Understanding the Pathogenesis Involved in Parkinson’s Disease and Potential Therapeutic Treatment Strategies

Author(s): Meenakshi Dhanawat, Dinesh K. Mehta, Sumeet Gupta, Rina Das*

Journal Name: Central Nervous System Agents in Medicinal Chemistry
Formerly Current Medicinal Chemistry - Central Nervous System Agents

Volume 20 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

A vast advancement has been made in the treatment related to central nervous system disorders especially Parkinson’s disease. The development in therapeutics and a better understanding of the targets results in upsurge of many promising therapies for Parkinson’s disease. Parkinson’s disease is defined by neuronal degeneration and neuroinflammation and it is reported that the presence of the neurofibrillary aggregates such as Lewy bodies is considered as the marker. Along with this, it is also characterized by the presence of motor and non-motor symptoms, as seen in Parkinsonian patients. A lot of treatment options mainly focus on prophylactic measures or the symptomatic treatment of Parkinson’s disease.

Neuroinflammation and neurodegeneration are the point of interest which can be exploited as a new target to emphasis on Parkinson’s disease.

A thorough study of these targets helps in modifications of those molecules which are particularly involved in causing the neuronal degeneration and neuroinflammation in Parkinson’s disease.

A lot of drug regimens are available for the treatment of Parkinson’s disease, although levodopa remains the choice of drug for controlling the symptoms, yet is accompanied with significant snags. It is always suggested to use other drug therapies concomitantly with levodopa.

A number of significant causes and therapeutic targets for Parkinson’s disease have been identified in the last decade, here an attempt was made to highlight the most significant of them. It was also found that the treatment regimen and involvement of therapies are totally dependent on individuals and can be tailored to the needs of each individual patient.

Keywords: Parkinson's disease, levodopa, dopamine, lewy bodies, α-synuclein, neuroinflammation.

[1]
Chao, D.W.; Piu, C. Clinicogenetics of Parkinson’s disease: Drawing but not completed picture. Neuroimmunol. Neuroinflamm., 2014, 1, 115-126.
[http://dx.doi.org/10.4103/2347-8659.143662]
[2]
Dawson, T.M.; Dawson, V.L. Molecular pathways of neurodegeneration in Parkinson’s disease. Science, 2003, 302, 819-822.
[http://dx.doi.org/10.1126/science.1087753]
[3]
Hardy, J.; Cai, H.; Cookson, M.R.; Hardy, K.G.; Singleton, A. Genetics of Parkinson’s disease and parkinsonism. Ann. Neurol., 2006, 60, 389-398.
[http://dx.doi.org/10.1002/ana.21022]
[4]
Tan, E.K.; Skipper, L.M. Pathogenic mutations in Parkinson disease. Hum. Mutat., 2007, 28(7), 641-653.
[http://dx.doi.org/10.1002/humu.20507] [PMID: 17385668]
[5]
Gasser, T. Update on the genetics of Parkinson’s disease. Mov. Disord., 2007, 22(Suppl. 17), S343-S350.
[http://dx.doi.org/10.1002/mds.21676]
[6]
Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci., 2007, 30, 244-250.
[http://dx.doi.org/10.1016/j.tins.2007.03.009]
[7]
Klein, C.; Schlossmacher, M.G. Parkinson disease, 10 years after its genetic revolution: Multiple clues to a complex disorder. Neurology, 2007, 69(22), 2093-2104.
[http://dx.doi.org/10.1212/01.wnl.0000271880.27321.a7] [PMID: 17761553]
[8]
Thomas, B.; Beal, M.F. Parkinson’s disease. Hum. Mol. Genet., 2007, 2, R183-194.
[http://dx.doi.org/10.1093/hmg/ddm159] [PMID: 17911161]
[9]
Rosner, S.; Giladi, N.; Orr-Urtreger, A. Advances in the genetics of Parkinson’s disease. Acta Pharmacol. Sin., 2008, 29(1), 21-34.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00731.x] [PMID: 18158863]
[11]
Beitz, J.M. Parkinson’s disease: A review. Front. Biosci. (Schol. Ed.), 2014, 6(6), 65-74.
[http://dx.doi.org/10.2741/S415] [PMID: 24389262]
[12]
Noyce, A.J.; Lees, A.J.; Schrag, A.E. The prediagnostic phase of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2016, 87(8), 871-878.
[http://dx.doi.org/10.1136/jnnp-2015-311890] [PMID: 26848171]
[13]
Farrer, M.; Gwinn-Hardy, K.; Muenter, M.; DeVrieze, F.W.; Crook, R.; Perez-Tur, J.; Lincoln, S.; Maraganore, D.; Adler, C.; Newman, S.; MacElwee, K.; McCarthy, P.; Miller, C.; Waters, C.; Hardy, J. A chromosome 4p haplotype segregating with Parkinson’s disease and postural tremor. Hum. Mol. Genet., 1999, 8(1), 81-85.
[http://dx.doi.org/10.1093/hmg/8.1.81] [PMID: 9887334]
[14]
Singleton, A.B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; Lincoln, S.; Crawley, A.; Hanson, M.; Maraganore, D.; Adler, C.; Cookson, M.R.; Muenter, M.; Baptista, M.; Miller, M.; Blancato, J.; Hardy, J.; Gwinn-Hardy, K. α-Synuclein locus triplication causes Parkinson’s disease. Science, 2003, 302(5646), 841.
[http://dx.doi.org/10.1126/science.1090278] [PMID: 14593171]
[15]
Haahr, A.; Kirkevold, M.; Hall, E.O.; Ostergaard, K. Living with advanced Parkinson’s disease: A constant struggle with unpredictability. J. Adv. Nurs., 2011, 67(2), 408-417.
[http://dx.doi.org/10.1111/j.1365-2648.2010.05459.x ] [PMID: 20946567]
[16]
Marques, O.; Outeiro, T.F. Alpha-synuclein: From secretion to dysfunction and death. Cell Death Dis., 2012, 2012 3e350.
[http://dx.doi.org/10.1038/cddis.2012.94] [PMID: 22825468]
[17]
Xu, L.; Pu, J. Alpha-synuclein in parkinson’s disease: From pathogenetic dysfunction to potential clinical application. Parkinsons Dis., 2016, 20161720621
[http://dx.doi.org/10.1155/2016/1720621] [PMID: 27610264]
[18]
Polymeropoulos, M.H.; Higgins, J.J.; Golbe, L.I.; Johnson, W.G.; Ide, S.E.; Di Iorio, G.; Sanges, G.; Stenroos, E.S.; Pho, L.T.; Schaffer, A.A.; Lazzarini, A.M.; Nussbaum, R.L.; Duvoisin, R.C. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science, 1996, 274(5290), 1197-1199.
[http://dx.doi.org/10.1126/science.274.5290.1197] [PMID: 8895469]
[19]
Langston, J.W. Current theories on the cause of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 1989, 52, 13-17.
[20]
Klein, C.; Schlossmacher, M.G. The genetics of Parkinson disease: Implications for neurological care. Nat. Clin. Pract. Neurol., 2006, 2(3), 136-146.
[http://dx.doi.org/10.1038/ncpneuro0126] [PMID: 16932540]
[21]
Brice, A. Genetics of Parkinson’s disease: LRRK2 on the rise. Brain, 2005, 128(Pt 12), 2760-2762.
[http://dx.doi.org/10.1093/brain/awh676] [PMID: 16311269]
[22]
Lesage, S.; Dürr, A.; Tazir, M.; Lohmann, E.; Leutenegger, A-L.; Janin, S.; Pollak, P.; Brice, A. French Parkinson’s Disease Genetics Study Group. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N. Engl. J. Med., 2006, 354(4), 422-423.
[http://dx.doi.org/10.1056/NEJMc055540] [PMID: 16436781]
[23]
Ozelius, L.J.; Senthil, G.; Saunders-Pullman, R.; Ohmann, E.; Deligtisch, A.; Tagliati, M.; Hunt, A.L.; Klein, C.; Henick, B.; Hailpern, S.M.; Lipton, R.B.; Soto-Valencia, J.; Risch, N.; Bressman, S.B. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med., 2006, 354(4), 424-425.
[http://dx.doi.org/10.1056/NEJMc055509] [PMID: 16436782]
[24]
Tong, Y.; Yamaguchi, H.; Giaime, E.; Boyle, S.; Kopan, R.; Kelleher, R.J.; Shena, J. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9879-84.
[http://dx.doi.org/10.1073/pnas.1004676107] [PMID: 20457918]
[25]
Paisán-Ruíz, C.; Jain, S.; Evans, E.W.; Gilks, W.P.; Simón, J.; van der Brug, M.; de Munain, A.L.; Aparicio, S.; Gil, A.M.; Khan, N.; Johnson, J.; Martinez, J.R.; Nicholl, D.; Carrera, I.M.; Pena, A.S.; de Silva, R.; Lees, A.; Martí-Massó, J.F.; Pérez-Tur, J.; Wood, N.W.; Singleton, A.B. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 2004, 44(4), 595-600.
[http://dx.doi.org/10.1016/j.neuron.2004.10.023] [PMID: 15541308]
[26]
Zimprich, A.; Biskup, S.; Leitner, P.; Farrer, M.; Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R.J.; Calne, D.B.; Stoessl, A.J.; Pfeiffer, R.F.; Patenge, N.; Carbajal, I.C.; Vieregge, P.; Asmus, F.; Müller-Myhsok, B.; Dickson, D.W.; Meitinger, T.; Strom, T.M.; Wszolek, Z.K.; Gasser, T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004, 44(4), 601-607.
[http://dx.doi.org/10.1016/j.neuron.2004.11.005] [PMID: 15541309]
[27]
Lo Bianco, C.; Schneider, B.L.; Bauer, M.; Sajadi, A.; Brice, A.; Iwatsubo, T.; Aebischer, P. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(50), 17510-17515.
[http://dx.doi.org/10.1073/pnas.0405313101] [PMID: 15576511]
[28]
Miklya, I.; Göltl, P.; Hafenscher, F.; Pencz, N. The role of parkin in Parkinson’s disease. Neuropsychopharmacol. Hung., 2014, 16(2), 67-76.
[PMID: 24978049]
[29]
Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D-F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol., 2010, 8(1)e1000298
[http://dx.doi.org/10.1371/journal.pbio.1000298] [PMID: 20126261]
[30]
Narendra, D.; Tanaka, A.; Suen, D.F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol., 2008, 183(5), 795-803.
[http://dx.doi.org/10.1083/jcb.200809125] [PMID: 19029340]
[31]
Bossy-Wetzel, E.; Barsoum, M.J.; Godzik, A.; Schwarzenbacher, R.; Lipton, S.A. Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr. Opin. Cell Biol., 2003, 15(6), 706-16.
[http://dx.doi.org/10.1016/j.ceb.2003.10.015] [PMID: 14644195]
[32]
Um, J.W. Im, E.; Lee, H.J.; Min, B.; Yoo, L.; Yoo, J.; Lübbert, H.; Stichel-Gunkel, C.; Cho, H.S.; Yoon, J.B.; Chung, K.C. Parkin directly modulates 26S proteasome activity. J. Neurosci., 2010, 30(35), 11805-11814.
[http://dx.doi.org/10.1523/JNEUROSCI.2862-09.2010] [PMID: 20810900]
[33]
Lucking, C.B.; Durr, A.; Bonifati, V.; Vaughan, J.; De Michele, G.; Gasser, T.; Harhangi, B.S.; Meco, G.; Denèfle, P.; Wood, N.W.; Agid, Y.; Brice, A. French Parkinson’s Disease Genetics Study Group. European Consortium on Genetic Susceptibility in Parkinson’s Disease. Association between early-onset parkinson’s disease and mutations in the parkin gene- French Parkinson’s Disease Genetics Study Group. N. Engl. J. Med., 2000, 342, 560-1567.
[http://dx.doi.org/10.1056/NEJM200005253422103]
[34]
Valente, E.M.; Abou Sleiman, P.M.; Caputo, V.; Muqit, M.M.K.; Harvey, K.; Gispert, S.; Ali, Z.; Turco, D.D.; Bentivoglio, A.R.; Healy, D.G.; Albanese, A.; Nussbaum, R.; González-Maldonado, R.; Deller, T.; Salvi, S.; Cortelli, P.; Gilks, W.P.; Latchman, D.S.; Harvey, R.J.; Dallapiccola, B.; Auburger, G.; Wood, N.W. Hereditary early onset parkinson’s disease caused by mutations in PINK-1. Science, 2004, 304, 1158-1160.
[35]
Favreau, P.H.; Hardy, J. PINK-1 in mitochondrial function. Proc. Natl. Acad. Sci. USA, 2008, 105, 11041-11042.
[36]
Valente, E.M.; Bentivoglio, A.R.; Dixon, P.H.; Ferraris, A.; Ialongo, T.; Frontali, M.; Albanese, A.; Wood, N.W. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet., 2001, 68(4), 895-900.
[http://dx.doi.org/10.1086/319522] [PMID: 11254447]
[37]
Bonifati, V.; Rohé, C.F.; Breedveld, G.J.; Fabrizio, E.; De Mari, M.; Tassorelli, C.; Tavella, A.; Marconi, R.; Nicholl, D.J.; Chien, H.F.; Fincati, E.; Abbruzzese, G.; Marini, P.; De Gaetano, A.; Horstink, M.W.; Maat-Kievit, J.A.; Sampaio, C.; Antonini, A.; Stocchi, F.; Montagna, P.; Toni, V.; Guidi, M.; Libera, A.D.; Tinazzi, M.; De Pandis, F.; Fabbrini, G.; Goldwurm, S.; de Klein, A.; Barbosa, E.; Lopiano, L.; Martignoni, E.; Lamberti, P.; Vanacore, N.; Meco, G.; Oostra, B.A. Italian Parkinson Genetics Network. Early-onset parkinsonism associated with PINK1 mutations: Frequency, genotypes, and phenotypes. Neurology, 2005, 65(1), 87-95.
[http://dx.doi.org/10.1212/01.wnl.0000167546.39375.82] [PMID: 16009891]
[38]
Ibáñez, P.; Lesage, S.; Lohmann, E.; Thobois, S.; De Michele, G.; Borg, M.; Agid, Y.; Dürr, A. French parkinson’s disease genetics study group-mutational analysis of the PINK-1 gene in early onset parkinsonism in Europe and North Africa. Brain, 2006, 129, 686-694.
[39]
Geisler, S.; Holmström, K.M.; Treis, A.; Skujat, D.; Weber, S.S.; Fiesel, F.C.; Kahle, P.J.; Springer, W. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy, 2010, 6(7), 871-878.
[http://dx.doi.org/10.4161/auto.6.7.13286] [PMID: 20798600]
[40]
Clark, I.E.; Dodson, M.W.; Jiang, C.; Cao, J.H.; Huh, J.R.; Seol, J.H.; Yoo, S.J.; Hay, B.A.; Guo, M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 2006, 441(7097), 1162-1166.
[http://dx.doi.org/10.1038/nature04779] [PMID: 16672981]
[41]
Exner, N.; Treske, B.; Paquet, D.; Holmström, K.; Schiesling, C.; Gispert, S.; Carballo-Carbajal, I.; Berg, D.; Hoepken, H-H.; Gasser, T.; Krüger, R.; Winklhofer, K.F.; Vogel, F.; Reichert, A.S.; Auburger, G.; Kahle, P.J.; Schmid, B.; Haass, C. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci., 2007, 27(45), 12413-12418.
[http://dx.doi.org/10.1523/JNEUROSCI.0719-07.2007] [PMID: 17989306]
[42]
Wang, H.L.; Chou, A.H.; Yeh, T.H.; Li, A.H.; Chen, Y-L.; Kuo, Y-L.; Tsai, S-R.; Yu, S-T. PINK1 mutants associated with recessive Parkinson’s disease are defective in inhibiting mitochondrial release of cytochrome c. Neurobiol. Dis., 2007, 28(2), 216-226.
[http://dx.doi.org/10.1016/j.nbd.2007.07.010] [PMID: 17707122]
[43]
Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol., 2011, 12(1), 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[44]
Liu, Y.; Fallon, L.; Lashuel, H.A.; Liu, Z.; Lansbury, P.T., Jr The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell, 2002, 111(2), 209-218.
[http://dx.doi.org/10.1016/S0092-8674(02)01012-7] [PMID: 12408865]
[45]
Leroy, E.; Boyer, R.; Auburger, G.; Leube, B.; Ulm, G.; Mezey, E.; Harta, G.; Brownstein, M.J.; Jonnalagada, S.; Chernova, T.; Dehejia, A.; Lavedan, C.; Gasser, T.; Steinbach, P.J.; Wilkinson, K.D.; Polymeropoulos, M.H. The ubiquitin pathway in Parkinson’s disease. Nature, 1998, 395(6701), 451-452.
[http://dx.doi.org/10.1038/26652] [PMID: 9774100]
[46]
Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature, 1997, 388(6645), 839-840.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[47]
Jennifer, H.K.; Chin, L-S.; Li, L. Ubiquitin C-terminal hydrolase L1 in tumorigenesis. Biochem. Res. Int., 2012, 123706, 1-10.
[48]
Kahle, P.J.; Neumann, M.; Ozmen, L.; Müller, V.; Jacobsen, H.; Schindzielorz, A.; Okochi, M.; Leimer, U.; van der Putten, H.; Probst, A.; Kremmer, E.; Kretzschmar, H.A.; Haass, C. Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha -synuclein in human and transgenic mouse brain. J. Neurosci., 2000, 20(17), 6365-6373.
[http://dx.doi.org/10.1523/JNEUROSCI.20-17-06365.2000] [PMID: 10964942]
[49]
Liu, R.; Guo, X.; Park, Y.; Huang, X.; Sinha, R.; Freedman, N.D.; Hollenbeck, A.R.; Blair, A.; Chen, H. Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am. J. Epidemiol., 2012, 175(11), 1200-1207.
[http://dx.doi.org/10.1093/aje/kwr451] [PMID: 22505763]
[50]
Bonifati, V.; Rizzu, P.; van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.J.; Squitieri, F.; Ibanez, P.; Joosse, M.; van Dongen, J.W.; Vanacore, N.; van Swieten, J.C.; Brice, A.; Meco, G.; van Duijn, C.M.; Oostra, B.A.; Heutink, P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003, 299(5604), 256-259.
[http://dx.doi.org/10.1126/science.1077209] [PMID: 12446870]
[51]
Abou Sleiman, P.M.; Healy, D.G.; Wood, N.W. Causes of parkinson’s disease: genetics of DJ 1. Cell Tissue Res., 2004, 318, 185-188.
[52]
Lev, N.; Ickowicz, D.; Melamed, E.; Offen, D. Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection. Neurotoxicology, 2008, 29(3), 397-405.
[http://dx.doi.org/10.1016/j.neuro.2008.01.007] [PMID: 18377993]
[53]
Taira, T.; Saito, Y.; Niki, T.; Iguchi-Ariga, S.M.M.; Takahashi, K.; Ariga, H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep., 2004, 5(2), 213-218.
[http://dx.doi.org/10.1038/sj.embor.7400074] [PMID: 14749723]
[54]
Canet-Avilés, R.M.; Wilson, M.A.; Miller, D.W.; Ahmad, R.; McLendon, C.; Bandyopadhyay, S.; Baptista, M.J.; Ringe, D.; Petsko, G.A.; Cookson, M.R. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl. Acad. Sci. USA, 2004, 101(24), 9103-9108.
[http://dx.doi.org/10.1073/pnas.0402959101] [PMID: 15181200]
[55]
Kinumi, T.; Kimata, J.; Taira, T.; Ariga, H.; Niki, E. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun., 2004, 317(3), 722-728.
[http://dx.doi.org/10.1016/j.bbrc.2004.03.110] [PMID: 15081400]
[56]
Martinat, C.; Shendelman, S.; Jonason, A.; Leete, T.; Beal, T.F.; Yang, L.; Floss, T.; Abeliovich, A. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: An ES- derived cell model of primary Parkinsonism. PLoS Biol., 2004, 2(11)e327
[http://dx.doi.org/10.1371/journal.pbio.0020327] [PMID: 15502868]
[57]
Olzmann, J.A.; Brown, K.; Wilkinson, K.D.; Rees, H.D.; Huai, Q.; Ke, H.; Levey, A.I.; Li, L.; Chin, L-S. Familial Parkinson’s disease-associated L166P mutation disrupts DJ-1 protein folding and function. J. Biol. Chem., 2004, 279(9), 8506-8515.
[http://dx.doi.org/10.1074/jbc.M311017200] [PMID: 14665635]
[58]
Ooe, H.; Taira, T.; Iguchi-Ariga, S.M.M.; Ariga, H. Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1. Toxicol. Sci., 2005, 88(1), 114-1126.
[http://dx.doi.org/10.1093/toxsci/kfi278] [PMID: 16093527]
[59]
Koide-Yoshida, S.; Niki, T.; Ueda, M.; Himeno, S.; Taira, T.; Iguchi-Ariga, S.M.M.; Ando, Y.; Ariga, H. DJ-1 degrades transthyretin and an inactive form of DJ-1 is secreted in familial amyloidotic polyneuropathy. Int. J. Mol. Med., 2007, 19(6), 885-893.
[http://dx.doi.org/10.3892/ijmm.19.6.885] [PMID: 17487420]
[60]
Chen, H.; Huang, X.; Guo, X.; Mailman, R.B.; Park, Y.; Kamel, F.; Umbach, D.M.; Xu, Q.; Hollenbeck, A.; Schatzkin, A.; Blair, A. Smoking duration, intensity, and risk of Parkinson disease. Neurology, 2010, 74(11), 878-884.
[http://dx.doi.org/10.1212/WNL.0b013e3181d55f38] [PMID: 20220126]
[61]
Hijioka, M.; Inden, M.; Yanagisawa, D.; Kitamura, Y. DJ-1/PARK7: A new therapeutic target for neurodegenerative disorders. Biol. Pharm. Bull., 2017, 40(5), 548-552.
[http://dx.doi.org/10.1248/bpb.b16-01006] [PMID: 28458339]
[62]
Honbou, K.; Suzuki, N.N.; Horiuchi, M.; Niki, T.; Taira, T.; Ariga, H.; Inagaki, F. The crystal structure of DJ-1, a protein related to male fertility and Parkinson’s disease. J. Biol. Chem., 2003, 278(33), 31380-31384.
[http://dx.doi.org/10.1074/jbc.M305878200] [PMID: 12796482]
[63]
Tao, X.; Tong, L. Crystal structure of human DJ-1, a protein associated with early onset Parkinson’s disease. J. Biol. Chem., 2003, 278(33), 31372-31379.
[http://dx.doi.org/10.1074/jbc.M304221200] [PMID: 12761214]
[64]
Wilson, M.A.; Collins, J.L.; Hod, Y.; Ringe, D.; Petsko, G.A. The 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9256-92561.
[http://dx.doi.org/10.1073/pnas.1133288100] [PMID: 12855764]
[65]
Huai, Q.; Sun, Y.; Wang, H.; Chin, L.S.; Li, L.; Robinson, H.; Ke, H. Crystal structure of DJ-1/RS and implication on familial Parkinson’s disease. FEBS Lett., 2003, 549(1-3), 171-175.
[http://dx.doi.org/10.1016/S0014-5793(03)00764-6] [PMID: 12914946]
[66]
Bandyopadhyay, S.; Cookson, M.R. Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol. Biol., 2004, 4, 6.
[http://dx.doi.org/10.1186/1471-2148-4-6] [PMID: 15070401]
[67]
Takahashi, K.; Taira, T.; Niki, T.; Seino, C.; Iguchi-Ariga, S.M.M.; Ariga, H. DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. J. Biol. Chem., 2001, 276(40), 37556-37563.
[http://dx.doi.org/10.1074/jbc.M101730200] [PMID: 11477070]
[68]
Niki, T.; Takahashi-Niki, K.; Taira, T.; Iguchi-Ariga, S.M.M.; Ariga, H. DJBP: A novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex. Mol. Cancer Res., 2003, 1(4), 247-261.
[PMID: 12612053]
[69]
Inden, M.; Taira, T.; Kitamura, Y.; Yanagida, T.; Tsuchiya, D.; Takata, K.; Yanagisawa, D.; Nishimura, K.; Taniguchi, T. Kiso, Yoshimoto, Y.K.; Agatsuma, Y.; Koide-Yoshida, S.; Iguchi-Ariga, S.M.M.; Shimohama, S.; Ariga, H. PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson’s disease rat model. Neurobiol. Dis., 2006, 24(1), 144-158.
[http://dx.doi.org/10.1016/j.nbd.2006.06.004] [PMID: 16860563]
[70]
Mitsumoto, A.; Nakagawa, Y.; Takeuchi, A.; Okawa, K.; Iwamatsu, A.; Takanezawa, Y. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic. Res., 2001, 35(3), 301-310.
[http://dx.doi.org/10.1080/10715760100300831] [PMID: 11697128]
[71]
Bandopadhyay, R.; Kingsbury, A.E.; Cookson, M.R.; Reid, A.R.; Evans, I.M.; Hope, A.D.; Pittman, A.M.; Lashley, T.; Canet-Aviles, R.; Miller, D.W.; McLendon, C.; Strand, C.; Leonard, A.J.; Abou-Sleiman, P.M.; Healy, D.G. Ariga, H.; Wood, N.W.; de Silva, R.; Revesz, T.; Hardy, J.A.; Lees, A.J. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain, 2004, 127(Pt 2), 420-430.
[http://dx.doi.org/10.1093/brain/awh054] [PMID: 14662519]
[72]
Choi, J.; Sullards, M.C.; Olzmann, J.A.; Rees, H.D.; Weintraub, S.T.; Bostwick, D.E.; Gearing, M.; Levey, A.I.; Chin, L.S.; Li, L. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J. Biol. Chem., 2006, 281(16), 10816-10824.
[http://dx.doi.org/10.1074/jbc.M509079200] [PMID: 16517609]
[73]
Shinbo, Y.; Niki, T.; Taira, T.; Ooe, H.; Takahashi-Niki, K.; Maita, C.; Seino, C.; Iguchi-Ariga, S.M.M.; Ariga, H. Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ., 2006, 13(1), 96-108.
[http://dx.doi.org/10.1038/sj.cdd.4401704] [PMID: 15976810]
[74]
Ito, G.; Ariga, H.; Nakagawa, Y.; Iwatsubo, T. Roles of distinct cysteine residues in S-nitrosylation and dimerization of DJ-1. Biochem. Biophys. Res. Commun., 2006, 339(2), 667-672.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.058] [PMID: 16316629]
[75]
Rahman-Roblick, R.; Hellman, U.; Becker, S.; Bader, F.G.; Auer, G.; Wiman, K.G.; Roblick, U.J. Proteomic identification of p53-dependent protein phosphorylation. Oncogene, 2008, 27(35), 4854-4859.
[http://dx.doi.org/10.1038/onc.2008.124] [PMID: 18438429]
[76]
Ariga, H.; Takahashi-Niki, K.; Kato, I.; Maita, H.; Niki, T.; Iguchi-Ariga, S.M. Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid. Med. Cell. Longev., 2013, 2013683920
[http://dx.doi.org/10.1155/2013/683920] [PMID: 23766857]
[77]
Park, J.S.; Blair, N.F.; Sue, C.M. The role of ATP13A2 in Parkinson’s disease: Clinical phenotypes and molecular mechanisms. Mov. Disord., 2015, 30(6), 770-779.
[http://dx.doi.org/10.1002/mds.26243] [PMID: 25900096]
[78]
Bento, C.F.; Ashkenazi, A.; Jimenez-Sanchez, M.; Rubinsztein, D.C. The Parkinson’s disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat. Commun., 2016, 7, 11803.
[http://dx.doi.org/10.1038/ncomms11803] [PMID: 27278822]
[79]
Ramirez, A.; Heimbach, A.; Gründemann, J.; Stiller, B.; Hampshire, D.; Cid, L.P.; Goebel, I.; Mubaidin, A.F.; Wriekat, A-L.; Roeper, J.; Al-Din, A.; Hillmer, A.M.; Karsak, M.; Liss, B.; Woods, C.G.; Behrens, M.I.; Kubisch, C. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet., 2006, 38(10), 1184-1191.
[http://dx.doi.org/10.1038/ng1884] [PMID: 16964263]
[80]
Bras, J.; Verloes, A.; Schneider, S.A.; Mole, S.E.; Guerreiro, R.J. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum. Mol. Genet., 2012, 21(12), 2646-2650.
[http://dx.doi.org/10.1093/hmg/dds089] [PMID: 22388936]
[81]
Parkinson’s Disease and Environmental Factors Available from; https://www.niehs.nih.gov/health/materials/parkinsons_disease_and_environmental_factors_508.pdff [Accessed on: February 2019]..
[82]
Ritz, B.R.; Manthripragada, A.D.; Costello, S.; Lincoln, S.J.; Farrer, M.J.; Cockburn, M.; Bronstein, J. Dopamine transporter genetic variants and pesticides in Parkinson’s disease. Environ. Health Perspect., 2009, 117(6), 964-969.
[http://dx.doi.org/10.1289/ehp.0800277] [PMID: 19590691]
[83]
Evatt, M.L.; DeLong, M.R.; Kumari, M.; Auinger, P.; McDermott, M.P.; Tangpricha, V. Parkinson Study Group DATATOP Investigators. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch. Neurol., 2011, 68(3), 314-319.
[http://dx.doi.org/10.1001/archneurol.2011.30] [PMID: 21403017]
[84]
Kenborg, L.; Lassen, C.F.; Ritz, B.; Schernhammer, E.S.; Hansen, J.; Gatto, N.M.; Olsen, J.H. Outdoor work and risk for Parkinson’s disease: a population-based case-control study. Occup. Environ. Med., 2011, 68(4), 273-278.
[http://dx.doi.org/10.1136/oem.2010.057448] [PMID: 20884793]
[85]
Hamza, T.H.; Chen, H.; Hill-Burns, E.M.; Rhodes, S.H.; Montimurro, J.; Kay, D.M.; Tenesa, A.; Kusel, V.I.; Sheehan, P.; Eaaswarkhanth, M.; Yearout, D.; Samii, A.; Roberts, J.W.; Agarwal, P.; Bordelon, Y.; Park, Y.; Wang, L.; Gao, J.; Vance, J.M.; Kendler, K.S.; Bacanu, S-A.; Scott, W.K.; Ritz, B.; Nutt, J.; Factor, S.A.; Zabetian, C.P.; Payami, H. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet., 2011, 7(8)e1002237
[http://dx.doi.org/10.1371/journal.pgen.1002237] [PMID: 21876681]
[86]
Tanner, C.M.; Kamel, F.; Ross, G.W.; Hoppin, J.A.; Goldman, S.M.; Korell, M.; Marras, C.; Bhudhikanok, G.S.; Kasten, M.; Chade, A.R.; Comyns, K.; Richards, M.B.; Meng, C.; Priestley, B.; Fernandez, H.H.; Cambi, F.; Umbach, D.M.; Blair, A.; Sandler, D.P.; Langston, J.W. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect., 2011, 119(6), 866-872.
[http://dx.doi.org/10.1289/ehp.1002839] [PMID: 21269927]
[87]
Goldman, S.M.; Kamel, F.; Ross, G.W.; Bhudhikanok, G.S.; Hoppin, J.A.; Korell, M.; Marras, C.; Meng, C.; Umbach, D.M. Kasten, M.; Chade, A.R.; Comyns, K.; Richards, M.B.; Sandler, D.P.; Blair, A.; Langston, J.W.; Tanner, C.M. Genetic modification of the association of paraquat and Parkinson’s disease. Mov. Disord., 2012, 27(13), 1652-1658.
[http://dx.doi.org/10.1002/mds.25216] [PMID: 23045187]
[88]
Kamel, F.; Goldman, S.M.; Umbach, D.M.; Chen, H.; Richardson, G.; Barber, M.R.; Meng, C.; Marras, C.; Korell, M.; Kasten, M.; Hoppin, J.A.; Comyns, K.; Chade, A.; Blair, A.; Bhudhikanok, G.S.; Ross, W.G.; Langston, J.W.; Sandler, D.P.; Tanner, C.M. Dietary fat intake, pesticide use, and Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(1), 82-87.
[http://dx.doi.org/10.1016/j.parkreldis.2013.09.023] [PMID: 24120951]
[89]
Goldman, S.M. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 141-164.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135937] [PMID: 24050700]
[90]
NINDS (National Institute of Neorological Disorders and Stroke) Parkinson’s disease: Hope through research. Available from:. http://www.ninds.nih.gov/disorders/parkinsons_disease/detail_parkinsons_disease.htm
[91]
Xu, Q.; Park, Y.; Huang, X.; Hollenbeck, A.; Blair, A.; Schatzkin, A.; Chen, H. Physical activities and future risk of Parkinson disease. Neurology, 2010, 75(4), 341-348.
[http://dx.doi.org/10.1212/WNL.0b013e3181ea1597] [PMID: 20660864]
[92]
Li, F.; Harmer, P.; Liu, Y.; Eckstrom, E.; Fitzgerald, K.; Stock, R.; Chou, L-S. A randomized controlled trial of patient-reported outcomes with tai chi exercise in Parkinson’s disease. Mov. Disord., 2014, 29(4), 539-545.
[http://dx.doi.org/10.1002/mds.25787] [PMID: 24375468]
[93]
Chen, J.; Li, L.; Chin, L.S. Parkinson disease protein DJ-1 converts from a zymogen to a protease by carboxyl-terminal cleavage. Hum. Mol. Genet., 2010, 19(12), 2395-2408.
[http://dx.doi.org/10.1093/hmg/ddq113] [PMID: 20304780]
[94]
Shin, H.W.; Chung, S.J. Drug-induced parkinsonism. J. Clin. Neurol., 2012, 8(1), 15-21.
[http://dx.doi.org/10.3988/jcn.2012.8.1.15] [PMID: 22523509]
[95]
Blanchet, P.; Kivenko, V. Drug-induced parkinsonism: diagnosis and management. J. Parkinson. Rest. Legs Syndr., 2016, 6, 83-91.
[http://dx.doi.org/10.2147/JPRLS.S99197]
[96]
Brigo, F.; Erro, R.; Marangi, A.; Bhatia, K.; Tinazzi, M. Differentiating drug-induced parkinsonism from Parkinson’s disease: An update on non-motor symptoms and investigations. Parkinsonism Relat. Disord., 2014, 20(8), 808-814.
[http://dx.doi.org/10.1016/j.parkreldis.2014.05.011] [PMID: 24935237]
[97]
Mena, M.A.; Casarejos, M.J.; Solano, R.M.; de Yébenes, J.G. Half a century of L-DOPA. Curr. Top. Med. Chem., 2009, 9(10), 880-893.
[PMID: 19754400]
[98]
Pezzoli, G.; Zini, M. Levodopa in Parkinson’s disease: from the past to the future. Expert Opin. Pharmacother., 2010, 11(4), 627-635.
[http://dx.doi.org/10.1517/14656561003598919] [PMID: 20163273]
[99]
Kim, T.H.; Cho, K.H.; Jung, W.S.; Lee, M.S. Herbal medicines for Parkinson’s disease: A systematic review of randomized controlled trials. PLoS One, 2012, 7(5)e35695
[http://dx.doi.org/10.1371/journal.pone.0035695] [PMID: 22615738]
[100]
Ernst, E.; Pittler, M.H.; Wider, B.; Boddy, K. General issues Oxford Handbook of Complementary Medicine; Oxford University Press: UK, 2008.
[http://dx.doi.org/10.1093/med/9780199206773.001.0001]
[101]
Ernst, E.; Pittler, M.H.; Wider, B.; Boddy, K. The Desktop guide to complementary and alternative medicine: An evidence-based approach. R. Soc. Med. , 2001, 94, 650-651.
[102]
Münchau, A.; Bhatia, K.P. Pharmacological treatment of Parkinson’s disease. Postgrad. Med. J., 2000, 76(900), 602-610.
[http://dx.doi.org/10.1136/pmj.76.900.602] [PMID: 11009573]
[103]
Drugs.com. Medications for parkinson’s disease.Available from:, https://www.drugs.com/condition/parkinson-s-disease.html
[104]
American Parkinson Disease Association. Medications for Parkinson’s. Available from:,, https://www.apdaparkinson.org/what-is-parkinsons/treatment-medication/medication/
[105]
ParkinsonsDisease.net. Medications used to treat Parkinson’s.Available from:,, https://parkinsonsdisease.net/medications/
[106]
Ponce, F.A.; Lozano, A.M. The surgical management of Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2011, 10(6), 685-692.
[http://dx.doi.org/10.2174/187152711797247795] [PMID: 21838672]
[107]
Lozano, C.S.; Tam, J.; Lozano, A.M. The changing landscape of surgery for Parkinson’s disease. Mov. Disord., 2018, 33(1), 36-47.
[http://dx.doi.org/10.1002/mds.27228] [PMID: 29194808]
[108]
Narabayashi, H.; Okuma, T. Procaine-oil blocking of the globus pallidus for the treatment of rigidity and tremor of parkinsonism. Proc. Jpn. Acad., 1953, 29, 134-137.
[http://dx.doi.org/10.2183/pjab1945.29.134]
[109]
Hassler, R.; Riechert, T. Indications and localization of stereotactic brain operations. Nervenarzt, 1954, 25(11), 441-447.
[PMID: 14356288]
[110]
Cooper, I.S. Chemopallidectomy: An investigative technique in geriatric parkinsonians. Science, 1955, 121(3137), 217-218.
[http://dx.doi.org/10.1126/science.121.3137.217] [PMID: 13237975]
[111]
Brice, J.; McLellan, L. Suppression of intention tremor by contingent deep-brain stimulation. Lancet, 1980, 1(8180), 1221-1222.
[http://dx.doi.org/10.1016/S0140-6736(80)91680-3] [PMID: 6104038]
[112]
Web, M.D. Surgery for Parkinson’s disease. Available from:, https://www.webmd.com/parkinsons-disease/guide/parkinsons-surgical-treatments (Accessed on: July 10, 2019).
[113]
ParkinsonsDisease.net; What are surgical options to treat Parkinson’s? Available from:, https://parkinsonsdisease.net/treatment/surgical-options/(Accessed on: July 10, 2019)..
[114]
Parkinson’s Foundation. Deep brain stimulation (DBS). Available from:; https://www.parkinson.org/UnderstandingParkinsons/Treatment/Surgical-Treatment-Options/Deep-Brain-Stimulation (Accessed on: July 10,. 2019. )
[115]
Follett, K.A.; Weaver, F.M.; Stern, M.; Hur, K.; Harris, C.L.; Luo, P.; Marks, W.J., Jr; Rothlind, J.; Sagher, O.; Moy, C.; Pahwa, R.; Burchiel, K.; Hogarth, P.; Lai, E.C.; Duda, J.E.; Holloway, K.; Samii, A.; Horn, S.; Bronstein, J.M.; Stoner, G.; Starr, P.A.; Simpson, R.; Baltuch, G.; De Salles, A.; Huang, G.D.; Reda, D.J. CSP 468 Study Group. CSP 468 Study Group. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med., 2010, 362(22), 2077-2091.
[http://dx.doi.org/10.1056/NEJMoa0907083] [PMID: 20519680]
[116]
Surgical treatments. Available from: https://www.parkinsons.org.uk/information-and-support/surgical-treatments2019 (Accessed on: July 10,. 2019. )
[117]
Stefani, A.; Lozano, A.M.; Peppe, A.; Stanzione, P.; Galati, S.; Tropepi, D.; Pierantozzi, M.; Brusa, L.; Scarnati, E.; Mazzone, P. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain, 2007, 130(Pt 6), 1596-1607.
[http://dx.doi.org/10.1093/brain/awl346] [PMID: 17251240]
[118]
Thevathasan, W.; Coyne, T.J.; Hyam, J.A.; Kerr, G.; Jenkinson, N.; Aziz, T.Z.; Silburn, P.A. Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery, 2011, 69(6), 1248-1253.
[http://dx.doi.org/10.1227/NEU.0b013e31822b6f71] [PMID: 21725254]
[119]
Bond, A.E.; Shah, B.B.; Huss, D.S.; Dallapiazza, R.F.; Warren, A.; Harrison, M.B.; Sperling, S.A.; Wang, X-Q.; Gwinn, R.; Wit, J.; Ro, S.; Elias, W.J. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant parkinson disease: A randomized clinical trial. JAMA Neurol., 2017, 74(12), 1412-1418.
[http://dx.doi.org/10.1001/jamaneurol.2017.3098] [PMID: 29084313]
[120]
Martínez-Fernández, R.; Rodríguez-Rojas, R.; Del Álamo, M.; Hernández-Fernández, F.; Pineda-Pardo, J.A.; Dileone, M.; Alonso-Frech, F.; Foffani, G.; Obeso, I.; Gasca-Salas, C.; de Luis-Pastor, E.; Vela, L.; Obeso, J.A. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: A pilot study. Lancet Neurol., 2018, 17(1), 54-63.
[http://dx.doi.org/10.1016/S1474-4422(17)30403-9] [PMID: 29203153]
[121]
Bartus, R.T.; Weinberg, M.S.; Samulski, R.J. Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol. Ther., 2014, 22(3), 487-497.
[http://dx.doi.org/10.1038/mt.2013.281] [PMID: 24356252]
[122]
George, S.; Brundin, P. Immunotherapy in Parkinson’s disease: Micromanaging alpha-synuclein aggregation. J. Parkinsons Dis., 2015, 5(3), 413-424.
[http://dx.doi.org/10.3233/JPD-150630] [PMID: 26406122]
[123]
Yasuhara, T.; Kameda, M.; Sasaki, T.; Tajiri, N.; Date, I. Cell therapy for Parkinson’s disease. Cell Transplant., 2017, 26(9), 1551-1559.
[http://dx.doi.org/10.1177/0963689717735411] [PMID: 29113472]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2020
Published on: 28 September, 2020
Page: [88 - 102]
Pages: 15
DOI: 10.2174/1871524920666200705222842
Price: $65

Article Metrics

PDF: 41
HTML: 1