Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Environmentally Benign PEG-OSO3H-Catalysed Ultrasound Promoted Cascade Synthesis of Furocoumarins in Water

Author(s): Devendra Wagare*, Mujahed Shaikh, Dinesh Lingampalle and Ayesha Durrani

Volume 8, Issue 2, 2021

Published on: 05 July, 2020

Page: [217 - 222] Pages: 6

DOI: 10.2174/2213337207999200706001142

Price: $65

Abstract

Background: For the green synthesis of furocoumarins in water, PEG-OSO3H was used as a recyclable catalyst for the one-pot synthesis in water. To avoid the use of toxic lachrymators and unstable phenacyl bromides, we prepared them in-situ and directly condensed with 4-hydroxycoumarins.

Objective: PEG-OSO3H was found to be an efficient and reusable catalyst for the microwave irradiated one-pot synthesis of 3-Aryl-furo[3,2-c]coumarins in PEG-water as a greener reaction medium. This method was found to be rapid, simple, eco-friendly and obtained relatively higher yield than other reported methods.

Methods: Aromatic ketones (5 mmol), NBS (5mmol) were added in the solution of PEG-OSO3H (10 mol%) in 10 ml water and irradiated under ultrasound at 80-85°C. Then, the solution of 4- hydroxycoumarin (5 mmol) and the solution of acetic acid and ammonium acetate (1 ml) were added into it. The reaction mass was further irradiated for 3 min. From the reaction mixture, ethyl acetate (3 x 10ml) was extracted and the combined ethyl acetate phase was concentrated under reduced pressure to obtain corresponding 3-Aryl-furo[3,2-c]coumarins. The aqueous layer was reused for the next reactions.

Results: It was observed that electrons withdrawing groups (-NO2,-F etc.) on the benzene ring of aromatic ketones increased the rate of reactions as well as the yield of the products. The IR spectrum of compound 4a showed prominent peaks at 1737cm-1C=O stretching for lactone. 1H NMR of compound 4c showed characteristic singlets for –CH3 of methoxy group at 3.94 ppm. The above spectral data confirmed the structure of the compound. The 13C NMR spectrum of 4b also showed the peaks of CH3, at 23.25 ppm.

Conclusion: PEG-OSO3H has been found to be an efficient and reusable catalyst for the microwave irradiated one-pot synthesis of 3-Aryl-furo[3,2-c]coumarins in PEG-water as a greener reaction medium. This method found to be rapid, simple, eco-friendly and obtained relatively higher yield than other reported methods.

Keywords: PEG-OSO3H, ultrasound, one-pot, green catalyst, Furo[3, 2-c]coumarins, Cascade Synthesis.

Graphical Abstract
[1]
Ghohe, N.M.; Tayebee, R.; Amini, M.M.; Osatiashtiani, A.; Isaacs, M.A.; Lee, A.F. H5PW10V2O40@VOx/SBA-15-NH2 catalyst for the solventless synthesis of 3-substituted indoles. Tetrahedron, 2017, 73(40), 5862-5871.
[http://dx.doi.org/10.1016/j.tet.2017.08.030]
[2]
Mahdizadeh Ghohe, N.; Tayebee, R.; Amini, M.M. Synthesis and characterization of mesoporous Nbsingle bondZr/KIT-6 as a productive catalyst for the synthesis of benzylpyrazolyl coumarins. Mater. Chem. Phys., 2019, 223, 268-276.
[http://dx.doi.org/10.1016/j.matchemphys.2018.10.067]
[3]
Tayebee, R.; Abdizadeh, M.F.; Maleki, B.; Shahri, E. Heteropolyacid-based ionic liquid [Simp]3PW12O40 nanoparticle as a productive catalyst for the one-pot synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. J. Mol. Liq., 2017, 241, 447-455.
[http://dx.doi.org/10.1016/j.molliq.2017.06.033]
[4]
Tayebee, R.; Fattahi Abdizadeh, M.; Erfaninia, N.; Amiri, A.; Baghayeri, M.; Kakhki, R.M. Maleki, B.; Esmaili, E. Phosphotungstic acid grafted zeolite imidazolate framework as an effective heterogeneous nanocatalyst for the one‐pot solvent‐free synthesis of 3,4-dihydropyrimidinones. Appl. Organomet. Chem., 2019, 33(8)e4959
[http://dx.doi.org/10.1002/aoc.4959]
[5]
Shaikh, M.; Wagare, D.; Sonone, A.; Durrani, A. Highly efficient ultrasound promoted synthesis of 2-phenylquinoxaline in glycerol-water. Curr. Org. Synth., 2020, 17, 483-487.
[http://dx.doi.org/10.2174/1570179417666200529121602 ] [PMID: 32469703]
[6]
Chaturvedula, V.S.; Schilling, J.K.; Kingston, D.G. New cytotoxic coumarins and prenylated benzophenone derivatives from the bark of Ochrocarpos punctatus from the Madagascar rainforest. J. Nat. Prod., 2002, 65(7), 965-972.
[http://dx.doi.org/10.1021/np020030a ] [PMID: 12141854]
[7]
Cuzzocrea, S.; Mazzon, E.; Bevilaqua, C.; Costantino, G.; Britti, D.; Mazzullo, G.; De Sarro, A.; Caputi, A.P. Cloricromene, a coumarine derivative, protects against collagen-induced arthritis in Lewis rats. Br. J. Pharmacol., 2000, 131(7), 1399-1407.
[http://dx.doi.org/10.1038/sj.bjp.0703695 ] [PMID: 11090113]
[8]
Lin, C.M.; Huang, S.T.; Lee, F.W.; Kuo, H.S.; Lin, M.H. 6-Acyl-4-aryl/alkyl-5,7-dihydroxycoumarins as anti-inflammatory agents. Bioorg. Med. Chem., 2006, 14(13), 4402-4409.
[http://dx.doi.org/10.1016/j.bmc.2006.02.042 ] [PMID: 16540334]
[9]
Curini, M.; Epifano, F.; Maltese, F.; Marcotullio, M.C.; Gonzales, S.P.; Rodriguez, J.C. Synthesis of Collinin, an Antiviral Coumarin. Australian journal of chemistry, 2003, 56(1), 59-60.
[10]
Borges Bubols, G.; da Rocha Vianna, D.; Medina-Remon, A.; von Poser, G.; Maria Lamuela-Raventos, R.; Lucia Eifler-Lima, V.; Cristina Garcia, S. The Antioxidant Activity of Coumarins and Flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334.
[http://dx.doi.org/10.2174/1389557511313030002 ] [PMID: 22876957]
[11]
Yu, J.; Wang, L.; Walzem, R.L.; Miller, E.G.; Pike, L.M.; Patil, B.S. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agric. Food Chem., 2005, 53(6), 2009-2014.
[http://dx.doi.org/10.1021/jf0484632 ] [PMID: 15769128]
[12]
Nawrot-Modranka, J.; Nawrot, E.; Graczyk, J. In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphorohydrazine derivatives of coumarin and chromone. Eur. J. Med. Chem., 2006, 41(11), 1301-1309.
[http://dx.doi.org/10.1016/j.ejmech.2006.06.004 ] [PMID: 16904795]
[13]
Raj, M.K.; Balachandran, C.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. Antimicrobial activity of Ulopterol isolated from Toddalia asiatica (L.) Lam.: A traditional medicinal plant. J. Ethnopharmacol., 2012, 140(1), 161-165.
[http://dx.doi.org/10.1016/j.jep.2012.01.005 ] [PMID: 22265751]
[14]
Sardari, S.; Mori, Y.; Horita, K.; Micetich, R.G.; Nishibe, S.; Daneshtalab, M. Synthesis and antifungal activity of coumarins and angular furanocoumarins. Bioorg. Med. Chem., 1999, 7(9), 1933-1940.
[http://dx.doi.org/10.1016/S0968-0896(99)00138-8 ] [PMID: 10530942]
[15]
Kostova, I. Coumarins as inhibitors of HIV reverse transcriptase. Curr. HIV Res., 2006, 4(3), 347-363.
[http://dx.doi.org/10.2174/157016206777709393 ] [PMID: 16842086]
[16]
Huang, L.; Yuan, X.; Yu, D.; Lee, K.H.; Chen, C.H. Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Virology, 2005, 332(2), 623-628.
[http://dx.doi.org/10.1016/j.virol.2004.11.033 ] [PMID: 15680427]
[17]
Thaisrivongs, S.; Janakiraman, M.N.; Chong, K.T.; Tomich, P.K.; Dolak, L.A.; Turner, S.R.; Strohbach, J.W.; Lynn, J.C.; Horng, M.M.; Hinshaw, R.R.; Watenpaugh, K.D. Structure-based design of novel HIV protease inhibitors: sulfonamide-containing 4-hydroxycoumarins and 4-hydroxy-2-pyrones as potent non-peptidic inhibitors. J. Med. Chem., 1996, 39(12), 2400-2410.
[http://dx.doi.org/10.1021/jm950888f ] [PMID: 8691434]
[18]
Ramesh, B.; Pugalendi, K.V. Antihyperlipidemic and antidiabetic effects of umbelliferone in streptozotocin diabetic rats. Yale J. Biol. Med., 2005, 78(4), 189-196.
[PMID: 16720013]
[19]
Ramesh, B.; Pugalendi, K.V. Antihyperglycemic effect of umbelliferone in streptozotocin-diabetic rats. J. Med. Food, 2006, 9(4), 562-566.
[http://dx.doi.org/10.1089/jmf.2006.9.562 ] [PMID: 17201645]
[20]
Elinos-Báez, C.M.; León, F.; Santos, E. Effects of coumarin and 7OH-coumarin on bcl-2 and Bax expression in two human lung cancer cell lines in vitro. Cell Biol. Int., 2005, 29(8), 703-708.
[http://dx.doi.org/10.1016/j.cellbi.2005.04.003 ] [PMID: 15964220]
[21]
Wang, X.C.; Zhang, L.J.; Zhang, Z.; Quan, Z.J. PEG-OSO3H as an efficient and recyclable catalyst for the synthesis of β-amino carbonyl compounds via the Mannich reaction in PEG–H2O. Chin. Chem. Lett., 2012, 23(4), 423-426.
[http://dx.doi.org/10.1016/j.cclet.2012.01.016]
[22]
Kiasat, A.R.; Mehrjardi, M.F. PEG-SO3H as eco-friendly polymeric catalyst for regioselective ring opening of epoxides using thiocyanate anion in water: An efficient route to synthesis of β-hydroxy thiocyanate. Catal. Commun., 2008, 9(6), 1497-1500.
[http://dx.doi.org/10.1016/j.catcom.2007.12.019]
[23]
Hasaninejad, A.; Zare, A.; Shekouhy, M.; Ameri-Rad, J. Sulfuric acid-modified PEG-6000 (PEG-OSO3H): an efficient, bio-degradable and reusable polymeric catalyst for the solvent-free synthesis of poly-substituted quinolines under microwave irradiation. J. Green Chem., 2011, 13(4), 958-964.
[http://dx.doi.org/10.1039/c0gc00953a]
[24]
Shaikh, M.; Wagare, D. S.; Farooqui, M.; Durrani, A. Microwave Assisted Synthesis of Novel Schiff Bases of Pyrazolyl Carbaldehyde and Triazole in PEG-400., 2019, 40, 1315-1320.
[http://dx.doi.org/10.1080/10406638.2018.1544154]
[25]
Wagare, D.S.; Farooqui, M.; Keche, T.D.; Durrani, A. Efficient and green microwave-assisted one-pot synthesis of azaindolizines in PEG-400 and water. Synth. Commun., 2016, 46(21), 1741-1746.
[http://dx.doi.org/10.1080/00397911.2016.1223314]
[26]
Winger, M.; de Vries, A.H.; van Gunsteren, W.F. Force-field dependence of the conformational properties of α,ω-dimethoxypolyethylene glycol. Mol. Phys., 2009, 107(13), 1313-1321.
[http://dx.doi.org/10.1080/00268970902794826]
[27]
Wagare, D.S.; Netankar, P.D.; Shaikh, M.; Farooqui, M.; Durrani, A. Highly efficient microwave-assisted one-pot synthesis of 4-aryl-2-aminothiazoles in aqueous medium. Environ. Chem. Lett., 2017, 15(3), 475-479.
[http://dx.doi.org/10.1007/s10311-017-0619-1]
[28]
Wu, Q.; Christensen, L.A.; Legerski, R.J.; Vasquez, K.M. Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells. EMBO Rep., 2005, 6(6), 551-557.
[http://dx.doi.org/10.1038/sj.embor.7400418 ] [PMID: 15891767]
[29]
Risitano, F.; Grassi, G.; Foti, F.; Bilardo, C. A convenient synthesis of furo[3,2-c]coumarins by a tandem alkylation/intramolecular aldolisation reaction. Tetrahedron Lett., 2001, 42(20), 3503-3505.
[http://dx.doi.org/10.1016/S0040-4039(01)00490-7]
[30]
Prakash, O.; Wadhwa, D.; Hussain, K.; Kumar, R. [Hydroxy(tosyloxy)iodo]benzene in Organic Synthesis: A Facile Synthesis of Furo[3,2-c]coumarins Using α-Tosyloxyketones. Synth. Commun., 2012, 42(20), 2947-2951.
[http://dx.doi.org/10.1080/00397911.2011.570471]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy