Anti-nociceptive Effect of Euphorbia hirta Leaf Extract: Involvement of Adenosine, Cholinergic, and Opioid Receptors

Author(s): Temitope Janet Olatoyan-Layonu, Olayemi Kamoru Wakeel*, Abraham Ifedayo Abe, Olusola Ojurongbe, Oluwaseyi Adegboyega Adeyeba

Journal Name: Central Nervous System Agents in Medicinal Chemistry
Formerly Current Medicinal Chemistry - Central Nervous System Agents

Volume 20 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: The study was designed to investigate the anti-nociceptive activity of Euphorbia hirta leaf and its possible mechanism of action.

Methods: The extract of Euphorbia hirta obtained from the leaf was prepared as per standard procedures and evaluated at the three doses (300, 600, and 1200 mg/kg, i.p). The extract was screened for anti-nociceptive activity using heat-induced (tail-flick) and chemical-induced (acetic acid-induced writhing and formalin-induced paw lick) nociception models in mice. The possible mechanism of action of the extract was evaluated using antagonists of notable nociceptive pathways.

Results: Intraperitoneal administration of Euphorbia hirta extract at the doses of 600 and 1200 mg/kg significantly (p<0.05) reduced the formalin-induced paw licking in both neurogenic and inflammatory phases of the test. While administration of the extract at the dose of 300 mg/kg significantly inhibited the pain due to formalin in the inflammatory phase but not in the neurogenic phase. The anti-nociceptive effect of Euphorbia hirta extract increased the reaction time to thermal stimulus, also inhibited the acetic acid-induced writhing dose-dependently. The antinociceptive effect exhibited by Euphorbia hirta extract in the formalin test was reversed by the administration of naloxone, theophylline, and atropine. Glibenclamide, nifedipine, and yohimbine, however, did not significantly block the anti-nociceptive effect of the extract. Meanwhile, methylene blue administration enhanced the anti-nociceptive effect of the extract.

Conclusion: The results indicated that Euphorbia hirta extract produces a dose-related antinociceptive effect in several models of chemical and thermal pain, through mechanisms that might involve interaction with adenosine, cholinergic, and opioid receptors.

Keywords: Euphorbia hirta, anti-nociceptive, formalin, adenosine, cholinergic, opioid.

[1]
Bektas N, Nemutlu D, Ulugbay G, Arslan R. The role of muscarinic receptors in pain modulations. World J Pharmaceut Med Res 2015; 1(1): 40-9.
[2]
Zendehdel M, Taati M, Jadidoleslami M, Bashiri A. Evaluation of pharmacological mechanisms of antinociceptive effect of Teucrium poliumon visceral pain in mice. Majallah-i Tahqiqat-i Dampizishki-i Iran 2011; 12(4): 292-7.
[3]
Helms JE, Barone CP. Physiology and treatment of pain. Crit Care Nurse 2008; 28(6): 38-49.
[http://dx.doi.org/10.4037/ccn2008.28.6.38] [PMID: 19047694]
[4]
Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature 2001; 413(6852): 203-10.
[http://dx.doi.org/10.1038/35093019] [PMID: 11557989]
[5]
Lewin GR, Lu Y, Park TJ. A plethora of painful molecules. Curr Opin Neurobiol 2004; 14(4): 443-9.
[http://dx.doi.org/10.1016/j.conb.2004.07.009] [PMID: 15321065]
[6]
Scholz J, Woolf CJ. Can we conquer pain? Nat Neurosci 2002; 5(Suppl.): 1062-7.
[http://dx.doi.org/10.1038/nn942] [PMID: 12403987]
[7]
Hucho T, Levine JD. Signaling pathways in sensitization: Toward a nociceptor cell biology. Neuron 2007; 55(3): 365-76.
[http://dx.doi.org/10.1016/j.neuron.2007.07.008] [PMID: 17678851]
[8]
Burke AES, Fitzgerald GA. Analgesic-antipyretic agents: Pharmacotherapy of gout Goodman and Gilmans The Pharmacological Basis of Therapeutics. New York: McGraw Hill 2006.
[9]
Butler SF, Budman SH, Fernandez K, Jamison RN. Validation of a screener and opioid assessment measure for patients with chronic pain. Pain 2004; 112(1-2): 65-75.
[http://dx.doi.org/10.1016/j.pain.2004.07.026] [PMID: 15494186]
[10]
Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G. Rang and Dales Pharmacology. 7th ed Elsevier Churchill Livingstone Edinburgh, UK. 2011.
[11]
Tripathi KD. Essentials of medical pharmacology Jaypee Brothers Medical Publishers (P) Ltd; New Delhi, India,. 1999.
[12]
Ren Y, Yuan C, Chai HB, et al. Absolute configuration of (-)-gambogic acid, an antitumor agent. J Nat Prod 2011; 74(3): 460-3.
[http://dx.doi.org/10.1021/np100422z] [PMID: 21067206]
[13]
Sen S, Chakraborty R, Ganesh T, Raghavendra HG, Debnath S. Analgesic and anti-inflammatory herbs: Apotential source of modern medicine. Int J Pharm Sci Res 2010; 1(11): 32-44.
[14]
Lanhers MC, Fleurentin J, Dorfman P, Mortier F, Pelt JM. Analgesic, antipyretic and anti-inflammatory properties of Euphorbia hirta. Planta Med 1991; 57(3): 225-31.
[http://dx.doi.org/10.1055/s-2006-960079] [PMID: 1896520]
[15]
Kumar S, Malhotra R, Kumar D. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn Rev 2010; 4(7): 58-61.
[http://dx.doi.org/10.4103/0973-7847.65327] [PMID: 22228942]
[16]
Xia M, Liu L, Qiu R, et al. Anti-inflammatory and anxiolytic activities of Euphorbia hirta extract in neonatal asthmatic rats. AMB Express 2018; 8(1): 179.
[http://dx.doi.org/10.1186/s13568-018-0707-z] [PMID: 30382409]
[17]
Rajeh MA, Zuraini Z, Sasidharan S, Latha LY, Amutha S. Assessment of Euphorbia hirta L. leaf, flower, stem and root extracts for their antibacterial and antifungal activity and brine shrimp lethality. Molecules 2010; 15(9): 6008-18.
[http://dx.doi.org/10.3390/molecules15096008] [PMID: 20877206]
[18]
Yvette Fofie NB, Sanogo R, Coulibaly K, Kone-Bamba D. Minerals salt composition and secondary metabolites of Euphorbia hirta Linn., an antihyperglycemic plant. Pharmacognosy Res 2015; 7(1): 7-13.
[http://dx.doi.org/10.4103/0974-8490.147131] [PMID: 25598628]
[19]
Huang L, Chen S, Yang M. Euphorbia hirta (Feiyangcao): a review on its ethnopharmacology, phytochemistry and pharmacology. J Med Plants Res 2012; 6(39): 5176-85.
[http://dx.doi.org/10.5897/JMPR12.206]
[20]
Burkill HM. The useful plants of West Tropical Africa 2nd ed Families J-L: United Kingdom. 1995; Vol. 3: p.: p. 857.
[21]
Basma AA, Zakaria Z, Latha LY, Sasidharan S. Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L. Asian Pac J Trop Med 2011; 4(5): 386-90.
[http://dx.doi.org/10.1016/S1995-7645(11)60109-0] [PMID: 21771682]
[22]
Wadood A, Ghufran M, Jamal SB, et al. Phytochemical analysis of the medicinal plants occurring in local area of Mardan. Biochem Anal Biochem 2013; 2013(2): 144.
[http://dx.doi.org/10.4172/2161-1009.1000144]
[23]
Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol 1983; 54(4): 275-87.
[http://dx.doi.org/10.1007/BF01234480] [PMID: 6667118]
[24]
Koster R, Anderson M, Beer EJ. Acetic acid for analgesic screening. Fed Proc 1959; 18: 412-8.
[25]
Abacioğlu N, Tunçtan B, Akbulut E, Cakici I. Participation of the components of L-arginine/nitric oxide/cGMP cascade by chemically-induced abdominal constriction in the mouse. Life Sci 2000; 67(10): 1127-37.
[http://dx.doi.org/10.1016/S0024-3205(00)00711-6] [PMID: 10954047]
[26]
Perimal EK, Akhtar MN, Mohamad AS, et al. Zerumbone-induced antinociception: involvement of the L-arginine-nitric oxide-cGMP -PKC-K+ ATP channel pathways. Basic Clin Pharmacol Toxicol 2011; 108(3): 155-62.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00635.x] [PMID: 20955360]
[27]
Hunskaar S, Hole K. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 1987; 30(1): 103-14.
[http://dx.doi.org/10.1016/0304-3959(87)90088-1] [PMID: 3614974]
[28]
D’Amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther 1941; 72: 74-9.
[29]
Abdul Rahim MH, Zakaria ZA, Mohd Sani MH, et al. Methanolic extract of Clinacanthus nutans exerts antinociceptive activity via the opioid/nitric oxide-mediated, but cGMP-independent, pathways. Evid Based Complement Alternat Med 2016.20161494981
[http://dx.doi.org/10.1155/2016/1494981] [PMID: 27190528]
[30]
Boakye-Gyasi E, Henneh IT, Abotsi WKM, Ameyaw EO, Woode E. Possible mechanisms involved in the anti-nociceptive effects of hydro-ethanolic leaf extract of Ziziphus abyssinica. Pharm Biol 2017; 55(1): 1962-71.
[http://dx.doi.org/10.1080/13880209.2017.1355927] [PMID: 28726567]
[31]
Khatun A, Imam MZ, Rana MS. Antinociceptive effect of methanol extract of leaves of Persicaria hydropiper in mice. BMC Complement Altern Med 2015; 15: 63.
[http://dx.doi.org/10.1186/s12906-015-0558-y] [PMID: 25888297]
[32]
Trongsakul S, Panthong A, Kanjanapothi D, Taesotikul T. The analgesic, antipyretic and anti-inflammatory activity of Diospyros variegata Kruz. J Ethnopharmacol 2003; 85(2-3): 221-5.
[http://dx.doi.org/10.1016/S0378-8741(03)00020-5] [PMID: 12639744]
[33]
Thomazzi SM, Silva CB, Silveira DC, et al. Antinociceptive and anti-inflammatory activities of Bowdichia virgilioides (sucupira). J Ethnopharmacol 2010; 127(2): 451-6.
[http://dx.doi.org/10.1016/j.jep.2009.10.014] [PMID: 19837149]
[34]
Ikeda Y, Ueno A, Naraba H, Oh-ishi S. Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. Life Sci 2001; 69(24): 2911-9.
[http://dx.doi.org/10.1016/S0024-3205(01)01374-1] [PMID: 11720094]
[35]
Ahmed F, Shahid IZ, Biswas UK, Roy BA, Das AK, Choudhuri MSK. Antiinflammatory, antinociceptive, and neuropharmacological activities of Clerodendron viscosum. Pharm Biol 2007; 45: 587-93.
[http://dx.doi.org/10.1080/13880200701501342]
[36]
Sulaiman MR, Zakaria ZA, Bujarimin AS, Somchit MN, Israf DA, Moin S. Evaluation of Moringa oleifera aqueous extract for antinociceptive and anti-inflammatory activities in animal models. Pharm Biol 2008; 46: 838-45.
[http://dx.doi.org/10.1080/13880200802366710]
[37]
Deraedt R, Jouquey S, Delevallée F, Flahaut M. Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur J Pharmacol 1980; 61(1): 17-24.
[http://dx.doi.org/10.1016/0014-2999(80)90377-5] [PMID: 7353582]
[38]
Duarte ID, Nakamura M, Ferreira SH. Participation of the sympathetic system in acetic acid-induced writhing in mice. Braz J Med Biol Res 1988; 21(2): 341-3.
[PMID: 3203167]
[39]
Ribeiro RA, Vale ML, Thomazzi SM, et al. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 2000; 387(1): 111-8.
[http://dx.doi.org/10.1016/S0014-2999(99)00790-6] [PMID: 10633169]
[40]
Sewell RD, Spencer PS. Antinociceptive activitiy of narcotic agonist and partial agonist analgesics and other agents in the tail-immersion test in mice and rats. Neuropharmacology 1976; 15(11): 683-8.
[http://dx.doi.org/10.1016/0028-3908(76)90037-X] [PMID: 12485]
[41]
Grumbach L. The prediction of analgesic activity in man by animal testing IN: Pain. Little Brown and Co.Boston 1966; pp. 163-82.
[42]
King TE, Joynes RL, Grau JW. Tail-flick test: II. The role of supraspinal systems and avoidance learning. Behav Neurosci 1997; 111(4): 754-67.
[http://dx.doi.org/10.1037/0735-7044.111.4.754] [PMID: 9267652]
[43]
Jensen TS, Yaksh TL. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat. Brain Res 1986; 363(1): 99-113.
[http://dx.doi.org/10.1016/0006-8993(86)90662-1] [PMID: 3004644]
[44]
Dubuisson D, Dennis SG. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977; 4(2): 161-74.
[http://dx.doi.org/10.1016/0304-3959(77)90130-0] [PMID: 564014]
[45]
Saddi G, Abbott FV. The formalin test in the mouse: A parametric analysis of scoring properties. Pain 2000; 89(1): 53-63.
[http://dx.doi.org/10.1016/S0304-3959(00)00348-1] [PMID: 11113293]
[46]
Vissers K, Hoffmann V, Geenen F, Biermans R, Meert T. Is the second phase of the formalin test useful to predict activity in chronic constriction injury models? A pharmacological comparison in different species. Pain Pract 2003; 3(4): 298-309.
[http://dx.doi.org/10.1111/j.1530-7085.2003.03033.x] [PMID: 17166125]
[47]
McNamara CR, Mandel-Brehm J, Bautista DM, et al. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 2007; 104(33): 13525-30.
[http://dx.doi.org/10.1073/pnas.0705924104] [PMID: 17686976]
[48]
Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992; 51(1): 5-17.
[http://dx.doi.org/10.1016/0304-3959(92)90003-T] [PMID: 1454405]
[49]
González-Trujano ME, Peña EI, Martínez AL, et al. Evaluation of the antinociceptive effect of Rosmarinus officinalis L. using three different experimental models in rodents. J Ethnopharmacol 2007; 111(3): 476-82.
[http://dx.doi.org/10.1016/j.jep.2006.12.011] [PMID: 17223299]
[50]
Munro G. Pharmacological assessment of the rat formalin test utilizing the clinically used analgesic drugs gabapentin, lamotrigine, morphine, duloxetine, tramadol and ibuprofen: Influence of low and high formalin concentrations. Eur J Pharmacol 2009; 605(1-3): 95-102.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.004] [PMID: 19168051]
[51]
Muko KN, Ohiri FC. A preliminary study on the anti-inflammatory properties of Emilia sonchifolia leaf extracts. Fitoterapia 2000; 71(1): 65-8.
[http://dx.doi.org/10.1016/S0367-326X(99)00123-9] [PMID: 11449473]
[52]
Neugebauer V. Glutamate receptor ligands. Handb Exp Pharmacol 2007; 177(177): 217-49.
[PMID: 17087125]
[53]
Jackson DL, Graff CB, Richardson JD, Hargreaves KM. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. Eur J Pharmacol 1995; 284(3): 321-5.
[http://dx.doi.org/10.1016/0014-2999(95)00449-U] [PMID: 8666015]
[54]
Carlton SM, Hargett GL, Coggeshall RE. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci Lett 1995; 197(1): 25-8.
[http://dx.doi.org/10.1016/0304-3940(95)11889-5] [PMID: 8545047]
[55]
Carlton SM, Chung K, Ding Z, Coggeshall RE. Glutamate receptors on postganglionic sympathetic axons. Neuroscience 1998; 83(2): 601-5.
[http://dx.doi.org/10.1016/S0306-4522(97)00406-5] [PMID: 9460766]
[56]
Beirith A, Santos AR, Rodrigues AL, Creczynski-Pasa TB, Calixto JB. Spinal and supraspinal antinociceptive action of dipyrone in formalin, capsaicin and glutamate tests. Study of the mechanism of action. Eur J Pharmacol 1998; 345(3): 233-45.
[http://dx.doi.org/10.1016/S0014-2999(98)00026-0] [PMID: 9592021]
[57]
Sakurada T, Sugiyama A, Sakurada C, et al. Involvement of nitric oxide in spinally mediated capsaicin- and glutamate-induced behavioural responses in the mouse. Neurochem Int 1996; 29(3): 271-8.
[http://dx.doi.org/10.1016/0197-0186(96)00004-6] [PMID: 8885286]
[58]
Santos AR, Calixto JB. Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides 1997; 31(4): 381-9.
[http://dx.doi.org/10.1016/S0143-4179(97)90075-5] [PMID: 9308027]
[59]
Sakurada T, Matsumura T, Moriyama T, Sakurada C, Ueno S, Sakurada S. Differential effects of intraplantar capsazepine and ruthenium red on capsaicin-induced desensitization in mice. Pharmacol Biochem Behav 2003; 75(1): 115-21.
[http://dx.doi.org/10.1016/S0091-3057(03)00066-2] [PMID: 12759119]
[60]
Shibata M, Ohkubo T, Takahashi H, Inoki R. Modified formalin test: characteristic biphasic pain response. Pain 1989; 38(3): 347-52.
[http://dx.doi.org/10.1016/0304-3959(89)90222-4] [PMID: 2478947]
[61]
Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011; 25(3): 243-54.
[http://dx.doi.org/10.1016/j.niox.2011.06.004] [PMID: 21723953]
[62]
Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53(4): 527-52.
[PMID: 11734617]
[63]
Poon A, Sawynok J. Antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. Eur J Pharmacol 1999; 384(2-3): 123-38.
[http://dx.doi.org/10.1016/S0014-2999(99)00626-3] [PMID: 10611432]
[64]
Sawynok J, Reid A, Poon A. Peripheral antinociceptive effect of an adenosine kinase inhibitor, with augmentation by an adenosine deaminase inhibitor, in the rat formalin test. Pain 1998; 74(1): 75-81.
[http://dx.doi.org/10.1016/S0304-3959(97)00153-X] [PMID: 9514563]
[65]
Sawynok J. Adenosine receptor activation and nociception. Eur J Pharmacol 1998; 347(1): 1-11.
[http://dx.doi.org/10.1016/S0014-2999(97)01605-1] [PMID: 9650842]
[66]
Ribeiro JA, Sebastião AM, de Mendonça A. Adenosine receptors in the nervous system: Pathophysiological implications. Prog Neurobiol 2002; 68(6): 377-92.
[http://dx.doi.org/10.1016/S0301-0082(02)00155-7] [PMID: 12576292]
[67]
Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: Release and regulation of pain. Prog Neurobiol 2003; 69(5): 313-40.
[http://dx.doi.org/10.1016/S0301-0082(03)00050-9] [PMID: 12787573]
[68]
Honda K, Harada A, Takano Y, Kamiya H. Involvement of M3 muscarinic receptors of the spinal cord in formalin-induced nociception in mice. Brain Res 2000; 859(1): 38-44.
[http://dx.doi.org/10.1016/S0006-8993(99)02456-7] [PMID: 10720613]
[69]
Sanders RD, Maze M. Adrenergic and cholinergic compounds. Handb Exp Pharmacol 2007; 177(177): 251-64.
[PMID: 17087126]
[70]
Jones PG, Dunlop J. Targeting the cholinergic system as a therapeutic strategy for the treatment of pain. Neuropharmacology 2007; 53(2): 197-206.
[http://dx.doi.org/10.1016/j.neuropharm.2007.04.002] [PMID: 17543355]
[71]
Wang XL, Zhang HM, Li DP, Chen SR, Pan HL. Dynamic regulation of glycinergic input to spinal dorsal horn neurones by muscarinic receptor subtypes in rats. J Physiol 2006; 571(Pt 2): 403-13.
[http://dx.doi.org/10.1113/jphysiol.2005.102905] [PMID: 16410279]
[72]
Fiorino DF, Garcia-Guzman M. Muscarinic pain pharmacology: realizing the promise of novel analgesics by overcoming old challenges. Handb Exp Pharmacol 2012; 208(208): 191-221.
[http://dx.doi.org/10.1007/978-3-642-23274-9_9] [PMID: 22222700]
[73]
Chen SR, Pan HL. Spinal endogenous acetylcholine contributes to the analgesic effect of systemic morphine in rats. Anesthesiology 2001; 95(2): 525-30.
[http://dx.doi.org/10.1097/00000542-200108000-00039]
[74]
Gutierrez T, Nackley AG, Neely MH, Freeman KG, Edwards GL, Hohmann AG. Effects of neurotoxic destruction of descending noradrenergic pathways on cannabinoid antinociception in models of acute and tonic nociception. Brain Res 2003; 987(2): 176-85.
[http://dx.doi.org/10.1016/S0006-8993(03)03324-9] [PMID: 14499961]
[75]
Tanabe M, Takasu K, Kasuya N, Shimizu S, Honda M, Ono H. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse. Br J Pharmacol 2005; 144(5): 703-14.
[http://dx.doi.org/10.1038/sj.bjp.0706109] [PMID: 15678083]
[76]
Sawamura S, Kingery WS, Davies MF, et al. Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of [alpha]2B adrenoceptors. J Neurosci 2000; 20(24): 9242-51.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-09242.2000] [PMID: 11125002]
[77]
Scheinin M, Sallinen J, Haapalinna A. Evaluation of the alpha2C-adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci 2001; 68(19-20): 2277-85.
[http://dx.doi.org/10.1016/S0024-3205(01)01016-5] [PMID: 11358337]
[78]
Yamada K, Inagaki N. Neuroprotection by KATP channels. J Mol Cell Cardiol 2005; 38(6): 945-9.
[http://dx.doi.org/10.1016/j.yjmcc.2004.11.020] [PMID: 15910879]
[79]
Soundarapandian MM, Zhong X, Peng L, Wu D, Lu Y. Role of K(ATP) channels in protection against neuronal excitatory insults. J Neurochem 2007; 103(5): 1721-9.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04963.x] [PMID: 17944875]
[80]
Ocaña M, Baeyens JM, Baeyens P. Role of ATP-sensitive K+ channels in antinociception induced by R-PIA, an adenosine A1 receptor agonist. Naunyn Schmiedebergs Arch Pharmacol 1994; 350(1): 57-62.
[http://dx.doi.org/10.1007/BF00180011] [PMID: 7935855]
[81]
Rangel RAS, Marinho BG, Fernandes PD, de Moura RS, Lessa MA. Pharmacological mechanisms involved in the antinociceptive effects of dexmedetomidine in mice. Fundam Clin Pharmacol 2014; 28(1): 104-13.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01068.x] [PMID: 22924641]
[82]
Jain NK, Patil CS, Singh A, Kulkarni SK. Sildenafil-induced peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Brain Res 2001; 909(1-2): 170-8.
[http://dx.doi.org/10.1016/S0006-8993(01)02673-7] [PMID: 11478933]
[83]
Xu JY, Pieper GM, Tseng LF. Activation of a NO-cyclic GMP system by NO donors potentiates beta-endorphin-induced antinociception in the mouse. Pain 1995; 63(3): 377-83.
[http://dx.doi.org/10.1016/0304-3959(95)00067-4] [PMID: 8719539]
[84]
Ehab S, Desoky EL, Ihab A. Fouad Pharmacological evidence for the role of nitric oxide cGMP in antinociception. J Appl Res 2005; 5: 451-9.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 3
Year: 2020
Page: [194 - 205]
Pages: 12
DOI: 10.2174/1871524920666200705221956
Price: $65

Article Metrics

PDF: 40
HTML: 1