2